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CHAPTER VIII

DIMENSION AND COHOMOLOGY

The purpose of this chapter is to investigate dimension theory from the point of
view of algebraic topology. This point of view is originally due to P. Alexandroff
[2) and has been greatly developed by his school '. Here we shall not try to cover
the extensive developments in this field which could easily be the subject of another
book. We shall only aim at a characterization of dimension in terms of cohomology
adopting the method due to C. H. Dowker [1] which goes back to E. &ech [3].

Recent investigations on the subject show that for non-compact spaces cohomology

is more practical than homology, and that is the reason why we deal mainly with
cohomology in this chapter. The final section will contain a brief account of homo-
logy in dimension theory. Throughout the chapter every space considered will be a
paracompact Tz-space unless the contrary is explicitly stated, though some discus-

sions are valid for more general spaces. 2

VIII. 1. Homology group and cohomology group of a complex

Definition VIIL. 1. Let E be a set of elements which are called (abstract)
vertices and K a collection of finite subsets of E such that every subset of a

! See P. Alexandroff (6], [8].

2 K. Morita [8) gave a cohomological characterization of dimension of general
topological spaces.



VIIL. | - 214 -

set belonging to K also belongs to K : then we call K an (abstract) complex.
We call a set of n+1 vertices Appeeer@, belonging to K an (abstract) n-gimp—
lex or n~dimensional simplex of K and demote it by | Qporeesa, |® . an m-simplex

| a; s-eesa; | whose vertices are chosen from {ay,...,a,} is called an m-face
[/ m

of Iao,...,anl . If K containg an n-gimplex, but no n'-simplex for n'>n , then
K 1is called an n-complex or n~dimensional camplex. A complex K is called a finite
complex if it contains only finitely many simplices and is called a star-finite
complex if every simplex of X <& a face of at most finitely many simplices of K .

Example VIII. 1., Let Ko be a geometrical complex " in a Euclidean space and
E the set of the vertices of KO .

We say that n+1 vertices of E form an n-simplex if and only if they are the
vertices of an n-dimensional (geometrical) simplex belonging to KO . Then we get
an abstract complex K . Generally every finite abstract n -complex X is <somor—
phic to a geometrical complex KO in E2n+l , 1.e., the vertices of K are mapped
onto the vertices of Ko by a one-to-one mapping which gives rise to a one-to-one
correspondence between the simplices of K and those of KO . l(o is called an
n - polyhedron if it is regarded as a point set in the Euclidean space. In the case
where X 1is infinite we can realize K as a metric space in the following way. Let
V be the set of all vertices of K . Put K0={x| x 1is a real-valued function on
V such that 0<x<1! , zpevz(p)=l , {p€V]|x(p)>0) 1is a simplex of K} . The
distance between two points x and y of Ko is defined by Epeyl xz(p) -y(p) | .
We shall call K, the realization of K . For each z €K, {x(p) | pEV} 1is called

0

the barycentric coordinate of x . Let &=|a a, | €K . Then the subset

o e
Ko(s) ={z€ K, | x(p) =0 if p#ao,...,ar} of KO is homeomorphic to the geometri-
cal simplex [ao,...,an] , and K0=U(Ko(e)| €K} . Where there is no fear of con-

fusion the same notation is used for an abstract complex and for its realization.

On the other hand, we shall denote by [a an] the geometrical simplex with

RS
the vertices ao,...,an , where a seeer@  are points of o in a general posi-
. n n
tion and la.,...,a )={z€E |z =]" \.a. . A.=1 <h.<|

[0’ ‘n] { | Z-1.=O 117 Lti=0"17 » 02 1= for

1=0,...,n}.

A finite set Ko of geometrical simplices in Euclidean space is called a
geametrical complex 1if (i) every face of a simplex belonging to K, also belongs
to KO . (ii) the intersection of two simplices belonging to KO is a face of

each of those simplices.
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Example VIII. 2. Let U be a covering of a topological space R . We regard the
members of U as the vertices and define that UO,...,Un€U will make up an
n-simplex if and only if Uon ﬁUn#ﬁ . Then we obtain an abstract complex which
is called the merve of U and denoted by HN(U) through this chapter. As a matter
of fact essentially we used this concept in the proof of the imbedding theorem. The
nerve of a Finite or star-finite covering is a finite or star—finite complex

respectively.

Definition VIII. 2. Let | Qpsvens nl
K . We consider an oriented n—simplex with the veriices a

a be an n-simplex belonging to a complex

02 29, in thig order
and denote it by (ay,...,a ) . For an ortented n-simplex ' we denote by | x|
the non-oriented simplex consisting of the vertices of 2" and call it the absolu*e

, . o.n o _ -
simplex of x . We define (ai,...,ai)- (aO,...,an) or (ai,...,a.)—

7
n g 7
- {ao,...,an) according to whether the permutation (g : ) 18 even or odd. For
6" n
n = 0 we consider two oriented O-simplices a, and - a, -

Definition VIII. 3. LILet us denote by G and K a comutative group and an
abstract ecanplex, respectively. We shall write the operation of G additively. Let
us denote by { [le | a€4} the totality of the abstract simplices of K. Then an
(n,G)-chain of K is a linear form

of the n-simplices IZ , €A of K with the coefficients ga€G.. Let
o= o gax: and W = zahaxg be two (n,Gl-chains of K ; then we define the siem
of @ and V' by

G =Y (g% n®il .
o
a
We denote by 0 the (n,G)-chain zaguxa with g“:o for every o . Then the
(n,G)-chains of K form a commutative group denoted by Cn(K_,G) .

Definition VIII. 4. Let xz and xg—z be oriented simplices of a complex ¥ .
Then we define the incidence ramber n% between them as follows:

o _ . n-1 . . n
nB—O if xg is no face of CA

(o P R n-1_ o
nB—( 1)%e iy Zy T (aa,...,an) s Tg ‘E{QO"“’ai""’an) s
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where e=+1 or -1 ,and (aa,. .e ,ai,. .. ,an):(ao,... 5p_15@s L gae ..,an). To define
the incidence rumber for n=0 , we consider one -l-simplex x~! containing no
vertex and belonging to K . We define the incidence mumber between a and 21
as 1 and the incidence number between -a and x ' as -1. Let wn=2

be an (n,G)-chain of K. We express by

an
a€a9d Ty

n+1 n n-1
U=, "l lveck, Ula, | laeal, {|zz""||BeB},

the totalities of the absolute (n+1) , n, (n-1)-gimplices of K , respectively.
Then the boundary 3¢ of ¢ is the (n-1,G)-chain defired by

W= Y ¢} gang):cg”,
BEB a€d

where we assume that K is star-finite,® The coboundary &¢° of o' is the

{n+1,G)-chain defined by
n_ ay, n+l
§0'= § ):A g na):r:Y R

where K 13 not necessarily star-finite. (&9 =0 if K containg no (n+1)-simp-
lex. )

A) =0, s8¢ =0 .

Proof. Assume wnziagax;l . Then

1 2 aa Bn-2

n
, and 939 = g nan_ ' x s
a,8,Y By Ty

awn: Z gf.!nﬁ n -
o8 g8

8 ]

vhere n; denotes the incidence number between xg- and xz-z . Suppose

e X

x =(a0,...,an) R
sefay,...,8.....a) , x"-l=e'(a0,...,&k,...,an) R

=c'’(a di,...,a‘k,...,an) .

