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CHAPTER VII

DIMENSION OF NON-METRIZABLE SPACES

Throughout the preceding chapters we have considered only metric spaces except in
Chapter 1. Dimension theory for non-metrizable spaces has been greatly developed in
these years, but still it is not as satisfactory as the theory for metric spaces. In
the present chapter we shall discuss scme of the principal results ever obtained in
this field. Recall that, as noted before, all normal spaces and Tychonoff spaces are
assumed to be T] (and are accordingly TZ) in this book. At some points of this

chapter proofs may be somewhat sketchy to avoid bothering the reader with arguments

similar to those used previously.

VII. 1. Sum theorem and subspace theorem for dim

A) A topological space X has dim<n if and only if for every finite open
covering U = { Uil =1,...,k} there is an open covering V = { Vil t=1,...,k}
such that ViC:Ui » £=1,...,k (namely U shrinks to V) , and such that
ord V<n+1i .

Proof. The easy proof is left to the reader.

We owe the following theorem to P. A. Ostrand [1].

Theorem VII. 1. Let {FY | YET} be a locally finite closed covering of a
topological space X such that dim FY;n Jor all YET . Then dim X<n .




- 159 - VII. ] A)

Proof. Well-order the given locally finite closed covering and demote it by

{FYl 02Y<T} . We may assume that F, =9 .

Now, let U = {U‘il £=1,...,k} be a given open covering of X . We shall define
open coverings VY:{ V(y,7)

£ =1,...,k}, 02y<T , such that

) if B<¢§ , VB shrinks to VG“
(2) if 8<8 , V(B,2) - V(5,4)cUlF |B<828},
(3) if x€F , ord_V_<n~+1i .

Y z Y=

We shall define V_ , 0£y<T , by use of induction on Y

Y
First we put V0=U

Now assume that UY have been defined for all Y<& . Then we put

W =n{v(y,Z)|y<8é} and w={wi] £=1,,..,k} .
Let B8<& ; then by the induction hypothesis (2) we have

%) V(8,2 - W, =U{V(8,2) - V(v,4)]| g<y<blc
cU{U{FY, | B<y'2y}|B<cy<§l = U{FYI B<y<d}.

We can prove that each Wi is an open set. For this purpose assume xEWi N

xEFYi, t=1,...,p , and YI<Y2<...<YP<G . while xﬂFY if Y#yl,...,

y<$ .

and
p

Then note that x€ V{Yp, 1) follows from V(Yp,i) :wi . Put
F=zU{F F H
{ Y | x€ Y}

then P = V(Y1) 0 (X - F)

is an open neighbourhood of = . Since it follows from
(4) chat

V(Yp,i) - W, cu{ Fyl Yp<y<6}CF .
we obtain
PCV(YP,‘L) nix - (V(Yp,z) - h’i)]ch'i .

Thus Wi is an open set.
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Next we shall prove that W 1is a covering of ¥ . Let x€X be given. For each
¥<8 we can find %(y) such that =z €V(y,7(y)) . Assume that the set {Y| i(y):io}
is cofinal in the set {y|y<8} . (Namely for each element Yy <& , there is Y'
such that Z(y') = io and Y<y'<4.) Then x€ V(Y,io) for all Yy <8 , because of

the induction hypothesis (1). Thus x€W¥. follows, proving our assertiom.
0
Using A) there is an open collection W' = {W;: |Z2=1,...,k} in X such that

.

W,[’;CW_I: s T = oo,k W7EDF6 , and

1

hCx

T
ord W'<n+1 at each r€F, ,
x = 8
because dim Fé_gn . Put
I/ Y) = - ! = A , =
V(8,2) = (W, - Fg) UW. and U, ves, 202 = 1,...,k}.
Then Vé obviously satisfies (1), (2), (3). (Note that (2) follows from (4) and
the definition of V(§,7).)
Finally we put
v, =n{v(y,©)|o<y<T} and V= {Vil £ 1,..0.,k} .
Then a similar argument with the above leads us to the conclusion that V 1is an

open covering of X to which V0=U shrinks. It follows from (3) that

ord V<n+1 . Hence dim X<n.

B) Let F = {F.,;li = 1,...,k} be a closed collection of a normal space X and
{Uiii = 1,...,k} an open collection such that F,cU,, = 1,...,k . Then there
is an open collection W = (h’ili = 1,...,k} such that FiC”iCUi , TS 000,k

and ord F = ord W .

Proof. 1If k = ord F, then the proposition is obviously true,

Assume k>ord F = n, Then V' = {V(x)]x€X} 1is an open covering of X , where
Viz) = X —U{Fi|.r€Fi} for each xE€X .

Since X 1is normal, there is an open covering P = {lej =1,...,8} of X such
that PA<U . Put
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W.= S(F.,P}NU. for ©=l,...,k and W= {W.|Z=1,...,k} .
z 1 T kA

Then it is obvious that FicwiCUi , 25 Lo,k
x€X . Then S(xz,P)cV(y)

that because of its definition ¥(y)

To prove

ord W = ord F , let

intersects at most

for some

y€X . Note

n members of F . Hence

5(x,P) , too, intersects at most #n members of F , which implies that ordxw;n .

Therefore we obtain ord U = ord F .

C) A normal space

¥ can shrink to a closed covering of ord<n+1 .

Proof.

Theorem VII. 2. Let

X such that dim G,im

Proof. We may assume

(1) GICGZC....,

because the sum theorem
{ui| Z221,...,k} be a
struct an open covering
and C) there is an open

V‘.CU].
T 1T

Now construct an open covering U2

(72

.ch.U(Ul. -
T 1 7

X has

The proposition follows directly from B).

if and only if every Einite open covering of

{G,]2=1,2,...} be a closed covering of a normal space

, 2 =1,2,... . Then dim X<n.

1

holds for every finite sum (Theorem VII.l.) Let U =

given open covering of X . Since

X

is normal, we can con-

l.!I ={U11:li=l,...,k} of X such that Z’l’CUi' By B)
{Véliza,,..,k} of G, such that

covering Vl

G

1

and ord Vl;n+l

).

of X

such that

This theorem was proved by E. Cech [2] and others. K. Morita [2] proved the

following more general theorem: Let {GY I Y<T} be a closed covering of a normal

space X and

{Py|y<‘r}

an open covering such that

dim G_<n , G_<P_  for
Y= Y Y

every Y<T , and such that {Pyl y<&8} is locally finite for each &§<7T . Then

dim X<n . (Here <

denotes a not necessarily countable ordinal number.)
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Again by use of B) and C) we obtain an open covering U2 = {V::l i=1,...,k} of

62 such that

ViCUi and ord V2;n+l .

Continue the same process to define open coverings UJ. ={U‘77: |2 =1,...,k} and

Vj ={V'Z: |£=1,...,k} of X ana of Gj , respectively, satisfying

(2) ord E.5n+l
i=
pd* 1o, J_
3 ; CViU(Ui GJ.),
Jepyd
(4) vieu:l,

and accordingly
J+loyd
(5) Ui Uy .

Put F, = (V.UV2U...) . Then it is obvious that F.cD\cU., because of (4) and
1 1 1 1 1 KA

(5). On the other hand, since U§= | V_L?-’= Gj , UI-E-I Fi = X follows. Namely U
shrinks to the closed covering F = {Fili: Y 3 T
To prove ordxF;n+I at each point x€X , let xEGJ. - Gj-l be given.

(Assume G, = @.) Then if IZ_V-_E? for some 7 with [<%<k , then :ci!ﬁg*'

follows from (3). Thus

J+1 . 7+2 gl
xﬂ{Ui UUi u...) p

follows from (5)., (4) implies

J:E(V137+I UV737+2 Uodd .
On the other hand

-5 =1 =3
(7) xEGJ._]—GJ._IDViU...UVi
follows from (1). Combine (6), (7) and the original assumption J:EVg to get

IEF_I: . Now ordxF;n+l follows from the above argument and (2). Thus by C) we

conclude dim X<n .
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CoroNlary. Let {F | €A} be a locally countable closed covering of a para-
compact Tz—space X . If dim E’u;n for all o €A, then dim X<n .

