|
Journal of Convex Analysis 33 (2026), No. 1&2, 335--360 Copyright Heldermann Verlag 2026 Relaxation for a Degenerate Functional with Linear Growth in the Onedimensional Case Valeria Chiado Piat Dip. di Scienze Matematiche "G. Lagrange", Politecnico di Torino, Torino, Italy valeria.chiadopiat@polito.it Virginia De Cicco Dip. di Scienze di Base e Applicate per l'Ingegneria, Università "La Sapienza", Roma, Italy virginia.decicco@uniroma1.it Anderson Melchor Hernandez Dip. di Matematica, Università di Bologna, Bologna, Italy anderson.melchor@unibo.it We study the relaxation of a degenerate functional with linear growth, depending on a weight w that does not exhibit doubling or Muckenhoupt-type conditions. In order to obtain an explicit representation of the relaxed functional and its domain, our main tools for are Sobolev inequalities with double weight. Keywords: Lower semicontinuity, relaxation, degenerate variational integrals, weight, Poincare inequality. MSC: 26A15, 49J45. [ Fulltext-pdf (234 KB)] open access. |