|
Journal of Convex Analysis 33 (2026), No. 1&2, 155--170 Copyright Heldermann Verlag 2026 The Lions Concentration-Compactness Principle for the Dirichlet Problem for Partial Differential Equations with Variable Exponent Laplace Operator Mykola I. Yaremenko National Technical University, Igor Sikorsky Polytechnic Institute, Kyiv, Ukraine math.kiev@gmail.com [Abstract-pdf] We develop the P.\,Lions concentration-compactness principle for a sequence of Radon measures on $R^{n}$, the P.\,Lions principle is extended to variable exponent Lebesgue spaces $L^{p\left(\cdot \right)} \left(\Omega \right)$, $\Omega \subseteq R^{n}$, $n\ge 3$. Employing this $L^{p\left(\cdot \right)}$-extension of the concentration-compactness principle, we establish almost exact conditions under which the Dirichlet problem $\left. u\right|_{\partial \Omega } =0$ for variable exponent Laplace equation \[ -div\left(\left|\nabla u\right|^{p\left(x\right)-2} \nabla u\right) + \lambda \left|u\right|^{p\left(x\right)-2} u = a\left(x\right)\left|u\right|^{s\left(x\right)-2} u+f\left(x,\; u\right) \] has a weak solution in variable exponent Sobolev space $W_{1}^{p\left(\cdot \right)} \left(\Omega \right)$, with critically grown coefficients. Keywords: Concentration-compactness, variable exponent Lebesgue spaces, variable exponent Sobolev space, mountain pass theorem, concentration-compactness principle, Radon measure, Levy distribution. MSC: 49A22, 47H15, 35J65, 35J66, 49N99. [ Fulltext-pdf (146 KB)] for subscribers only. |