Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article

Journal of Convex Analysis 14 (2007), No. 3, 589--606
Copyright Heldermann Verlag 2007

Prox-Regularity and Stability of the Proximal Mapping

Warren L. Hare
IRMACS, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada

René A. Poliquin
Dept. of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alb. T6G 2G1, Canada

Fundamental insights into the properties of a function come from the study of its Moreau envelopes and Proximal point mappings. In this paper we examine the stability of these two objects under several types of perturbations. In the simplest case, we consider tilt-perturbations, i.e. perturbations which correspond to adding a linear term to the objective function. We show that for functions that have single-valued Lipschitz continuous proximal mappings, in particular for prox-regular functions, tilt-perturbations result in stable, i.e. single-valued Lipschitz continuous, proximal point mappings.
In the more complex case, we consider the class of parametrically prox-regular functions. These include most of the functions that arise in the framework of nonlinear programming and its extensions (e.g. convex, lower-C2, strongly amenable (convexly composite)). New characterizations of prox-regularity are given and more general perturbations along the lines of A. B. Levy, R. A. Poliquin and R. T. Rockafellar [SIAM J. Optimization 10(2) (2000) 580--604] are studied. We show that under suitable conditions (compatible parameterization, positive coderivative, ...), the proximal point mappings of the function fu(x) = f(x, u) depends in a Lipschitz fashion on the parameter u and the prox-parameter r.

Keywords: Prox-regular, proximal mapping, Moreau envelope, stability, convex, convexly composite, strongly amenable, compatible parameterization, perturbations, sensitivity analysis.

MSC: 49A52, 58C06, 58C20; 90C30

[ Fulltext-pdf  (176  KB)] for subscribers only.