0).-0,

5 1

. s 23 . P
In case all but a finite number of the g 's vanish, X need not be star-finite,
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Then

oo B !

i k- i+k-1a
ganY =e(-1)ee"" (1) g

ga=€' (-1
and

8

oo TN ST 1 SN 2 3K 1
gns.nY =g'(-1)7e'e’ (1) g ="' (-1) g

oo B

cancel each other. Therefore Esg anY =0 for every a,Y , which implies

Banpn=0 . 6&0”=0 can be proved in a similar way.

Definition VIII. 5. 4n (n,G)-chain is called an (n,G)-cycle if ite boundary <is
equal to zero. An (n,G)-chain is called an (n,G)=cocycle if its coboundary is equal
to zero. We denote by Zn(K,G) and Zn(K, G) the set of the (n,G)-cycles and of the
(n,G)-cocyeles of K , respectively. It is easily seen that they are both subgroups
of C‘n(K,G) .

Furthermore, by A), the (n,G)-chains which are the bourdaries of (n +1,G)-chains
form a subgroup of Zn(K,G) which g denoted by Bn(K, G) . The chains in Bn(K,G) are
called bounding cycles. The (n,G)-chains which arve the coboundaries of (n-1,G)-
chains form a subgroup of Zn{K,G) which ig denoted by Bn(K, G) . The chains in
B™(X,G) are called cobounding cocycles.

Now we call the difference group

Hn(}(, G} = Zn(K,G) - Bn(K’ G)

the n-dimensional homology group of K with the coefficient group G and the dif-
ference group )

#x,6) =2"%k,G) - B (K,G)

the n-dimenstonal cohomology group of K with the coefficient group G . The ele-
ments of Hn(K, G) and H'(X,G) are called n-dimensional homology classes and
n-dimensional cohomology classes, respectively. Two cycles (cocycles) belonging to
the same homology (cohomology) classes are called homologous (ecohomologous). We

denote by wn~q;n in K the fact that two cocycles © and W of K are coho-
mologous.
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Definition VIII. 6. Let K be a complex and L a subcollection of K . If
every face of a stmplex of L belongs to L , then we call L a subcomplex of K .
Suppose @' =J Q€A gaxz ig an (n,Gl—chain of K . Then we denote by { I:r:g ||geB}
the totality of the absolute n-simplices of L . Now, to ¢ there corresponds ar
(n,G)—chain: " = “,'cpn of L such that

we call Y* the rvestriction of © to L and @' an ertension of V' over K.
Conversely to an in,Gl-chain 4" =3 ge Bgsxg of L there corresponds an (n,G)-
chain @' =hW' of X such that

where g“:o for ofB.

B) h[, induces a homomorphism also denoted by hL of H'(K,G) into Hn(L,G) .

hy induces a homomorphism also denoted by h}, of Hn(L)G) into Hn(K,G) .

Proof. It is clear that hL is a homomorphism of Cn(K,G) into Cn(L,G) and
satisfies hlﬁwn:Gth)n . Hence hL maps every cocycle of X to a cocycle of I
and every cobounding cocycle of K to a cobounding cocycle of L . Therefore #

L
induces a homomorphism of Hn{K,G) into En(L,G) . The proof for h, is similar.

K
Definition VIII. 7. The hamomorphisms hy and hK in B) are called the natural
homomorphisns. Suppose h, maps GENYNK,G) to e€H'L,G) ; then & 4isg called
ar. extension of e , and e 1is said tc be extendible over X .

C) Let é&Hn(K,G) be an extension of eE:‘fn(L,G) LIE 7 isa cocycle of L

s . n . -
which represents e , then there exists a cocycle © of KX which represents &

. . .o.n . n n
and is an extension of ¢ , i.e. thp =y,

Proof. 1f &=0, then e=0 ., Hence *!Jn is a cobounding cocycle of L , i.e.

7= 1

f.";n:&yn—l for some (n-1,G)-chain @ of L . Then dth”" is a cobounding

cocycle of K satisfying

Ja-l n-1_.n-1_.n
!:LGhK. -éthKq; Sip v,
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Thus 6hK\bn_ ! =" is the desired extension of wn . If & 1is an arbitrary

element, we take a cocycle w’;‘EE . Then th €e , and hence dl - Lwl is a
cobounding cocycle of L . Hence, as above, there exists a coboundmg cocycle (02
of K which is an extension of lpn—thr]l over K . Put tD wl +(02 : then since

W €Z , and thn:hL(p?+hL<oZ:lpn , @ is the desired extension.

Definition VIII. 8. Let XK and L be two canplexes and f a mapping which
maps each vertex of K to a vertex of L . 7 18 called a simplicial mapping if it
satisfies the following condition: If vertices Qpsvvesy form a simplex of K ,
then j‘(aa),...,f(an) form a simplex of L , where gsome of j‘(ao),...,f(an) may
coineide. If for an n-simplex xn:(ao,...,an) L (flag),....fla )) is also an n-simples,
then we denote it Dy f{xn) .

Let 7 be a simplicial mapping of K <intoc L . For an (n,G)-chain
" 8 of L , we define an (n,G)-chain ¢ of X by

v :Xshy

™3

O =T ) Bl
a B
where

L iE flal) =y
S . ' ny__mn
fg- 1 if f«.ra) “-Ygs

0 otherwise.

Suppose for every yz of L , there exist only fimltely many stmplices x:; of
K such that f{x ) -*yB Then for an (n,G)-chain ¢ -2 ga 4 of X we define
an (n,G)-chain Vl of L by

w":ﬁo":% (1 ¢°f3vg -
¢

D) &y’ =es” |, ap0” = fag”

Proof. We shall prove the first formula only; the second one can be proved in a

similar way. Let wnrz B Z Then

srryt =8 2 (2 HEr)all = )j Q hef‘) AR

I
»

:I(
Y

B Yy, n+i_ Y -
hfaﬂ )x -E ), In f‘ﬁ‘b
o, B B oy Y B
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By _ By Y
because ZG,Bh fgnu ZY',Sh fY,ﬂB is easy to check.
Since f* 1is easily seen to be a homomorphism of Cn(L,G) into Cn(K,G) , we

can prove, by use of D) and an argument like the one in B), that

E) f* induces a homomorphism of H’:(L,G) into HH(K,G) . f induces a homo-
morphism of # (K,G) inte # (L,G) .6

From now on we shall be chiefly concerned with cohomology with coefficient group
1 , the additive group of integers, though some of the following results may be
true even for general coefficient groups. Accordingly, we mean by an n - chain,

n - cocycle, En(]() ete. an (n,I)-chain, (n,I)-coecycle, Hn(K,I) etc. respectively.

Definition VIII. 9. Let K be a complex with the not necessarily countable set
of vertices ApsQpsees o In addition we consider the vertices bl,bg,. .. correspon—
ding to Qg - We define (bio,biz,...,bix,ai)‘,...,ain) (0<xsn) to bea
simplex ©f (a, ,a. ,.ve,Q, ,+.0,a. ) 18 an n-simplex of K. We denote by PK the

o 1 a *n

complex which consists of those simpleces and their jaces. For an n-simplex

xn=(ai seres@ ) of K we define an (n+ l)-chain j of PK by

0 n

n
n A N
px"= ¥ (-1)7(b, ,b. ,...,b, .4, ,eee,a; ),
=0 Yo Y1 LS WO *n

for a chain wn:}:aga:cz of K.

F) Let :‘n:(ao,...,an) be an n-simplex of a complex K and yn:‘(bo_,...,bn) the

n-simplex of PK which consists of the vertices bo,...,b

respectively., Then are =" -yn -paz’ .

n corresponding to

Qs vresdy

® As a matter of fact B) is a special case of E) in which f is the identity

mapping of L into K.
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Proof. We put, for brevity,

z; +l =(b0""’bj’aj""’an) ,

z;[bi] =(bgeeesBpeeiibias . ia)
zg[ak] ={b0, bj,aj,...,dk,...,an),
xz— ! =@, dyy.en,a) .