Proof. Combine Theorems VII.!, VII.2 and the following proposition D).

D) Let F be a closed subset of a topological space X . Then dim F<dim X,
and Ind F<Ind X .

Proof. Obvious.

Definition VII. 1. 4 normal space X 1is called totally normal if for every open
set U of X , there is an open covering U of U such that

(i) each member of U is an F set ( = a countable sum of closed sets) in X ,

(ii) U <8 locally finite in U .

E) Every perfectly normal space and every hereditarily paracompact Tz-space are

totally normal.

Proof. Omitted.

Remark. 1) Every Fo-set in a normal space is normal.
2) A T2-space X is normal if 2nd only if every finite open covering
of X shrinks to an open covering by cozero sets. (See I.1 A), The

eagsy proofs of the remarks are left to the reader.)

F) Every totally normal space X 1is hereditarily normal. In fact every subset

of a totally normal space is totally normal.

Proof. Let U be an open set of X . Then there is a covering U = {Ua' a€Aa}
of U such that U is locally finite in U, and each Uu is a cozero set in X. Then
by Remark 1) U(! is normal. Now suppose that {Vi I i=1,...,k} ic a given open
covering of U . Then by Remark 2) { Vi} can shrink to a covering
(V‘; [£=1,...,k} of Ua , where each ViOL is a cozero set in Ua . Since U, is

a cozero set in U, so is Vf .. Define
a
. =U . .
: { v |a€a}

Then Vi is a cozero set in U satisfying WicVi . Hence {Vi} shrinks to

the covering {Vil i=1,...,k} of U by cozero sets. Hence by Remark 2) U is

.
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normal. Thus X 1is hereditarily normal by I.] B). Now the second statement of the

proposition is almost obvious.?

Theorem VII. 3.° Let X be a totally normal space and Y a subset of X . Then
dim ¥ <dim X .

Proof. Let U = {U'L' | £=1,...,k} be an open covering of Y . Then Ui sV, ny
for some open sets Ve, £=l,...,k, of X . Define V=U{Vi|i=|,...,k}. Then,
since X is totally normal, there is an open covering {Hal a€4} of V such

that {Wu} is locally finite in V and such that each Wa is F_ in X, i.e.

o
o ]
Wa-ui=l Fai for closed sets Fui in X .
Assume that dim X = n ; then by D) dim F ;Sn holds. Put F. = U{Fui |a€al ;

then (Fuil a€A4} is a locally finite closed covering of Fi , and hence by
Theorem VII. 1, we obtain dim Fi;n .

Since {Fil 2=1,2,...} is a closed covering of V , and V 1is normal, from
Theorem VII.2 it follows that dim V<n . Thus {Vil 2=1,...,k} can shrink to an
open covering {V1':| £=1,...,k} of V with ord<n+1 . Then U shrinks to
V' o= {Véﬂl’ |£=1,...,k}, where V' is an open covering of Y such that

ord V' <n+1 . This proves, because of A), that dim Y<n .

It is impossible to extend this theorem to hereditarily normal spaces.
V. V. Filippov [3) and E. Pol - R. Pol [!] proved that there is a hereditarily normal,
zero—dimensional space X which contains subspaces Xn , n=1,2,.,. with dim Xn:
Ind X, =n."

2 The space of all ordinal numbers < w, with the order topology is hereditarily

i
normal but not totally normal. For an example of a totally normal space which is
neither perfectly normal nor paracompact see R. H. Bing [1] (Example G).

This theorem is due to C. H. Dowker [3].

In fact V. V. Filippov proved this theorem assuming a set-theoretical hypothesis
while E. Pol - R. Pol showed that the assumption could be dropped. Observe

that this theorem implies that the subspace theorem does not hold for a compact

Tz—space and its normal subspaces, Because, as easily seen, dim BX = dim X and

Ind BX = Ind X hold for every normal space X . (See Section 6 of the present
chapter.)

C. H. Dowker [3] defined the local dimension locdim X of a space X as the
least number 7n such that every point of X has a closed neighbourhood ¥ with
dim U<n and studied relations between local dimension and the subset theorem.

K. Morita [2] proved that if X is a normal space and Y a subset of X with
the star-finite property, then dim Y<dim X .



- 165 - VII.2 A)

VII. 2. Dimensions of non-metrizable spaces

Although we proved sum theorems in the previous section for considerably general
spaces, it is not so easy to establish a satisfactory dimension theory for non-
metrizable spaces. Perhaps a reason of the difficulty lies in the fact that differ-
ent dimension functions do not easily coincide when the space is non-metrizable. In
the present section we will study relations between different definitions of dimen-
sion on non-metrizable spaces.

Generally it is obvious that ind X<Ind X holds for every Tl-space X . Condi-
tions under which ind and 1Ind coincide were studied by quite a few authors, among
whom Y. Katsuta [!] proved that ind X = Ind X holds whenever X 1is hereditarily
paracompact Tz and has the star-finite property.5

On the other hand V. V. Filippov [1] constructed a compact Tz-space X such that
ind X =2, Ind X =3,

Concerning the relationships between dim X and 1Ind X the following assertion

can be proved. &

A) For every normal space X : dim X<Ind X .

Proof. Let us show by induction on the number n that Ind X<n implies

dim X<n .

® T. Mizokami [1] proved the same for every totally normal space X satisfying the
following condition: For each open base U of X there is an ordered open cover-
ing (V,<) of X such that (i) for each VEV , (V'€U| V'<V} 1is locally
finite in V, (ii) for each V€V there is V€U such that Vel , B(V)cB(U) .
This theorem unifies various other theorems including the above-mentioned result
of Y. Katsuta and others due to K, Morita, R. Ford, B. Fitzpatrick and K. Nagami.
See also L. F. McAuley [1], J. A. French [1] and V. V. Fedorfuk [2].

Perhaps another reason of the difficulty of general dimension theory is that
there is no convenient theorem like Theorem 11.2 to characterize dimension by a
special base if the space is non-metrizable. J. Nagata [12] and T. Mizokami [2]
proved Ind X<n 1if and only if X has a 0~-closure preserving base U such
that 1Ind B(Ur;n—l for all U€U , under certain conditions on X . The latter's
condition is particularly satisfied if X 1is the image of a metric space under
a closed continuous mapping. However, it is unknown yet if the same theorem holds
whenever X 1is a regular space with a O - closure-preserving base.

® This assertion is due to N. B. Vedenissoff [1].
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Since the validity of the assertion is clear for n=-1, we shall agsume it for
Ind X<n-1 . Now, assume Ind X<n , and suppose U = {Ui[ i=1,...,k} is a
finite open covering of X . Then by virtue of the normality of X and I.I A),
there exists an open covering V = {Vil i=1,.4.,k} such that ViCUi and
Ind B(Vi) <n-1 . Using the in:uction hypothesis we obtain dim B(Vi) n-1.

Hence by Theorem VII.2 B = Ui: IB(Vi) is a closed set with dim B<n-1 . There-
fore there exists an open covering W = {Vil 2=1,...,k} of B such that I_JiCUi
and ord W<n .

Now we can easily construct a finite open covering N of X such that
~<A{(u£,x—ﬁi Y i=1,0.,kY

and each member of N intersects at most n members of @ . Since X is normal,
by I.1 C) we can find a finite open covering P satisfying PA<N . Put

Qi:S{i/i,P) and Q= {@.|<=1,...,k} .

A
Then it is easy to see that @ 1is an open collection satisfying
Q<U , ord Q<n, and U{Q|Q€Q}oB .

On the other hand, we define
v -1 . _ .
ur = allux Ui}|1,-l,...,k),

then U' 1is an open collection which covers X - B and satisfies ord U' 20 . This
implies ord QUU' <n+1 . Since QUU' is an open refinement of U , we conclude

that dim X<n .

In a similar way we can easily show the following assertion which was first proved

by P. S. Alexandroff.

B) For every compact Tz—space X , dim X<ind X .
On the other hand I. M. LeYbo [1] proved that dim X = Ind X holds whenever X

is the image of a metric space by a closed continuous mapping and also that

dim X = Ind X = ind X holds whenever X is the image of a separable metric space

by a closed continuous mapping. B. Pasynkov [2], {5] also obtained important results

in this aspect. In [2] he proved coincidence of the three dimension functions for
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every locally compact group. 7 In the following we shall discuss a remarkable

result obtained in [5].

