A Robust Version of Convex Integral Functionals

We study the pointwise supremum of convex integral functionals

\[I_{f, \gamma}(\xi) = \sup_Q \left(\int_\Omega f(\omega, \xi(\omega))Q(d\omega) - \gamma(Q) \right) \]

on \(L^\infty(\Omega, \mathcal{F}, P) \) where \(f : \Omega \times \mathbb{R} \to \mathbb{R} \) is a proper normal convex integrand, \(\gamma \) is a proper convex function on the set of probability measures absolutely continuous w.r.t. \(P \), and the supremum is taken over all such measures. We give a pair of upper and lower bounds for the conjugate of \(I_{f, \gamma} \) as direct sums of a common regular part and respective singular parts; they coincide when \(\text{dom}(\gamma) = \{P\} \) as Rockafellar’s classical result, while both inequalities can generally be strict. We then investigate when the conjugate eliminates the singular measures, which a fortiori yields the equality in bounds, and its relation to other finer regularity properties of the original functional and of the conjugate.

Keywords: Convex integral functionals, duality, robust stochastic optimization, financial mathematics.

MSC: 46N10, 46E30, 49N15, 52A41, 91G80