Then

J . n .
N +l= g i\ _ _yytn
3z, £ -1 aj[bi] I n zj[ai] s

=0 =g
n 2 in-1
= (-1) x; ,
=0
Px"“ji[ -19z"a,] - 5 192",
v ji=zo Jg ot j:;-rl g

Therefore we obtain

n .
v pa = § (-nY¢ f -n? 2 b, - Z (-1)‘z;[ai])+
=0 2=0 {=

Ll g I S

n z 7= -
I oen* 1 ndalle ] -
=0 o 3

-9 b1 =
i=o i= It

+ 1
n . r

=1 ¥l 1 en¥ala -

=0 =0

=zn[b]+(§ '”[b]—nil Ma. ) -2"a )=
0Pl Tt Aol L Eglagh s la s

because

2y Wb, 1=201a )

This implies the desired relation.
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G) Let (Dn be an n-cocycle of PK . We denote by gg the coefficient of :L’Z
in the linear form ‘Dn and by gc: that of yZ , where :cz and y: denote
simplices which correspond to each other as mentioned in F). Then the n - chains
n o
‘p =

5 Xaggx: (=hKlon) and (o’]1=zag°llxg of K are cohomologous in K .

Proof. Generally, for an n - finite chain \b’ll‘-‘iuauz: and an 7 - chain
*;;’21 =) =Jbuz::: of PK we define

(RN s A
o

where we mean by a finite chain a chain only finitely many of whose coefficients

. . + + .
do not vanish. Then, for an (n +1)-finite chain \,'J’ll l =z)\a)‘z: ! and an n - chain

ST M7 .
v, EJb z, we obtain

A X

W_ o nt)
nub =I(y

' W= 1 a !
AU

n
,64.‘2) .
Hence, we obtain

L C AR OIS T LR O R

. o s . +1
for the cocycle wn and an arbitrary (n+1)-finite chain wn

Thus, it follows from F) that

because éw”:o .

non,_.,.n N n n ¢ a n-1 n
0=I(3Pz,® ) = Iz ,® ) -Ily ,©) )B:nBI(Rz:B ).

Since
Iz, @) =g5 and Ityl,e") =gt
putting
reesy LY =g,
we obtain

st gt eo
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We consider an (n- 1)-chain ¢~ : =3 Bgsxg—‘ of K . Then it follows from the

above formula that in X

-1 Ban a o, n a n an, A_. N
st =] gnaxleY (gr-gT)x =) goxa-1 g,%. =9,
g Ba "L 907917 "L 90787 L F1%a O

proving that l.f)g and w’: are cohomologous in X .

Example VIII. 3. The oriented n - simplex (-l)k (ao""'ﬁk""‘an+l) is

called a (positively) oriented face of the oriented (n+1)-simplex (ao,...,an+ l) y

i.e. the oriented faces are oriented so that the incidence numbers are equal to I .

o s . +1
Let T'7' be the complex consisting of an (n+ 1)-simplex :x:g =((10_,al,...,an+ l)

and its faces. Let Lpn:ZZ:(])gkxz be an n-cocycle where IZ:

k " _ . n+i

-1) (ao,...,ak,...,an*]) ,k=0,...,m+1 , are the oriented faces of T4 . Then
n PEY xmen nel g
& = Y gz, =0, i.e. I g =0.
k=0 k=o

n-1_ . . n-1_c,kf n-1 kk+l_

Let Ty  =(agaeespaeeesBgrerena, ), ¥ =Y h zp - vhere F =

g0+g] +... +gk and hu'=0 , otherwise., Then we easily see that Mn—l =g’ .

Therefore we obtain Hn(7n+ l) =0 , As a matter of fact, we can show that
i/"(.'lﬁ+l)=0 for every m .
On the other hand, we easily see that if X is a union of disjoint complexes X

then H(K) (n>0) 1is the direct sum of Hn(Ku) . Hence, if KX consists of dis-

[

joint simplices and their faces, then FH¥X)=0 for n>0 .

Example VIII. 4. Let X be an abstract complex. Then we define the barycentriec
subdivision X' of K as follows. We associate a vertex afx') with each absolute

simplex |z"| of K . Geometrically, a(z’) is the barycenter of the simplex. Then
K' consists of all the simplices

no nl n_L.
lafz “),alz ), .. afz ") |
f¢3 a o,
0 ! 7
"no, "h- "h
where 7'lo>nl > >ni , and z, is a face of x . If the vertices a(.'t:a )

h-1 h
are all barycenters of I:cn] or of its faces, then this simplex is called a sub-

simplex of IInI L If 2= (ao,... ,an) is an oriented simplex, then we can decide

the orientations of the n - subsimplices of x by deciding just one of them as

(al(ay,...,a)) ;a((al,.,..,an)),... »al{a,)))
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which is called the oriented n-subsimpiex of «' . (For example, in case of n=2
latay.a),a,)),a((@,.a,)).al(a )|

is oriented as
-al(ay.a,,a))),a((a,,a))),al(a)))

because (ao,az.al) =-(ao,al,a2) .) Suppose the n-simplices of X and X' are

8

oriented as above. To each n - chain " =2 g9 yg of K' we assign an »-chain

O =m® of K by

o n
A

o =mlt s ] gPek
a, B

where

a 1 if yg is an oriented 7 - subsimplex of xz ,
E_ =
8

0 otherwise.

Then we can show that T satisfies ﬂéwnirﬁnup and, moreover, that T induces
an isomorphism of HHK') onto H'(k) .7

Repeating this process of barycentric subdivision we obtain complexes X' , K'' ,
K''',... whose cohomology groups are all isomorphic to that of X . We call them
succesgsive barycentric subdivisions.

Let L be a subcomplex of X . If, in constructing a barycentric subdivision of
K , we choose as the additional vertices only the barycenters of the simplices which
do not belong to L , then we obtain the barycentric subdivieion K' of Kmod L .
For such a barycentric subdivision we can also show that the above mapping induces
an isomorphism of H'(K') onto HHK) .

Example VIII. 5. Let 5" be the complex consisting of all the faces of dim<n
of an (n+1)-simplex. We call s* the elenentary n-sphere. 1f we suppose the
original simplex is oriented and its faces are its oriented faces, then we can speak
of the oriented elementary n-sphere s*.

? A detailed proof can be found in W. Hurewicz and H. Wallman [1].
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Let us denote by 5" the oriented elementary n - sphere. Then every n - chain
P —z g :rk is clearly a cocycle. ton is cobounding in S if and only if
et
cobounding if and only if 2 g =0 . Thus each cohomology class in Hn(Sn) is
characterized by the value of ) gk , and hence F*S") is isomorphic to the

is cobounding in Tn , and, as seen in Example VIILI.3, h N I‘Dn s

coefficient group I . In view of Example VIII.4 this assertion, including the fact
that ¢ is cobounding if and only if z gk=0 , is also true for any of the

successive barycentric subdivisions of 5.

VIII. 2. Cohomology group of a topological space

Definition VIII. 10 . Let Ua and UB be open coverings of a topological space
R such that UB<U(l . For every member U of UB we choose a member U' of Uu
such that U' DU . Then we obtain a simplictal mapping of I‘I(UB) into ;V(Ua) which
is called a projection of N(UB) into ’J(U ) and denoted by wg . Then, by 1 E),

#g induces a homomorphism of Hn(N(U J) znto Hn(IV(UB))

A) Let us consider two projections fl and fz of N(U,) into N(U_ ) . where
UB<U0L . Then they induce the same homomorphism of Hn(h’(ua)) into Hn(N(UB)) .