C) Let f be a continuous mapping from a normal space X onto a metric space Y
and g a continuous mapping from Y onto a metric space Z such that @=g.f
is a closed mapping satisfying dim (o_‘(ZJ;O for all z€Z . If dim Y<n , then
Ind X<n ,

Proof. The proof will be carried out by irduction on n .,
If n=-1, then the proposition is obviously true.
Assume that it is true if dim Y<n -1 . First we remark that for each 2€2Z and

each open neighbourhood U of w_'

fz) in X, the set X-f(X-U) 1is a neighbour-
hood of g_l(z) in Y (i.e. the interior of the former set contains the latter),

because the mapping ® 1is closed and
g 'z -etx -uex - fix - u .

Now, let F and G be given disjoint closed sets in X . Then for each z€2

there are open sets Uz and Vz in X such that
-1
) 0 (z)cUzUVz,Uzan-ﬁ,UznG-¢,VzﬂF-¢.

because dim w'l(z);o . Put F/z

Q, =Y - f(x - Fv’z) is a neighbourhood of g_'(z) in Y.
Hence there is a locally finite open covering Q of Y such that
Q<{Qz|2€Z } and

= Uz UVz . The remark above implies that

2) dim B(Q) <n-1 for all Q€Q,

because dim Y<n for the metric space Y . Let Q€Q ; then QCQz for some z€7Z.
This implies that f—’(Q)ch .

7 In fact he proved more, namely dim X = Ind X = ind X = ind G - ind # if X is
the factor space G/H of a locally compact group G by a closed subgroup X .
K. Nagami [5] obtained a similar result, See also P. Alexandroff - V. Ponomarev [!]}
and V. V, Fedor¢uk [3] for conditions implying the coincidence of different di-
mension functions.
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Now define

(3) UQ) = uznf"(q) and VI(Q =V 0f @) .
Observe that

) £0£7 @) eBle) .

Note that {U'(Q)| Q€ Q} is a locally finite open collection covering F and
that U'(Q)NG=¢ for all Q€Q .

put P-U{U'(Q)|QED}.

Then P 1is an open set of X such that FcPcX - G and

5(P)cU{BU'(Q) | QEQ)cuU{BIf '(a))| Qe Q} .

The last relation follows from the local finiteness of {U'(Q)| Q€Q} and from
the fact that B(U'(Q)) cB(f '(@)) , which easily follows from (1) and (3). Hence

(5) FBP)) cfULB(F (@) Qeql)c
cul fB0f ()| QeQlculBQ) | @EQ}=q" .

The last part of the relation follows from (4). Since Q 1is locally finite,
dim Q" <n-1 follows from (2) by use of the sum theorem. Thus dim f(8(F)) sn-1
is implied by (5). Hence by the induction hypothesis we obtain 1Ind B(P)<n-1 .

Therefore 1Ind X<n .
D) Let U be a locally finite open covering of a normal space X with dim X<n .

Then U can be shrunk to an open covering V such that there is a locally finite

open covering V' each of whose members intersects at most n+1 members of V.

Proof. Use I.1 A) and the technique of the proof of Theorem I1.6 to shrimk u

to ¥ where V is an open covering such that ord V;n+l . Suppose
u:{uu|ue;1} and V={Va|a€.4).

where VQCUQ . Then for each x€X we define
v = v 7 v
Vix) (n(ua|:ceva})n(n{x Valxﬂl’a}).

Then V' = {V(x)| x€X} satisfies the desired condition.
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E) Let U be a locally finite open covering of a normal space X ., Then there is

a locally finite open covering A such that A¥<l

Proof. Assume U = {Uu] @a€A)} . Then find an open covering {VQI a €4} satis-
fying VQCUQ . For each finite subset B of 4 we put

W(B) = (n{ua| aea))n(n{x—fzolau-a}), and
W={wWB)| B is a finite subset of A1}.

Then W is a locally finite open covering such that WA<U . By repeating the same
argument we construct a locally finite open covering A such that AA<(L’. Then A

is the desired covering.

Theorem VII. 4. Let @ be a closed continuous mapping from a nomal space X
onto a metric space I s8uch that dim tp-l(z) 0 for all z€Z . Then dim X =
Ind X .

Proof. Since dim X<Ind X is proved in A), we shall prove Ind X<dim X .
Assume dim X<n . Let Wl . wz,... be a sequence of locally finite open coverings
of 2 such that

w|>w;>w2>ur3->... and meshwi-‘o as 1+% ,

Put

-l s .

u, =f (W) =1{f (W) | WEW.}

then each Ui is a locally finite open covering of X . Since dim X<n , by use of
D) we can shrink U] to an open covering l.'l and construct a locally finite open

covering V; each of whose members meets at most #n+1 members of V . By E) there

|
is a locally finite open covering A of X such that

* '
A <VlAVlAU2 .

Shrink A to an open covering V2 and construct a locally finite open covering
Vé each of whose members meets at most 7n+1 members of V2 . Then VE<V‘ I\U2 \

and each member of V2 intersects at most 7+ 1 members of Vl . Repeating the

same process we get a sequence Vl , V2 ,e.. of locally finite open coverings of X

such that
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* * =
V|>V2>V2>V3..., Vi<u1: for =1,2,... ,

and each member of Vi . meets at most 7n+ 1 members of Vi .

Next, let us define the equivalence relation ~ among the points of X by
o
x~y 1if and only if y€ N Sa'a:,Vi) .
=1

Then each equivalence class is a subset of &D_I(z) for some z€2 , Thus we can
talk about the natural mapping f from X onto Y , the set of all equivalence
classes of X and the natural mapping g from Y onto Z . (Namely f maps
z€X to the class containing x .) Introduce a topology into Y by defining that
{S(y,f(Vi)) ] £=1,2,...} 1is a neighbourhood base at each point y of Y . Then it
is easy to see that f and g are continuous mappings such that ® = g.f and
that Y is a metric space with dim Y<n (by virtue of Theorem V.3). Thus
Ind X<n follows by use of C). Hence dim X = Ind X . 8

Negative results in this fields are due to A. L. Lunc [1] and 0. V. Lokucievskii
[1], who constructed a compact Tz-space R such that dim R=1 and ind R =
Ind £ = 2.°

More generally, P, Vopenka [1] showed that for every m, n with 1<mg<ng<=,
there exist compact Tz-spaces R and S such that dimR=m, ind R=n,
dimS=m, and Ind S =1n .

On the other hand, C. H. Dowker [3] constructed a normal space R such that
ind R =0 and dim R = Ind R = | .

VII. 3. Sum theorem and subspace theorem for Ind

0. V. Lokucievskil's compact Tz-space R which we quoted in the preceding section
contains two closed subsets I-"I and Fz such that

}?zFIUFZ, 1ndF|=IndFl=1,and mdF2=IndF2=l.

® In this proof factorization of the mapping @ plays an important role. See

S. Mardesi¢ [1] and B. Pasynkov [8] for factorization theorems in dimension theory.

% v. Fedoréuk [1] gave a first countable compact Tz-space X with dim X<ind X .
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Thus the finite sum theorem for inductive dimension does not hold even if the
space is compact T2 . In the present section we shall prove a sum theorem and a
subspace theorem for Ind of totally normal spaces, which are mainly due to
C. H. Dowker [2]. In the rest of this section we shall be concerned only with large

(strong) inductive dimension.

A) To prove the subspace theorem for every totally normal space, it suffices to

prove the same for all open subsets.

Proof. Assume that 1Ind U<Ind X holds for every open set U of every totally
normal space X . To prove the theorem in general, we use induction on % = Ind X .
If n=-1, then it is obviously true. Assume that the theorem has been proved for
every (n-1)-dimensional space. Now, let Ind X = n, and Y be an arbitrary sub-
set of X . Suppose F and G are disjoint closed sets of Y . Then U =X - FNG
is an open set of X , and hence Ind U<n . Since FNVU and GNU are disjoint

closed sets of U, there is én open set V of U such that
FAUcVEU - 60U and Ind By(Vi<n=-1 . '
Put ¥ = VNY . Then ¥ 1is an open set of Y such that
FcWcY - (G and BY(W)CBU(V) .