Proof. We denote by @8y the not necessarily countably many vertices of
N(UB) and by bl’bZ’”’ vertices which correspond to Qps8yse-- in a one-to-one
manner, We construct the complex PIV(UB) by use of Definition VIII,9, Let us define
a mapping f by f(ai) =fl(a1:) and f{bi) :fZ(ai) .

Then f 1is obviously a simplicial mapping of PN(UB) into N(Ua) . We denote by
N’(UB) the subcomplex of PN(UB) consisting of the vertices bl’b2”" . It is
clear that the restrictions of f to H(UB) and I'J'(UB) turn out to be fl and
f2 , respectively.

Now, let ¢’ be an n - cocycle of N(Uu) . It is easy to see that

n

ol : s
b f‘;_w in .’.(UB) .

For f‘wn is an n - cocycle of PN(UB) s ard j'*(p restricted to N(UB) and
N’(UB) turns out to be f“w and f""w , respectively. ® Hence, by 1 G), the

desired result follows. Thus A) is proved.

® Occasionally, we have regarded fz as a mapping of N'(UB) into N(Ua) , since

A‘J(Ua) and N'(UB) are isomorphic.. But this should cause no confusion.
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Definition VIII. 11. Let A be a directed set, i.e. a set between some of whoge
elements the order is defined such that a<B and B<y timplies a<y and such
that for every two elements a, B there is a third element Yy with y>a , Y>B .
Then we congider a collection {G | a€4} of camutative groups Gu . Suppose for
each o,B€A with a<B a homomorphzm 'ng of Ga into GB i8 defined such
that

ok *
g ab = TrY for a<B<y.
*

Then we call {Ga'"SI a,REA, a<B} a directed spectrun. We call g,€6, ad

gBEGB equivalent in this directed spectrum if there exists Y€A such that
#Y _‘Y .
Y>a,y>B, W g, =Tegs in GY

Classifying all the elements of U{Gal a €A} by this equivalence relation we
obtain a collection G of equivalence classes. We define the sum of two elements
g and g' of G as follows. Let g, and gé be representatives of the classes
g and g' respectively. Taking Y€A with y>a,y>B, we define the sum g+g'
as the class represented by the element

* *.
Y Y
oo * a8

It is clear that such a class is uniquely determined by g and g’ . In this way
G becomes a commutative group called the limit group of the directed spectrum

*8
{ Gy, .

Definition VIII. 12. Let {U | a€A} be the collection of the locally finite
open coverings of a space R . We define that a<B <if and only if u > UB' Then
A 18 a directed set. We denote by 8 *he homomorphism of Hn(IV(U )) into
W(N(UB)) dealt with in A). Then TB"B ﬂa holds obviously for every a,B,Y uwith
a<B<y . Hence

*8 3
{y"(‘v(ua)), 7o | ,BEA , a<B}

i8 a directed spectrum. Thus we can define by use of Definition VIII.1l its limit
group HR) , called the n-dimensional cohomology group of R .

% The definition can also be used to define the cohomology group H*(R,G) more
generally for every topological space R and every commutative coefficient group G.
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Let R and S be two spaces and f a continuous mapping of R into S . Let
(Vo.l G.GA} be the collection of the locally finite open coverings of S . Then
U, =f (V ) ’(f Yew) | ve V,}, 0€A are loczlly finite open coverings of R .
Mappmg f (V) EU to V€ Vo. we obtain a simplicial mapping of N(Ua) into

N(Vu) which we shall also denote by f . Now we can prove the following:

B) Let en:{e(’;} be an element of H'(5) . Then the element of H'(R) contain-
ing f“‘eg is uniquely determined by e’ , where enEHn(N(Ua)) is a representative
of e" . We shall denote this element of H (F) by f"“en .

Proof. Let VY<Vu s then we put

for the mapping f of the vertices of N(UY) onto the vertlces of N(V ) , the
projection TII of N(Vy) into N(Va) and the mapping f of the vertxces of
N(Va) onto the vertices of N(Ua) . Then WCY! is easily seen to be a projection

of N(UY) into N(UG) . We now assert that
*y % *
P PN Py 0

(1) "af (pa-f T, in N(UY)

for every n- cocycle Lp: of N(Va) . This obviously follows from the definition

of 7!; , l.e. ﬁ;zﬂlf , and this implies the desired relation.

n n n . .
Let ey v g € ¢ ; then for some Y with UY<U<1AUB we obtain

Therefore
* *
Yn_ Y n
f*nae = f"‘nBeB .

By use of the assertion (1) we conclude

= #

*
Yea ¥y oom
uf‘ea—"Bf*eB’

: n
i.e. f"ea and f‘eg represent the same element of 7R .

The easy proof of the following assertion is left to the reader.

C) The mapping f* in B) is a homomorphism of #'(8) into H(R) .
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Definition VIIL. 13. Let ¢ be a closed subset of a space R . The homomorphien
m* of HYR) into H'(C) induced by the identity mapping (imbedding) h of C
into R 1ig called the natural hanamorphism. If an element e of #He) is the

image of an element & of H'(R) by the natural homomorphism, then " s
called the extenstion of e’ and " is said to be extendible over R .

Let & e€lR) , and let eZEHn(N(VG)) be a representative of & , where ch

is a locally finite open covering of R . Theu U ={unc|ve V } is a locally
finite open covering of C such that U (V ) . Put, for brevu:y, K=N(Va) B
L=N(Ua) ; then L 1is a subcomplex of z( . Now h‘en is the element of & (C)

represented by hLeZ for the natural homomorphism hL of H'K) into H*(L)
since 4 e =h*e
La” " “a”

Example VIII. 6. Let & be a polyhedron and X the complex associated with & .
Let X, ,K

LSRR
of Kt we denote by S(p,Ki) the open star around p , i.e., the set of the points

be the successive barycentric subdivisions of X . For a vertex p

of (the realized) Ki whose barycentric coordinate for p is positive. Then
Ui’-'{S(p,Ki) | p: vertices of K‘i} is a finite open covering. We note that ”(U‘i)
is isomorphic to K'i . Since {Ui| £=1,2,...} is a cofinal subset '® of the set
of all locally finite open coverings of R , w.e can easily see that HYR) is iso-
morphic to the limit group of {Hn(H(U )), .7' [ 1<j; 1,5=1,2,...}. It is also
easy to see that the homomorphism 171: is an isomorphism of Hn(N(UJ)) Hn(K .) onto
Hn(N(U )) = Hn(K) Hence H'(R) is i isomorphic to Hn(K) for each 17 and
accordlngly to H"(K) . Thus we can say that the cohomology group of a polyhedron is

isomorphic to the cohomology group of the associated complex.

VIII. 3. Dimension and cohomology

Definition VIII, 14, Let U be an open covering of a space R and N the
realization of the nerve N(U) . Let ¢ be a continuous mapping of R into N . We
denote by x(Ua) the vertex of N corresponding to U €U and by S the open
star around x(Ua) If ¢ (S )cU for every Uueu , then ve eall © a canonical
mapping relative to U .

10 jet B be a subset of a directed set A . If for every element a of A there
is an element b of B satisfying b>a , then we call B a cofinal subset of A.
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A) Let ¢ be a continuous mapping of a space A into the realized nerve N of
a point-finite open covering U of R . Then © is canonical relative to U if
and only if for every point p of R ©f(p) €5(pJ , where S(p) denotes the geometri-
cal simplex spanned by the vertices {x(Uu) |p€e UQEU} .

Proof. Let @ be a canonical mapping and p a point of R . Let w(p) €S for a

simplex S of N and denote by :c(UG') , t=1,...,k its vertices. Then
T

(D(p)ESui s, toheu Lk,

which implies

-1 . _
pE€w® (Sa.)cua.’ L= 1,...,K
) )

by the definition of canonical mapping. Therefore
sc5(p] , i.e. ©(p) €5(p) .

Conversely, if ¢ satisfies ©(p) €5(p) for every point p of R, then we

assume that p is a given point of kp-](Sa) , where UaEU . Then
o(p) Esans?p) .

Hence x(Uu) is a vertex of S(p) , and hence pEUOl , proving that ¢ is

canonical.

B) Let U be a locally finite open covering of a space R ; then there exists a

canonical mapping @ of R into the realized nerve N of U.
Proof. Let U-={ Ual a€A} and denote by z(U ) the vertex of N corresponding
to U, . For each choice of al,...,c'.kEA satisfying U  N...NU $@¢ we define
a closed set F(a],...,ak) of R by !
F(a,...,0p) -R—U(Ual a#al,...,:k}.

Let pGF(al,...,uk) : then we define as follows a.point:

w(p) = { = N T N A C NP B 2 }
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belonging to the simplex [x(Ua Jse--,x(U )] by induction on the number k , where
1

we denote by x, (ul yeee ,ak,p) yeus ,:ck((ll yees ,ak,p) the barycentric coordinates of

the point @(p) associated with the vertices :z:(Ua ),...,.‘L'(UGl ) , respectively.
k

For k=1 we define !

ofp) ={z,(a,p)}
::I(ul,p)=l for pGF(a,) .

Namely
(P(p)=x(0.l) for pEF(G.]) .

Assume that we have defined ©fp) for k=80 . Let pEF(al,...,aZ,aZ+|) . Then we
put

yl(uzl,...,cxl,mz+ l;,p) =zl(a],&2,...,al . ],p) for .pEF(al,&z,...,ul+ l)

=xl(u|,...,az,az+l,p) for p€F(al,...,aZ,&l+l)
=0 for PEF(&n'“z""’“zu) .

Since y](al,... 207,07 l,p) is a contiruous function defined on a closed subset of
Pla,,...,0 ) , by Tietze's extension theorem we can continuously extend it over
1 1+1 ¥ y

F(al,...,al+ l) . Note that we assume R to be paracompact .'I'2 and accordingly

normal,

We define the continuous functions

y?_(al,...,mZ+ l,p),...,yl(cx‘,...,cxl+ I,p)

over F(a.l,... 0 1) in a similar way. Moreocever, we define a continuous function

Y7 4, e-e,0; ,P)  such that

ylH(a,,...,alH,p) =xl+1(&|’°2""’°1+l’p) for pEF(E,ay,...,0 ),
=%, l(ul,...,ﬁz,az* l,p) for pGF(al,... ,(il,al+ l) ,
=0 for pEF(ul""’al'al+l) .
=1 if y](a],...,ulﬂ,p)=...=yl(a|,...,ul”,p)=0.
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Putting for Z=1,...,0+1

. yi(al”..,al+|,p)
R TIN 2 *Yg 4 (@ --hag0P)

. vee, O D
.‘X.‘L(Gl, [heb AP Y

we define a mapping
wip) ={x](a],...,az+l,p),...,x1+l(ol,...,al+l,p) }

of E'(a',...,c.Z ‘]) into [x(Ua ),...,x(Uﬂ Y] which coincides with the

previously defined mapping on L+

F(O‘l""’“l) U... UF’(uz....,al”) .

Thus we have a mapping ®(p) of R into N which is continuous on each
F(al,...,ak). Since U 1is locally finite, for every point p of & there is a
neighbourhood Ufp) which meets only finitely many members U, ,...,Ua of U.

1 4
Then since ©®(p) is continuous on F(ul,...,ak) . @(p) is continuous at p i.e. it
is a continuous mapping.

Let S(p) =[x(Ua ),...,x(Ua )1 be the simplex determined by p as in A). Then it
! k

is clear that p)GiTal,...,ak) , and hence ©(p) €S(pJ . Therefore, by A), © is

canonical.

C) Let U be a locally finite open covering of a space R and N 1its realized
nerve. Lef % be a canonical mapping of ® into ¥ and f a mapping of 7 into
a space S which is continuous on each finite subcomplex of ¥ . Then fip is a

continuous mapping of R into § .

Proof. Let p be a given point of R . Take a neighbourhood Ufp) of p which
meets only finitely many members Ul""’Uk of U . Then @(U(p)) 1is contained in
the finite subcomplex of N spanned by x(U‘),...,x(Uk) and continuously mapped

into § by f. Thus Ap 1is continuous at p .

Let X, L be two complexes and K0 , LO be the realizations of XK , L , respec-
tively. We consider a simplicial mapping f of K into L . Let [ao,....an] be a
simplex of Ko and p a point in it with barycentric coordinates {Io,...,
Then we define a point f(p) in the simplex [f(ao),....f(an)] as the point having

the barycentric coordinates {xo.....xn} . Then f 1is a mapping of KO into Lo

xn} .

which is continuous on the closure of each simplex of X We shall make no

o -
distinction between the mapping of X intoe L and the induced mapping of Ko

into LO .



VIIL.3 D) - 232 -

Definition VIII. 15. Let either of K ard 5" be an oriented elementary
rn-sphere or one of its successive barycentric subdivisions. We fix a positively
oriented simplex yz of 5", Let f be a simplieial mapping of K into st.

Then we define df(}(} by

df(x)=2 5

Qa

where Ia denotes the sum over all positively oriented simplices .r.: of K, and

. n,_.n
1 Zif f(.x:a) Yy -
Y n, __n
fg- 1 if f(:ca) =Yy
0 otherwvise .

Dn) Let either of X and S’l be an oriented n - sphere or one of its successive
barycentric subdivisions. Suppose f 1is a simplicial mapping of X into St

d (k) =0, then f 1is homotopic to O .
J

En) Let [ be a subcomplex of an (n+1)-complex X and §" an oriented
elementary n - sphere. Suppose [ is a simplicial mapping of L into s* . For a
n

fixed positively oriented simplex yg of &' and n - simplices z of L we

define fg as in Definition VIIL.15. If the 7 - cocycle
n n n
Fere ] A,
o] 0Oa
a€A

of L 1is the restriction of a cocycle of K , then f can be extended to a
mapping F of K into §" which is continuous on the closure of every simplex of
K.

Proof. We shall prove Dn) and En) simultaneously by induction on the number

n .

Proof of DI) . Let us consider the l-cocycle

o = rue-1 foa
o

't ye denote by yg the n - chain Iyg .
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. I .
of K for a fixed l-simplex y(l)=(q0,q]) of £ . Then since

d (k) =] fa=0.,

a

by Example VIIL.S wl is cobounding, i.e. there is a O-chain !L'O of X such
that 6¢0=th .

Let ¢lo=zlzji g'l'.rg . Then the O-simplex :tg is also a vertex of K . We suppose
0.0 . _ o _.0 T ] i+l _ 1
(xi“riﬂ) L i=1,0..,k (xk+l-:cl) are the I-simplices of S . Then ¢ g
0 0 . 0
i ici x. UM
is the coefficient of (xi, 7+ l) in & Hence
. 0.0 ~
VifE fllexy ) =(q4.9))
T+1 7 _ . 0 0 __
g -g ={-1 if f((mi‘xivrl))_ (qo,q,) R
0 otherwise.
We regard S] as the space H] of reals mod | identifying the segment

y(l):(qo’ql) in Sl with the segment (0,%) in RI . For a real number x we
denote by (x) the congruence class mod | of x ., We define a real valued

function g{x) over K by

fglx)) = flz)

o 0

+1, 1
+3 .2
) +3; for =x€ [‘rz’xz .l

.