Hence by the induction hypothesis we get Ind BY(W) <n-1 , which proves
Ind Y<n .

B) Let X be a hereditarily normal space. If F 1is a closed subset of X such
that Ind F<n and Ind {X-F7)<n , then Ind X<n .

Proof. For n=-1 the assertion is clearly true. Assume its validity for every
F satisfying Ind F<n-1 and Ind (X-F/<n-1 . Llet G and H# be disjoint
closed sets of X . Since Ind F<»n , there exists an open set U of F such that
FAGcycl cF - # ' and

() md (F - wgn-1 .

Lo By(.) denotes the boundary in the subspace U .

Bt By Z_IF we denote the closure of U 1in the subspace F .
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Then GUY and HU(F-—ITF) satisfy
TUUN(HU(F -TF)) = ¢ and (GUUINHU(F -TF) =6 .

Hence, by virtue of the hereditary normality of X , and I.1 B), there exist open

sets ¥V and W such that

GuUcY , HU(F - )k, VOW =9 , and

FAWCEUDNHU(F -T) =0nr -TF e - u.

Thus VN({X - F) and WN (X - F) are disjoint closed sets of X - F . Since
Ind (X - F) gn , there exists an open set P of X - F such that
7N(X - F)cPc(X - F) - ¥ and

2) Ind (I-’X_F—P):n—l .

Now, put @ = VUP : then § 1is an open set of X which satisfies Gcg@gcX - H

and
(3) st Fopu - =5;

L_fF - U 1is a closed subset of § such :that
FF _pos-f -w.

Using the induction hypothesis we deduce from (1) and (2) that Ind S<n-1 .
Therefore, by (3) and 1| D) we conclude that Ind B(Q) <n-1 . Hence Ind X<n.

C) Let X be a hereditarily normal space and

X = .YODYIDYZD...

)

be a sequence of open sets such that N Yi =¢ . If Ind {}’i_ | -Yi) <n for

=1

>,

£=1,2,,.., then Ind X<n .

Proof. This proposition can be proved by arguing similarly as in the proof of B).
The proposition is obviously true if n=- 1., Assume that the proposition is true
for (n-1)-dimensional sets. Let G and H be disjoint closed sets of X . Since

Ind (Yo—Yl);n , there is an open set U of YO—Y' such that
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Gﬂ(YO-YI)Culcho—Y]) - H and Ind BYO_Yl(UI);n-l .

Find open sets Vl and WI in X such that

50 71
GUUlch,HU[(YO—YI) U1

v,nw, = @, and V, nwchYo—Yl(Ul) .

Since Ind (J"l -Yz);n , there is an open set U2 of YI -Yz such that

- _ _ = _
Vln(!'1 1’2)CUZ<:(Yl Y2) Jl and IndBYl_Y(UZ);n i

2
Find open sets V2 and WZ in X such that
_ Yl -Yz
v uu eV, KUY, -Y) - U, lew, .
V,Ni, =@, and VznwchYO_Yl(Ul) UBY] "Yzwz) .

VII.3 C)

Continuing the same process we get sequences {Ui} , (Vi}’ {Wi} , where U. is

open in Yi-l-yi , and Vi and Wi are open in X satisfying
Vi—In(Yi—l—Yi)cuiC{Yi—l-Yﬁ) -w‘i—l R
Ind Byi-l_yi(Ui);n—l R
s
l/i_lUUiClli, Wi-—lU[(‘Yi-l_yi) —Ui ]c:Wi,
_ z
Vinh’i'@ , and Vinwic.g By, —Y.(Uj) .
Jg=1 “g-1 7

<@
Then put ¢ = U

that
0
GclUcX - H and B(U) = U B (v.) .
. Y. -Y. "7
T =1 z-1 z
Thus by use of the induction hypothesis we obtain "Ind BfU) <n-1 . Hence

Ind X<n .

=1 Ui . Now it is easy to verify that U 1is an open set such



- 174 -

VII.3 D)
X . Then U has coverings

U be an open set of a totally normal space
and consist of closed sets of X

denotes the interior of P.)

D) Let
P and @ which are both 0 -discrete in U such
shrinks to Q , where P’ = {P | PeP} . (&

that P’
U has an open covering

Proof. By the definition of totally normal space
u-= {chl «€A} which is locally finite in U , and each U, isan F_-set of X.

Thus each UOl can be expressed as

0
Ua = l: "ai’ aicwmjﬂ

X . We may assume that the members of U are well-

where ”0.1- are open sets of

ordered, i.e. U - {Ual O<a<t} .

Now define

=W - W, . NER A - .

Pai Vai Bl<ja BL+1 an at - | Bgu W8z+2 :
= P =

Pp={P logac<t}, 2. ={Q,  |oga<t},

Thern each Pi is discrete in U and consists of closed sets of X , and the same
N R o R © - o
is true for QL , too, while QaiCPui . Thus P = Ui= | Pi and Q Ui= | Q‘L are

coverings as desired.

E) Assume that {l”cl | a€A} is a discrete covering of X . (Thus each Fa. is

closed and open in X.) If Ind F <n for all a€4, then IndU{Fu[ a€Ad}<n.

Proof. Obvious. (Use induction on n .}

a closed covering

F), Let X be a totally normal space and {Fil i=1,2,...}
g
of X such that Ind F.xin, =1,2,... . Then Ind X<n .

U be an open subset of a totally normal space X with Ind X<n . Then

G)n Let

Ind U<n .
Proof of F)n and G)n . We will prove the two propositions simultaneously by in-

duction on n .
1) F)—l and G)_, are obviously true,

i
ii) I-‘)n_l implies G)n .
First observe that F)n—l implies the following assertion
(1) Let {Fil 2 =1,2,...} be a closed covering of a totally normal
space X and (Di|i=l,2,...} such that
Fy€D,, £=1,2,... . If Ind D <n, ©=1,2,... , then Ind Xgn.

a closed covering of X
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Proof of the assertion (1) is as follows., Let G and H be disjoint closed sets

of X . For each ¢ we can find open sets Vik R Wik , k=1,2,... such that

GNF, CV'LkCV‘Lk*rI:Di_H’
HNF., CWkCh’ k*lCD‘L G,
Ind B(Vik)f——n-l and Ind B(Wik);n-l ,

because Ind D. ; . Put

Vk =X - Vlku"' Uka and h’k - X - WlkU... UWkk .
Then Vk and Wk are open sets such that
o
Vk:Vk+lDH’ Gn{( f} Vk) =9,
k=1
WkDWkHDG > .‘1!1(kl'll h’k) e,
x %
B(V. )C v B(V ,B(W)C U B(V )
S =1
Hence by F), _, we obtain Ind B(V;)<n-1 and Ind B(W W En- .
Now define
= (Vl-V!) U(VZ—VZ) U... .
Then P 1is an open set such that
©
GePcX - H and B(P)e U (B(V)UB( k)) .
k=1
(A somewhat similar technique was used to prove II.| E).) Hence by F)n-l and

1 D) we get Ind B(P)<n-1 . Thus Ind X<n , i.e. (1) is proved.

Now, to prove ii) we assume that U is an open set of X with Ind X<n. Let

P = U:= ) Pi and Q = U:_ IQ£ be the coverings of U obtained in D), where
Pi = {Pa.l a€.4.. and QL {Q IaEA } are discrete in U and satisfy QuCP; .

By 1 D) 1Ind Pa;n , because Po. is closed in X . Thus by E) 1Ind Pi;n , where
P‘i :U{Pa] 0.€A1:} . If we wx:u:e Qi :U{Qul chAi} , then P‘i and Q‘i are closed
sets in U such that QiCPi . Thus from (1) it follows that 1Ind Ugn , which
proves ii),

iii) G)n implies F)n'
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Put
1’0=X » Yi:X- (FlU... UFi) s T=01,2,0..