. \ L
%(g“+g1'+ h) -3 %gfx) <2'(97'+g7’

It is easily seen that g(x) 1is continuous. Now f(x,t)={tg(x)) gives a homo-

topy between f and a constant mapping. Therefore f is homotopic to 0

Proof that Dn) implies En). Assume that

n .
A
a€A 0o

is the restriction to L of the cocycle
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8. .
g -fo if B€4,

I "lgg8=0 for every (n+1)-simplex x:+l of X.

BEB

Let us denote by Kn and Ln the complexes consisting of the simplices with
dim<n of K and L respectively. By use of the successive barycentric subdivi-
sions of Kn mod er’ we obtain a complex K’"2 such that each simplex xg of Kn_Ln
contains an oriented n - subsimplex z:én belonging to K); such that the star 2

n . . . n n
of ré in Kr,z has nc vertex in common with xB . For g ve denote by XB the

subcomplex of Kr,t consisting of the n - subsimplices of :cg and their faces. We apply
the successive barycentric subdiVvisions to XB mod XB— {z™} to obtain a complex
Zé such that there are gB subsimplices

> - B i
Zog s k=1,...,9° of xg

. no, .
belonging to Xé such that the stars of Tgp in Xé have no common vertex with

each other, where we are assuming g >0 without loss of generality. Put

z;;:u{Xél BeEB-41 .

Then note that Xé is a complex obtained by triangulating a:g , and thus K;:ULn

is a complex obtained from Kn by bestowing a finer triangulation. Further note

that Igp .,k =l,...,gB -are oriented n - subsimplices of xg belonging to K; such
that the stars of zgk have no vertices in common either with x; or with each
other,
Suppose
n _, Bk Bk _ R
;r:Bk-(al ...anH) , k=1,.00,9

and denote by bo‘bl""’b the vertices of § assuming that yg=(b oo d ).

n+l 1 n+1l

Then we extend f to a simplicial mapping g of KZUL into §" by

Bk, _ -
g(aZ )_bl’ L0,i0e,m¢] |

gl(a) =b_ for the other vertices a of K;; .

12 et 27 be a simplex belonging to 2 complex K . Then we mean by the star of "

. . . . : . n
in K rthe collection of the simplices of K which have a common vertex with z .
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We note that xgk s k=1,... ,gB are the only simplices of K;’l which are mapped

by g to ¥y » Thus each Xé contains exactly g n-simplices which are mapped

n
by g to ¥y -
Let x$+l be an arbitrary (n+1)-simplex of X and KY the complex consisting
+1
of the simplices which belong to K;;ULn and are on the boundary of xz . Then
it is easily seen that
d (k)= 7§ ngga=o .
9°Y ges
. 1+ ]
Thus it follows from Dn) that g is homotopic to O on the boundary of .'r:; .
Hence, by Borsuk's theorem, we can extend g over ;:z+l . In consequence, f can

be extended over K such that the extension is continuous on the closure of every

simplex of X .

1 of sn+l

and denote by L the complex consisting of the (11 +1)-simplices of X which are

mapped onto nel by 7 , and their faces. We may assume that the (n+ 1)-simplices
¥ y

Proof that En) implies b, l). Let us consider a fixed simplex yg“

of L have no vertex in common. Because, if they have, then we can subdivide X

and Sn+| such that there appears a subsimplex yr;+l of yg+] which has no
. . n+l n+1 n+ 1 : s es
vertex in common with Yo . If we replace ¥ by ¥, then it satisfies
the desired condition keeping the value of a'f(K) at O .
Assume
n+1 n+l
© =y, -

Then, since

tpn+l=2fgx:.+l and df(K)‘—'ng=0 s

by Example VIII.5 tDn+l is cobounding, i.e.,
+ 1 n
) o sy

for some n - chain wn of X . We denote by Ln the complex consisting of the

simplices of L of dim<n . Then we regard the restriction fo of f to Ln as
1

st , the boundary of yg+ . More-

over, we denote by fl the restriction of f to L and regard fl as a mapping

of L into the complex, ! consisting of y8+l and its faces.

a mapping of Ln into the elementary n - sphere
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Writing
"
= %
*1 7%
for the n - chain yg of 7! we obtain an n - chain l.ll? of L . Since
n_ n+
% =Yg
in :,Jl+| , we obtain, using | D),
n n 7 n+l _~n+l
.Y = f = =
) Su) =870 = 850 = My '
where ®n+l denotes the restriction of wn'rl to L ., On the other hand, by QJ”
we denote the restriction of = to L . Then it follows from (1) that
a8 a1z,

and hence by (2)
sy -¥h =0

Therefore, by Example VIII.3, we obtain (prll-U)n"O in L , and accordingly

3) Byl

t~

We consider the complex K'=(XK-L) ULn . Then, since the coefficient fg of

n+ n

© vanishes for J:a* ! ¢L , we obtain

oy = hy@ =0 in X',

regarding wn as a chain of X' . Thus ll'n , or more precisely hK’ wn is a co-
cycle of XK' . Hence the element of Hn(Lr) represented by hL mn is extendible
over K' . Therefore, by 1 C) and (3), "

- ”n n
”L”u’l = %o

is the restricrion of a cocycle of XK' . Thus it follows from E_) that fo can be

extended to a mapping F of X' into the boundary of y8+ which is continuous

on the closure of every simplex of X' and accordingly on X' .
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Defining

flzx) for =xz€L,
glx) =
F(x) for xzgL ,

. . . . + + |
we obtain a continuous mapping g of X into yg ! . We may assume that 98

is a hemisphere of Sn” . Therefore f(x) and gfx) are never antipodal, and

. (3 + + 2 .
hence f and ¢ are homotopic. Since g{X. Cyg : , g 1s homotopic to zero. Thus

f 1is also homotopic to zero.

Theorem VIII. 1 (Hopf's Extension Theorem). Let E be a (paracampact T2)-
space of dim R<n+1 and C a closed set of R . Suppose [ <is a continuous
mapping of € 1into 5" . Then F ecan be extended to a contimuous mapping F Of
R into S" if and only if f*e €FMC) s extendible over R jor every element

ecHS) .

Proof. Necessity. Let us denote by % the identity mapping of € into R ard
by h* the associated natural homomorphism of ¥YR) into r'in(C) . Since f=Fh ,
we obtain f*e =Ah*F*e for every element e of F45) . Hence f*e 1is the image
of the element T*¢ of H (R) by A* , i.e. it is extendible over & .

Sufficiency. We regard 5% as an oriented elementary % - sphere as well as a
topological space, We denote by S(a) for a vertex a of 5" the union of the
O={S(a) la is a vertex of S7).