Then Yi are open sets with

2,.. and

[
&3
[}
[N

o124

=

- =F. - ... UF. i . . Si
Now Yi—l 'Yi F‘L (Fl u u - |) is an open subset of Ft Since

Ind Fi;n , it follows from G)n that Ind (Yi- _Yi) <n . Thus by C) we get

I
Ind X<n , which proves F)n .

iv) Now combine i), ii), iii) to establish F)n and G)n for all integers n2>-1.

From A), F)n and G)n we obtain the following theorems.

Theorem VII. 5. Let {Fil £51,2,...} be a closed covering of a totally normal
space X such that 1Ind Fi;" , 2=1,2,... . Then 1Ind X<n.

Theorem VII. 6. Let Y be a subset of a totally normal epace X . Then
Ind Y<Ind X .

The following statement is another sum theorem whose proof is similar to that of

c).

Theorem VII. 7. Let {FQI a€A4} be a locally finite closed covering of a
totally normal space X such that 1Ind FG;n for all a€A . Then 1Ind X<n.

Proof, Well-order the given covering as {FQI 0<a<T} . We shall prove the
theorem by induction on n .

It is obviously true if n=-1,

Assume its validity in the (n-1)-dimensional case. Let G and H be given dis-

joint closed sets of X , Put

F(a) =U{Fg|0gB<al}, 0ozt .

Then F(a) is a closed set. We shall construct sets Ua. for 0<a<T by use

of induction on o such that
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(l)Ul Ua is an open set in #{o) ,
2) enF(a) ey, HNFla)cFla) - 2 ¥
o o’ [+3 *
(3)0. Ind BF(C!)(UG) <n-1,
(4)(Jl for every B<a, UB = UQnF(B) R BE’(B)(UB) = BF(Q)(UQJ nr(g) .

Since 1Ind Foén , we can choose U0 satisfying these conditions for a=0 .

Assume that UB has been defined for all E8<a . Define F =U { F(B} |B<al;

then F 1is a closed set. Put

(5) C=GU( U Ug),
B<a
(6) B=HU(U{F(8)—I-/§(B)|B<G}).

Then (CNB)U(CNB) =@ , because {FQ} is a locally finite collection of closed
sets, and (I)B, (2)8 and (la)B hold for all B<a . Since X 1is hereditarily normal,

there are open sets P and @ of X such that

€] CcP, B,
(8) PNg=9 , PNQeCNB .
Since F is closed, we have CNBCF , which implies PnQcrF.

On the other hand it follows from Theorem VII.6 that Ind (Fa-F) <n , because

Ind Fa;n + Thus we can find out an open set ¥V of FG—F such that

9 BPa(r -Fev,

(10) 4 C(FG-F) -Q,
(1 Ind B, _p(V)n-1.
a

Then put
(12) U =( U vJjuv.
@ B<a 8

Now, (l)u follows from (l)B (4)6 for B<a , (5), (7), (9) and (12). (2)cx follows
from (2)B for B<a , (5), (6), (7), (9), (10) and (12). (lo)a follows from (12),
(4)B for B<a , (6), (7) and (10).

To prove (3) , we express the boundary of Uu. in F(a) as

a’

(Ua) =B, UB

Bp(a VB,
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where

BI:BF( )(U JN(Ffa) -F) and B F( )(U)ﬂF

Note that by (l»)B for B<a ,

B,=U{B (Ug) N Fg | B<al .

rea) (Vg! |B<al=u{B

F(R)

Thus by use of the induction hypothesis and (3)8 for B<a , we obtain

(13) Ind BZ;n_l .

1 i
which combined with (13) implies that

Further note that B =8p _F(V) . Thus from (I1) it follows that 1Ind B <n-1 ,
o

Ind B (Ua)in-l R

F(a)

i.e. (3)a is proved. Thus the induction process is complete, and so we can eventually
construct U‘[ . Since U‘r satisfies (l)_[-(3)_r and since F(1) =X, U‘r is an open

set of X such that
GCUTCX-H and Ind B(Ut)én-l .
Thus we conclude that Ind X<n .

Corollary. Let {Fa | a€A } be a locally countable closed covering of a heredi-
tarily paracampact T,-space X . If 1Ind F <n for all a€A, then Ind X<n,

Proof. Combine Theorems VIL.5 and VII.7,!2

'2 We have proved sum theorems for dim and Ind under considerably general condi-
tions. On the other hand another dimension, ind, behaves very badly in this
respect. E. van Douwen [!) and T. Przymusifiski {1] proved that the finite sum
theorem does not hold for ind in the class of complete metric spaces. In fact
the former showed that adding a single point could raise ind from O to 1 in
the class of metric spaces.

As for Kat&tov-Smirnov's dimension (Definition I.4'), E. Pol [1] proved that
there is a Tychonoff space X such that Katdtov-Smirnov dim X >0 , and

X=X1UX2 for functionally closed sets Xl and X2 with Katétov-Smirnov

dim X.=0 , ©=1,2; this fact rather sharply contrasts Theorem VII.!. However,

this dnnens:.on is useful to some extent when one tries to extend dimension theory
beyond normal spaces. See K. Morita [8] for dimension theory in general spaces.
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VII. 4. Characterisation of dim by partitions

In the present section we will discuss a generalization of Theorem II.8 to normal

spaces (due to E., Hemmingsen and K. Morita).

A) Let U= {Ual a=1,...,k} be a finite open collection in a topological space
X and F = {Fal a=1,...,k} a closed collection such that F,cU_ . Ve define
binary coverings Va’ a=1,...,k by Va:{Ua_, X—Fa}. Then V=A{Va|a=l,...,k)

is a finite open covering of R satisfying S(Fa, V)CUa .

Proof. 1t is clear that V 1is a finite open covering. Let
V= [n(Uala€Y}]ﬂ[n{X-Fa|aEY}]

be a given member of V , where Y denotes a subset of {1,...,k} . If VnFa#Q’ ,
then a €y , which implies VCUa . Hence we obtain S(Fa, V)CUa .

B) Let U = {Ua| a=1,...,k} be a finite open collection in a normal space X
and F = {Fal a=1,...,k} a closed collection such that FacUa . If F is a
closed subset of X of dimension < n , then there exist open sets Va and Wa
such that

7 5o - 13
F eV cV cW cU  aand ord {FN (K Va)la lLeoo,klzn .

Proof. Denoting by T the family of all finite subsets of {1,...,k} , we let
L= {Ly|Y€l"} , where

%)) LY=[ﬂ(Uala€y}]n[ﬂ{X-Fa|a€Y}].
Since dim F<n , we obtain open coverings
M= {MYlyer} and N = {IVY|y€I‘)

such that

) ITIYCMYCLY and ord (FNM |y€r}gn+1 .

13 we can prove this theorem for every locally finite open covering U in an

analogous way, by applying Theorem II1.6 to the normal space X . (Theorem II.6 is
valid for every normal space R.)
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Define 6(y) = {a, FaﬂMY#ﬁ} ; then 8(y)cy . In order to show this, suppose a
is an element of 6&(y) . Then FaﬂMY#(b , which implies by (2) FaﬂLY9‘0 . Hence
from (1) it follows that a€y , which proves &(y)cy .

By virtue of the normality of X we can define open sets PYa » QYa for each
YET and a€68(y) such that

] P n : 14 [
3) NYCPYQCPYGCQYQCQYQCPYCZ'CMY if a,a’€6(y) and a<a' .

Now, for a fixed aq with 1<a<k we put
4 =
(4) v, U{Pyaly€f‘,a€6(y)),

(5) wa=u{emlv€r, a€d(y) }.

It follows from (3) and (4) that FacS(Fa,N)cVa, because FaﬂNY#G implies
Fa ﬂMys‘ﬁ , and hence NYCPYQ and a€68(y) . From (3) and (5) we obtain
WaCS(Fa,M) , because a€48(y) implies FaﬂMY#(b , and hence QYaCMYCS(Fa,M) .
On the other hand, from (2) and A), it follows that

S(Fa, M) CS(Fa, L)CUa .

Therefore WaCUa + Moreoever, from (3), (4) and (5), we obtain
Va:u{pYa | YET , a€é8(y) }cwa.

Thus it remains only to prove

ord {FN(KW -V )|a=1,....k}<n.