Then N(VO) is a complex isomorphic to §* itself. We denote by yg an
n
n -1 0 n
Hn(IV(Vo)) represented by Yo - Put U('):f (Uo) s then f*eordg is an element of

Hn(N(U('))) . By the assumption the element of g represented by &’ is extend-

simplices of ' having a as a vertex. Put V

oriented n - simplex of 5" or of N(VO) . Let e {yg} be the element of

0
ible over R . Hence there exist locally finite open coverings Ué s U; of € and
dzean([v(u\‘()) satisfying

(i) chYz is extendible over N(UY) for an extended locally finite open covering
U of U over R,
12 1! ) 4
(ii) {48<UyAUO ,
* *
(1ii) Todt=ned? |
Yy 00 g8 B
where we denote by TrY s 7?0 the projections of IV(U'B) into H(U+) , of N(Ué) into
N(U(')) , respectively,
Denote by UB an extended locally finite open covering of Ué aver R such that

UB<UY . Then since R 1is a paracompact space of dim R<n+1 , there is a locally



VIIL.3 E) - 238 -

finite open covering Uu such that

ord U <n+2 , U <u, ,'?
a= a B

Now

*a*B o _*a*Bon
nBﬂ’de— uBTl'od’ol H

hence

Since a‘r‘ is extendible,
4

4= wed

Y Y
for some Z{‘Eifl(ll(UY)) and the natural mapping h* of ifz(N(Uy)) into Hn(h'(U;)).
Hence

where ¥ denotes the projection of N(Ua) into N(U,y) . Therefore, by 1 C),
j‘.'ag)‘yg is the restriction of an n-cocycle of N(Uu) . Since iJ(Uu) is an (n+1)-
complex, by use of En) we can extend f‘n'g' to a mapping W of ”(Ua) into S
which is continuous on the closure of each simplex of N(Ua) .

By virtue of B) we can construct a canonical mapping ¢ of R into ”(ch) . It
follows from C) that ™p 1is a continuous mapping of & into 57 . Now we denote
by fo the restriction of T to C . Since @ 1is canonical, for every z€C ,
@(x) belongs to the closed simplex of !‘I(U;) determined by x as seen in A).
Therefore, for x€C

fo(x) =mo(x) Zﬁglo(:c)

' Here we use Theorem 1I.6 for a paracompact space. Though Theorem II.6 is stated
for metric spaces, it has been proved essentially for every paracompact space F.



- 239 - VIII. 4

. . . . 7 . . o PO
is contained in the same closed simplex of § which contains f(xz) . Hence f is

. . . v . 1
homotopic to fo in € . Since fO is exterdible over £ , by Borsuk's theorem '*

we can extend f over R .

Theorem VIII. 2. Let R be a space of Fintte dimension. Then R has dimz<n
if and only if jor every integer m2>n and every closed set C of R, the natural
homomorpaism of H(R) into HNC) is an onto mapping.

Proof. Necessity. Let e€H"(C) and U(; be a locally finite open covering of
C such that e has a representative e, in E'm(N(U('x)) . We extend the covering
Uc'x to a locally finite open covering Uo. of R . Choose a locally finite open
covering UB of R such that uB<ua , and ord UB;n-I-I

By Ué we denote the restriction of UB to € . Then WN(U is a complex of

)
dim<7n and N(Ué) is a subcomplex of N(US) . ¢ has a reprSsentative eB in
E”’(N(Ué)) . Since every m ~-chain of N(Ué) is an m - chain of N(UB) and also an

m - cocycle, eB has an extension EB in H,H(IJ(UB)) . Thus the element &€H(R)
represented by EB is an extension of e , i.e. & is mapped by the natural homo-
morphism to e .

Sufficiency, Let dim R=m+1>n . Then m2>n , and by Theorem VII.10 there is a
closed set C of R and a continuous mapping f of C into 5" which cannot be
extended over R . Thus by Hopf's extension theorem f*e €H"(C) for some e€H ()
is not extendible over R , i.e. the natural homomorphism of (R} into H'(C)

is not onto.

VIII. 4. Dimension and homology

For dimension theory in compact spaces the concept of homology is also useful. It
seems to be more convenient to intuitive understanding than the concept of cohomolo-
gy. In this final section we shall give a brief descriptiom, without proof, of the
relation between homology and dimension. Throughout the section all spaces are

assumed to be compact Tz-spaces unless the contrary is explicitly stated.

'% We have proved Borsuk's theorem only in case R is metric, But it is easily seen

that the same is true for every paracompact Tz—space R . The only problem is to

show that [0,1]1 xR 1is normal if R is paracompact T2 . But this proposition

was proved by C. H. Dowker [4]_for every countably paracompact normal space R .
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Definition VIII, 16. Let A4 be a directed set., Suppose {Ga]cxﬁA) s a
colllection of commutative groups. If for every o,B€A with a>f a homomorphic

a B8

mapping ng of G, into G, 15 given such that 11CY‘='rrB'nY , then we call the

collection { G5 g | a,B€4 ,a>B )} an inverse spectrum.

Let {Gu; ‘n’:)’ be an inverse spectrum. We consider an element {gal a€4l} of
the cartesian product “aGa such that ‘rluga—‘g whenever a>8 . We define the

sum g+g' of two such elements g={gu} and g'={g0"} by
r = '
grg'={g,+g,la€al,

Then the collection of all such elements turns out to be a commutative group G

which is called the liZmit group of the inverse spectrum {Ga:'n'g }.

We consider the collection {Ual a €A} of all finite open coverings of a space
R . If U0<UB , then, by definition, a>f ; in this way A becomes a directed
set. Denote by ‘ng a projection of N(Ua) into IV(UB) . Then, by 1 E), ﬂg in-
duces a homomorphism of Hn(N(ua)’G) into Hn(N(UB)’G) . Moreover, we can prove
that all projections of N(Ua) into N(UB) induce the same homomorphism ﬁg of

Hn(N(ua)’G) into Hn(N(UB) ,G) .
Definition VIII. 19. The limit group of the inverse spectrum
" -0
{H (3(U,),6) 5 ﬂsla,SEA , a>B}

18 denoted by Hn(R,G) and is called the n-dimensional (Cech) homology group of R .

In this definition we often adopt the additive group Rl of the real numbers
mod | as the coefficient group G and denote the homology group by Hn(R) .

As easily seen, we obtain the same limit group if we replace A by a cofinal sub-
set A' of A 1in Definition VII1.12 or Definition VIIL, 16, Hence for compact
spaces we may take the collection {UGI a€A} of all finite open coverings, in-
stead of locally finite open coverings, to define the cohomology group of R by
means of Definition VIII.12 ', For homology and cohomology groups founded on the

finite coverings there exists a duality which enables us to translate theorems on

1S For non-compact spaces homology and cohomology groups based on the finite cover-

ings are not practical. As shown by C., H. Dowker [1] even the 1-dimensional coho-

mology group of E‘l has a éomplicated structure.
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cohomology to those on homology. As a matter of fact Hn(R) is the character group
of H'(R)'¢ .

Let C be a closed set of R . Suppose e :{ea} is an element of Hn(C)
represented by eaEigﬁﬂ(U&)) . Let Ua be an extension of the finite open covering
U& over R . Then, since N(U&) is a subsimplex of N(Uu) , we can consider the
image heu(EHn(H(Ua)) of e, under the natural homomorphism. We denote by & the
element of Hn(ﬁ) represented by heu . Then, mapping e to € , we obtain the
natural homomorphisgm of Hn(C) into Hn(:’?) . As for the relation between homology

and dimension of compact spaces it is known that

Theorem VII1. 3. 4 finite dimensional space R has dim<n <tf and only if for
every integer m2n and for every closed set C of R, the natural homomorphism
of Hm(C) into Hm(R) 1g an tgomorphism.

To characterize homologically the dimension of compact metric spaces the original

method due to P. S. Alexandroff [2) is also useful,

Definition VIII. 18. Let Qpseresay be points of a metric space R . If the
diameter of the set {ao,...,an} is less than €>0 , then we call {ag...,a,}
an n-dimensional e-simplex in R . We denote by K the abstract complex of the
e-stmplices in R .

Let G be a commutative group. We mean by an e-chain (or more precisely (n,G)-e-
chain}) a finite (n,G)-chain of K and by an e-cycle a finite (n,G)-ecycle of K .

Let ¢ be an (n,G)-e-cyecle. If Bwn +1 =g for some (n+1,G)-8-chain wn+1 ,
then we write © ~0 .

Let {eil 1=1,2,...} be a sequence of positive numbers such that lime.=0,
and &oz be an ei-cyole. Then we call the sequence o= {(pr;,wg,...) of those
ei—cycles a true cycle or more precisely (n,G)-true cycle.

Iy w:g 0, 2=1,2,... and lim 61::0 , then we call " homologous to zero in

Z
R and denote it by & ~0 .

A true cycle o of R may also be a truz cycle for some closed set C of R.
We call such a clogsed set C a carrier of o, @ is called essential if it has a
carrier in which &' ~0 does not hold.

'6 See W, Hurewicz and H, Wallman [1].
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Now the following theorem holds.

Theorem VIII. 4. A finite dimensional compact metric space R has dimgn If
and only if every (n,Rl)-true cycle " homologous to 0 in R s not essential '.

Referring to compact subsets of a Euclidean space, one can characterize their di-
mension in connection with their complementary spaces as demonstrated in the follow-

ing obstruction theorem due to P. Alexandroff.

Theorem VIII. 5. Let R be an r-dimensional compact subset of E' . Then there
is §>0 such that for every €>0 one can find an (n—(r +1), 1)-cycle i I
lying in E'-R having diameter <g¢ but being no boundary of a chain in E'-R of
diameter < 8. On the other hand, for k>r+1 every (n-k, 1)-cycle of dwneter

<e lying in E'-R is the boundary of ¢ chain in 2 -r of diameter <g .

The homological method provides also a useful tool for finding conditions in order
that dim (RxS) =dim R+dim S . Here we quote a famous problem posed by

P. Alexandroff: To determine a finite dimensional compact metric space R such that
dim (R%S) =dim R +dim S

for every compact metric space S .

This problem was solved by V. Boltyanski [2] [3] by means of homological methods.

Y. Kodama [1] [4] solved this problem for more general spaces. '°

17 In this theorem we may replace true cycle with convergent true cycle. 1f a true

n_,n n . s -
cycle @ —(tpl,wz,...) satisfies w w‘b*ln 0 for a sequence {ni} of

positive numbers such that lim n;=o0, then it is called a convergent true cycle.

This theorem can be deduced from Theoram VIII.3 by use of the relation between
tech's homology theory and Vietori's homology theory concerning convergent true
cycles; see S. Lefschetz [1].
In this theorem the concepts of chain and cycle are based on geometrical simpli-
ces, so a diameter of a chain means the diameter of the point set which is the
union of all simplices occurring in the chain with non-null coefficients., This
theorem was further developed by K. Sitnikov [2].
This problem is related with another problem, to look for conditioms in
order that the homology or cohomology dimension coincide with the covering di-
mension. See E. Dyer [1], Y. Kodama [2].

M. F. Bok&tein [1] established an interesting theory to show that dim of the
topological product of compact metric spaces R and S5 1is determined by the
homological dimensions of R and S .

18

19



- 243 - VIIL 4

Several dimension functions, hamology dimensions and cohomology dimensions can be

defined in connection with the homological and cohomological concepts.

Definition VIII. 19. Let G be a commtative group and R a space. We denote
by DC(R,G) the greatest integer n such that the natural homomorphism of
1R, G) into H"_I(C,G) is not onto for some closed set C of R>". Similarly,
Dh( R,G) will be the greatest integer n sguch that the natural homomorphism of
Hn—I(C’G) into Hn_l(R,G) 8 not isomorphic for some closed set C of R . By
Dt(R,,G) we denote the greatest integer n such that there exists an essential
(n-1,G)-true cycle in R which is hamologous to 0 . In each of these three defi-
nitions, we define DC{R’ G) =0, Dh(PxJG) =0 or Dt(R,G) =0 respectively if there
ig no n satisfying the condition. If for everv n the condition is satisfied,
then the respective dimengion s <« , and it 8 -1 ©f R=¢.

The theorems VIII,2.3.4. imply that for a finite dimensional compact metric space

R
- - — 4 21
DC(R,I) —Dh(R,Rl) -Dt(R’Rl) =dim B .
Generally, we can show that
dim R2D,(R,G) 20, (R,G)

for every G and every compact metric space.

While we have so many different definitions of dimension, 2?

it is an interesting
problem to characterize a certain dimension as a function (defined on a class of
spaces) satisfying certain axioms. Let us denote by d a function on a class C
of spaces taking values in the set {-1,0,1,2,...} . P, Alexandroff considered the
following axioms to characterize dim on the class of all compact metric spaces.
Al) dtT™) =n  for the n - dimensional simplex i (T_l =@) .
Az) If R and S are homeomorphic, then d(R) =d(5) .

AS) 1f R‘—'R‘U}?z for closed sets Rl , R2 of R, then d(R)=max(d(Rl), d(Rz)).

2% The dimension DC(R,G) and a similar dinmension was investigated by H. Cohen [1],

A. Okuyama [!] and others.

In case dim R=e it is unknown whether this relation remains still valid.
There are more attempts to find out good new dimension functions, which were not
discussed in this book. See, e.g. 0. V. LokucievskiY [2] , J. M. Aarts [3],

J. M. Aarts - T. Nishiura [1], [2], V. I. Ponomarev [2], V. A. Valiev [1]}.

21
22
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AA) 1f RcE', then there exists € >0 such that for every continuous mapping
f of R onto scg’ satisfying p(p,f(p)) <€ the inequality d(R)<d(S)
is implied.

Obviously dim satisfies these axioms. On the other hand L. S. Pontrjagin [1]
proved that every Dt(ﬁglm) (m>2) also satisfies the same conditions though it is
different from dim , where Im is the additive group of integers mod m . He also
proved that Dt(R,Ew) for different prime numbers m are all different from each
other. 2°
Further reasonable axioms for d are
AS) 1f d(R)=n , then there is a finite open covering V of A such that for

every V-mapping f from R into S, d(f(R}))>n holds.
AG) 1f R contains more than one point, and dim R=n , then there is a closed
set F of R such that d(F) <d(R) , and R-F 1is disconnected.

P. S. Alexandroff [2] proved that for the class C of all finite dimensional
compact metric spaces, dim is the only function satisfying Al , A2 s A3 s Ag
and A6 . But the same conditions are not sufficient to characterize dim for
metric spaces.

E. 3&epin [1] replaced condition Ay with

Aé) if R:lJiRi for at most countably many closed sets R., then d(R) =

sup d(Ri) 5
A

and, by use of A], AZ’ Aé, AS’ A6’ he succeeded to characterize‘ dim on the class
of all finite-dimensional metric spaces (and also on the class of all finite-di-
mensional separable metric spaces). O, V. Lokucievskil [3] characterized dim
on the class of finite-dimensional compact Tz-spaces by modifying A6.

K. Menger [2] posed the problem to characterize dim for separable metric
spaces by A‘, AZ’ AS, M7 and MB' where

M) 1f ScR, then d(s) <d(Rr) .

MS) For every R , there is a compact metric space SOR such that d(R)=d(5) .

According to V. I. Kuzminov [1], I. $vedov solved Menger's problem in the negative
when d 1is a function on the class C of all subsets of Euclidean spaces. If €
is the class of all subsets of E  and if n<2, then dim is the only function
on C satisfying Menger's five conditions, But the problem is not yet answered if
n>3,

J. M., Aarts [2], S. Sakai [1], T. Nishiura [1] considered further axioms to

characterize dim for metric spaces and separable metric spaces.

23 Relations between Dt(R,G) for various G were studied by M. Bokstein [11.