We suppose a; ?=1,...,m+1 are given distinct numbers between | and k .

From (5) we obtain

"ai:U(QYaiIYET > a,€8(y) },

and hence

wi-vi:u{oyainer s ai€6(y)}-U{Pyai|Y€I‘, a,€6()}

Q ~P R
CU{ani Ya, IYEI',azEG(y)}
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Therefore to prove
n+l
FAl o (W -V )]1=0

=1 1 1

it suffices to show

n+l
(6) Fnl n (@ -P J1=0
i=1 Y% Y%
for every choice of n+1 indices ASTRRETS AU If Yi':Yj for some distinct

t, J, in view of (3), we may assume

Hence

Fn(Qy.a.-Py.a.)n(QY

a.-P )=9
1 i1 Jd

a.,
YJ d
which implies (6). If YyseeesY,, 2aTE all different, we assume the contrary of
(6). Then we select a point

n+l
€2} pEFN[ N (@ -P ),
i=1 Y% V%

which implies
pEP SN , T3 l,eeu,n+1

Since N = {NYI YET} covers X , there exists N_ which contains p , and in

consequence Y#Yi , 2=l ,..v.n+ 1 , Thus by (2) we obtain
8 EFNM .
(8) p v

On the other hand, from (7) combined with (3), we obtain

n+l1
¢)) pEFNl n M 1.
i=1 Yz
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But (9) combined with (8) contradicts ord {F’(]MY | YET}Y<n+1 . Thus in either

case we conclude the validity of (6). Therefore
ord {Fﬂ(h’a-Va) ja=1,...k}lzn,
which completes the proof of this assertion,
Theorem VII. 8. A normal space X has dimension < n <if and only if for every
t=1,...,k} and closed collection {Fi |2=12,...,k}

satisfying F.cU,, ©=1,...,k, there exists an open collection { v, [2=12,...,k}
such that F,cV.cU., i=1,...,k, and ord {B(Vi) |2=1,...,k}<n .

finite open collection {Ui

Proof. The 'only if" part is a direct consequence of B). As for the proof of the
"if" part, we refer to the proof of Theorem II.8. Although in that theorem the

metrizability was assumed, only the normality was used in the proof.

The following corollary can be deduced from Theorem VII.8 in the same way as in

the case of metric spaces.

Corollary. A normal space X has dimension < n if and only if for every open
eollection {Uilizl,...,rul} and closed collection {Filizl,...,n+1]
satisfying FicUi . there exigts an open collection { Vs |£=1,...,m+1} such

that F.cV.cU., i=1,...,n+1, 00 L pey) =g . 1v
1 1 [ 1=1 7

VII. 5, Dimension and mappings

Many theorems on dimension and mappings can be extended to considerably general
non-metrizable spaces. In this section we shall prove for non-metrizable spaces only
a few of the relevant theorems in Chapter III and leave the reexamination of the
remaining ones to the reader.

We take Definition III.1 as the definition of the unstable value of a mapping
defined on non-metrizable spaces. Then we obtain the following theorem which runs

exactly as Theorem III.I.

14 Generally, let F and G be disjoint sets and C a closed set such that

X-C=UUV for disjoint open sets U and V satisfying UDF, VoG .

Then C 1is called a partition between F and G . If ¥ is an open set such
that PcWcWH<X -G, then B(W) is a partition between F and G . Thus
Theorem VII.B and its corollary can be stated in terms of partitions in

place of B(Vi) .
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Theorem VII. 9. 4 normal space X has dim & n <f and only if all values of

every continuous mapping of X into T ! are unstable,

Proof. As for the "if" part, we can prove its validity using the corollary to
Theorem VII.8 by the same argument as in the proof of III.1 B). In that proof we in
fact did not use the metrizability of R but only its normality.

As for the "only if" part, we define closed sets Fi and Gi as in the proof of

I1I.1 A). Then we define by use of 4 B) two open sets VT. and W. , T2=1,...,n+1
satisfying
F.clV.cV.cW.cX-G. and n (Wv.-v.)=9¢ .
R R A 4 7 . R 3
1=1
We can construct a continuous function ¢. over X such that | @, [ <€,

{xlwi{x)=o}c'§'i—vi N [rlwl.(x):e:}:z-‘i , and {xlwi(:c):-s}:ci.

The remainder of the proof runs parallel to the metric case.

From Theorem VII.9 we can easily deduce the following theorem which corresponds

to Theorem I1I1,2 in the metric case.

Theorem VII. 10. A normal space X has dim ¢ n <If and only if for every
closed set C of X and every continuous mepping f of C into 5" there exists
a contimuous extension of f over X,

Proof. All we have to do is to check in the non-metrizable case the proof of
Theorem III.2; this will be left to the reader.

Theorem VII. 11. A normal space X has dim < n <if and only if every mapping
of X 1into I 1 is inessential. where we take the same Definition IIL.5 for
non-metrizable spaces.

Proof. 1In fact the proof of Theorem III.5 only uses the normality of R, so we

can apply it to the non-metrizable case.

A) Let {Uil £=1,...,k} be an open covering of a normal space X . If there
exists an open covering V< { Ui} with ord V<n+1 , then there exists a closed

covering {Fi|i=l,...,k} such that FiCUi and ord{Fi|i=l,...,k}£n+l .

Proof. Without loss of generality, we may suppose
V= {Vil 25 h,...,k) VpelU,, 150k

Since X 1is normal, we can find an open covering {Wi [£=1,...,k} for which

w.ev,, £=1,...,k . Thus {Fi|i= leoo, k), F_.If;’i is the desired closed covering,
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B) Let {Fal @< T} be a locally finite closed covering of a normal space X
and U = {Ui | £=1,...,k} a finite open covering of X . ILf

i) there exists an open covering Ua of Fu such that ord Ua;ni-l and

UQ<U ,
ii) dim I-’QnFB;n-l for a¥B8 ,
then there exists an open covering W of X satisfying ord W<n+1 , W<l .

Proof. We shall define by induction closed sets Gai for a<T , T=1,...,k

such that

GaiCFanUi ,

hcx

U G,.= U F, , and
<a 87 B<0l8

18

i

ord { U Gg.li=1,...,klgn+1,

Bz
For a=0 , we can define GOi , 2=1,...,k by use of A) combined with condition
i).
Let us assume that GB'I: , £=1,...,k have been constructed for every B<a . Let

Bi ¢

then G. is closed because by virtue of the assumption {Fe| B<a} and according-
ly {GBil f<a} are locally finite. Hence by the induction hypothesis
iGil t=1,,..,k} 1is a closed collection of order < n+! . By I B) there are

open sets "li , £=1,...,k , for which
f.cM.clU. and ord {M.|Z=1,...,k}<n+1,
i 11 z =

It follows from condition i) combined with A) and 1 B) that there exist open sets

l.’i and closed sets Hi , £=1,...,k, for which
H.eld,cU,, ord{N.|Z=1,....,k}lsn+1, and
k
(i) U Hi :Ea .
=1

It follows from condition ii) combined with Theorem VII. 1 that

dim (F A( U F ))<n-1,
“ p<a 8
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Hence we can construct, by use of A) and | B), a finite open colléction

W= (WJ[ J=1,...,1} such that

1
(2) FN(U F,)c UW,,
O gy B j=19
) k
3) w<u,\[i2I ({.’-!i, x—ci},\{ﬂi, X-Ei})] .
(4) ord (I);n.

We define closed sets "’i , J and F by

i
(5) J.TH.N(X- U W.),
1 1 s J
J=1
k
(6) J = Lj J,[:,
-1
k
(7) F- U F,= U G..
B<a 8 i=1 *
Now, we shall construct closed sets Kj R I’j s J=1,...,1 , such that
e .—I
8 W,=K.UL., K.cX- U (X, NnNL,)VUJ , [.<cX-F.
® Jgod i n=y P Tk J

Since by (2), (5), (6) and (7) FNJ =@ , we can find closed sets Kl and LI

for which
Wl =K UL, K,€X-J , L cX-F.

i-1,
NN _y - Then Uy Z (K, NL)uJ

and F are disjoint closed sets. Therefore, we can construct closed sets KJ. and

Suppose we have defined Kl"”’xj— s L ""’Lj

Lj satisfying (8).

We note that the second formula of (8) implies that
(€)) (KhnLh) n(xjnLj) =@ if h#j .

We shall prove

(10) ord{KJ.,LJ. J=l,ooa llgn+,
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Let
r B
K=(nNn Ki)n(n LJ.)#G.
p=1 'p  g=1 Yq
1f {ip|p=l,....r]n{jq|q=l,...,s} contains two distinct numbers ip and
1, . then
p
KC(K1: nL‘i )n(K'l: ’ﬂLi ,)
p p p
which contradicts (9). Hence {ip|p= 1,....r}n{ja| g=1....,8} contains at most

one number. Thus it follows from (4) and

which is implied by (8), that r+s-1<n. So we have shown (10).

Now, for Z=1,...,k, let
[ = = " .
Ki-u{lexjnah ¢ for h=1,....7 I,ancifﬁ},
Lé:U{LJ.|LJ.ﬂJh =¢ for h=1,...,2-1; LJ.nJi#(b).

Then it follows from (3), (5) and from GicMi , H"C”i that
(i) K'UG.cM. , Liud.cl. .
Tt T T 1 1
Furthermore, let us suppose that

K. NF=¢ for p=1,....r,
Ip

KJ.OF#(D for J#J_,
L., =@ for gq=1,...,8 ,

Tq

[’,j' NS#+0 for J'#J
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Then we have from (8)

FnRs=¢ ,
(12)

XK. D(F =@ , L, N{FULJ)=0.
X (FUudJd)=¢ LJ {FLJ) =¢

p q
We note that by (7) j#jp implies

k

.0 U G.I#0 ,
. 7
=

(13) K.<K! for some 1
J 1

and that by (6) j'#jc’y implies

k
L.,0h( U J.)¢0 .,
A S
i.e,
(14) LJ.,CLé, for some <’
We put

Fe={(K.NnFJ)UG., (L'NFP )UJ. 6 XK.
1 a 1 1 o i J

2=1,...,k:p=1l,..

We shall prove that F is a closed covering of UB<G FB with

From (5) and (1) it follows that

A

ncx
o,
h
~
h Ccx

1 i=

o

From (13), (14) and (8) we deduce that

k

._\
c
e
S
c
-~

nees

] ‘7p =

P g=El, ..

K.,Ju(u LVl uU L., )J> U
T J s -
q=1 q J=!

NF, > Lj,qnpu]

A

HJND(X- U W.J)=F O0(X- U W) .
z J s J

Jj=1

l

81,

(K.UL.)=
J .

VII.5 B)

ord F<n+)
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Thus a given point x of Fa satisfies at least one of the following conditions,

L'nr . f A
a) .rEJic( 1_ﬁ &)UJ_L for some 7 ,

b) .x:EKé for some 7 ,

AP eyt
which implies ...E(/{iﬂz'a)UGi and

<) x€K. for some p,
p

which implies x€X, A7  and
Jp a

d) :C€L1': for some 17 ,
. . . ,
which implies =zx€ (Li ﬂFa) UJi and

e) x€L., for some gq ,
7q

which implies rELJ.,an‘a .
. : . ,
If £ 1is a given point of U5<QFB’ then by (7) xEGiC(Kinch) UGi for
some ¢ . Hence F 1is a closed covering of UB<0F8'
To verify ord F<n+1 it suffices to prove it on Fa , because the same obvious-

ly holds outside of Fa by virtue of the induction hypothesis. Let

m n

0 ()
L=00 ((k; AF)UG, Jintn Ll nFJud., N
m=1 m m n=1 n n

%o )
ni N (x, nrJ)Inl N (L., NFJ)INnF 49 .
t=t dpre) % u=i qtu) & ¢

Unless ¢t .=u.=0 , m no=0. from (6), (7) and (12) we obtain

0o 0 0
mo no to uo
Lef( N XKL )Nn( N L‘;'I')n( n k. Jnc n L., )Joar

m=1 ‘m n=l n t=| Jp(t) u=1 Y4 g
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where generally the intersection of Am , m ranging through an empty set of indices,

means X . Hence, in view of the definitions of X!, X. , L}, L,, , we obtain
T g, e !

I q
my 7 to 4
Lel N n (x.,,0nL,,,,JInl N n (X. ne,, JIOF
m=1n=1l *m *n t=1u=\ Jp(t) Jq(u) @
for some t'' and <''' for which
m n

’ ] P he St s
K llcxi > L'I'chi’; 2 1’”: #Jp(t) 2 7'n #Jq(u) .

7 7
m m n

Thus from (10) it follows that

u, < .
m0+n0+t0+40=n¢l

If t . =u =0, m0n0=0 , then assume, for example, mo;l , n0=0 . From (11) we

0 0
obtain
o ,
= ’
L l;l [{K'i nFa)U Gi ]nFac: n Mi R
m=1 m m m=1 n
which implies moén*rl , because ord{Mi|£=l,...,k};n*l.
Similarly we can prove nO;n-#l in case to= uo=0 , m0=0 ) noil . Thus we
can conclude ord F<n+1 .
Now, we define Gai , t=1,...,k , by
n = ' '
Gys (KinFa)U(LinFa)UJiU
- . £ ot > »
ulu(xk, |KJ. cu; ; KJ. gU,, for I <tInF 1y
p p p
. . .y L., €U, L'<2 }n .
U[U{LJ,qILJ,qcUz, La’q"’i for 1'<Z}NF ]

F, (1), (11), (1), the induction

Then it follows from the above property of
Z=1....,k , are the closed sets which

>

hypothesis and Gi;UB<a GBi , that Gai
were wanted at the beginning of the proof. We shall leave the details of the proof

to the reader.
. Since {Fal a<T)} 1is locally finite,

To complete our proof, let G'i :ch<'r Gai

and G .cF . it follows that {Gai Ja<t} G, is

is locally finite, and hence
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closed. Thus G = {Gi | £=1,...,k} is a closed covering of Uu<T Fu:X such that
G<U and ord G<n+!| . Hence by use of | B) we2obtain the desired open covering

w.

Theorem VII. 12. Let j be a closed continuous mappirg of a normal space X
onto a paracompact space Y such that dim f_lfq) <k for each point q of Y.
Then dim X¥<Ind ¥+k .'°

Proof. Since the theorem is clearly true if Ind Y=-1, we shall assume it for

Y with Ind Y<n , and proceed to prove it for Y with Ind Y=n .

Let U = {Uil i=1,...,8} be a given open covering of X . Since dim f-l(q) 2k
for each point g €Y , by A) and 1. B) there exist open sets Vi" 2=1,...,8 such
that

_l 8
F (qgle U V., V.cU., and
. i T
2=
¢! ord {V,]i=1,....8}gk+1 .
Let
s
(2) Viig)= VU V,L-;

©

then {V'(gq)| q€X} is an open covering of X which satisfies V'(q) Df_l(q) . We

take for each ¢ an open set Y(q) for which
(3) v'(q) SVIgl aVig) of (q) .

It follows from q€Y-7F(X-V(q)) and the closedness of f . that
V={Y-7f(x-V(g))| q€Y } is an opcn covering of Y . Since Y is a paracompact
space with Ind Y<7n , there exists a locally finite open covering W = {Va | a< 1}
sueh that W<V and Ind B(Wa);n-l .

!5 pue to K. Morita [6].
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Since ffr](B(W&)) = B(W,) . f is a closed continuous mapping of f"(s(wa))

onto B(Wa) . Hence it follows from the induction hypothesis that
(4) dim 77 BH ) k-

Since by the continuity of f, B(f’l(wu))C:frl(B(WE)) , we obtain from (&)

) dinm B0 (W )) gnak- .
Now, let

(6) K, = f"(wu) :

then

) { Ku| a<T} is a locally finite open covering of X .
We put

(8) F ke U g

For a given a there is g for which iuci'-f(x-—V(q)) . Then one can easily
see that

FacKacV(q) cv'i(q) ,
and hence by (1) and (2) there exists an open covering Uu of Fa such that

u <u
(9 ¢
ordua;ki-lén-l-k«‘-l

On the other hand, from (6) and (8) we can easily see that
~1 .
FuﬂFBCB(f (WB)) if B<oa .

Therefore, by virtue of (5),

(10) dim (F 0Fg) <n+k~1
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Thus {Fal a<t1} satisfies (7), (9) and (I0), and hence by B) there exists an

open covering P with P<U and ord P<n+k+1 . Therefore dim X<n+k .,

Theorem VII. 13. Let f be a closed continuous mapping of a totally normal
space X onto a normal space Y such that for each point g of Y , B( f—l (q))
contains at mogt m+1 points (m>0) . Then 1Ind Y<Ind X +m .

Proof. The proof of this theorem is similar to that of Theorem III.7. All we have
to do is to modify it as follows. Throughout the proof of Theorem III.7 we change
'dim' into 'Ind'. In iii) of that proof we consider the open subset J =B(V)-H of
B(V}) instead of Hk , k=1,2,... . Defire

I = - = uls (g1, |qev) .

As is easily seen, f restricted to J’ is a closed continuous mapping of J'
onto J such that each point of J has an inverse image of at most m points.
Hence by the induction hypothesis and Theorem VII.6 1Ind J<n+m-1 . Thus by 3 B)
combined with Ind #<n+m-1 we conclude that 1Ind B(V)=1Ind (HUJ)<n+m-1 .

(Note that Y 1is actually a hereditarily normal space,) This proves Ind Y<n+m .

E. Sklyarenko [4] proved dim X <dim Y+»n if there is a closed continuous mapping
f from a paracompact Tz-space X onto a paracompact Tz-space Y such that
dim f-l(q) <n for every q€7Y.

K. Morita [6] proved dim Y<Ind X+m if there is a closed continuous mapping f
from a normal space X onto a normal space Y such that each f—l(q) contains at
most m+ 1 points,

A. Zarelua [4] proved dim Y<dim X+m under the same assumption.

A. V. Arhangelskii [3] obtained a different type of theorem as follows: Let f
be a closed continuous mapping from a normal space X onto a normal space Y , Put
T={yey If'—l(y) is not a singleton} , rd 7 = sup {dimG | GcT , and G is
closed in Y} . Then dim Y<dim X+rd7+1 ,

VII. 6. Product theorem

A) Let X be a compact T,-space and Y a metric space. Suppose X¥@ or Y#0 .
Then dim XxY<dim X+dim Y .

Proof. Assume X#¢ and Y#@ . Let dim X=#n , dim Y=m ., Then it is easy to
see that the projection m: XxY=+Y 1is a closed continuous mapping because X is

compact. (m(x,y) =y.) Lt is also easy to see that XxY is normal. (See e.g.
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J. Nagata [8]).) Since dim ﬂ_l(y) =dimX=»n and dim Y=Ind Y=m , by Theorem VII.12

we obtain dim XxY<n+m .

We owe the following theorem to K. Morita {7].

Theorem VII. 14. Let X be a compact T,-space and X*Y a normal space. Suppose
X#P or Y#P . Then dim XxY <dim X +dim ¥ .
Proof. Suppose X#@ , Y#9 , dim ¥=n and dim Y=m . Let

open covering of XxY . Then by 1.1 C) there is a sequence

open coverings of XxY such that

A be a given finite

wl,wz,... of finite

A>w'l'>u.ll >w§>...

Define for ¥, y2€Y

Y, ;Iyz if and only if (:c,yl)ES((x:,yz),wi) for every z€X .

(The binary relation ~ 1is no equivalence relation.) Define
7

— ' - 3 -
Vi(y)-{y EYlyiy'] for y€Y, and Vi—{Vi(y)|y€Y}.

Then we can prove that Vi is an open covering of Y.
To prove that Vi(y) is open, let y'€Vi(y) be given. Then for each x€X

there is erwi such that (x,y) , (x,y') EWx . Choose open neighbourhoods U(x),
Vx(y), Vx(y’) of ,y, y' , respectively such that

Ufx) xV_(y)<W_ and Ulz) xV (y') W .

Since X 1is compact, X:U§= lU{.z:j) for some finitely many :cJ.'s . Then

k
V') = NV (yliev(y) .

J-1 g

Because if y''€V(y’') , then for any x€X there is j for which :r:€U(xJ.) .
Thus

{z,y) €U(:r:J.) XV, (y)ew -,

3

J
(z,y"') EU(xJ.) xVx.(y')chj

which implies y ~y” . Hence V(y')CVi(y) which proves that Vi(y) is open.
i
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It is also easy to see that VX

3 <V. follows from W* <W. , because
T+ 7 T+ 7’

S(Vi+ l(y), V£+ V/ CVi(y) . Thus by Theorem I.1' each V, bas a locally finite open
refinement V;: . Since dim Y<m , we can construct, as we did in the proof of
Theorem VII.4, a sequence Pl"PZ"“ of locally finite open .coverings of Y. such
that

' !
Pl>P§>P2>P§>...., Pi<v1:<(i ,

and each member of P,
z+1
use the method of the above mentioned proof to define a metric space 2Z with

meets at most (m+ 1) members of Pi . We continue to

dim Z<m and a continuous mapping f from Y onto Z such that
{S(z,f(Pi)) | £=1,2,...} fs a neighbourhood base at each z€Z . Note that f-l(z)

for each z€2 1is an equivalence class in Y with respect to ~ defined by
(-]
y~y' if and only if y'€ N S(y,Pi) .
£=1
Further observe that y-~y' implies
) @®©
y€ N Siy',PJe 0 sy’ V)

=1 =1

and accordingly

(1) y-y' o, t=1,2,.0.0. .
z

Now we define a continuous mapping @ from XxY onto XxZ by of(x,y}) =
(i{x), f(y)) , where < 1is the identity mapping of X .

Let

A= {AZI I=1,.0..k} ,
8- ((xxz-o(xxy-4,0%|2=1,... k).

Then B is an open covering of XXZ ., To prove this let g¢g=(x,z)€X*XZ be
given. Then w_](q)n!vM‘G for some WEW, . Select p=(:r,y)€to_l(q)ﬂh' . Then x

has an open neighbourhood U in X such that

2) Ux{ylecw.
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Since w;<wl <w*;<A , there is £ for which
4
(3) S (w,wz)c% .

Now, put V:S(z,f(Pz)) . Then UxV 1is a neighbourhood of ¢ in XxZ ., We claim
that UxVcXxZ- q){XXY—Az) .
To prove it, let q'=(x',2') €EUxV be given. Then z’€U . and there is
o 14
V(yO)GV2 such that 3, z €_f‘(V(y0)) , because P2<V2 . Hence we can choose ¥,

and Y, such that

-1 -1, ,
(4) y,€f (z)ﬂV(yO) 5 y2€f (z )ﬂV(yo) .
Note that
(5) yef (z)

follows from pEw-l(q) . Define p'=(x',y') Ew—l(q') ; then
(6 gy ef iz .
Thus it follows from (4), (5), (6) that

Y Y, Yy Y,y
271270,72,

Thus there are HiEW 2=1,..,,4 such that every successive two points of the

sequence (x',y), (x',y?), (:c’,yo), (x',yz), (x',y') are contained in some "i .

On the other hand, since =z’ €U, (x',y)€W follows from (2). Thus

(z',y') ES“(W,WZ) , which combined with (3) implies f(x',y') €A£ . Hence we have proved
no"(q')cAZ . Thus q'€XxZ but q'§OXxT-4,) .

Recall that q' 1is a given point of the neighbourhood UxV of q , and hence
UXVnw(XXY-Ac) =@,
proving

QE(XXY-Q(XxY-4,))

Therefore B covers Xx2Z .
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Now, since X 1is compact T2 and Z metric, by A) we have

dim X*xZ<dim X +dim 2<n+m .

Hence there is an open covering 0 of XxZ such that D<8 and
ord D<sn+m+1 . Then D' = {w-l(D) | DED} is an open covering of X xY such that
D'<A and ord D'.<m+m+1 . This proves that dim XXY<n+m .

Corollary. Suppose that X 1is a paracompact T,-space, and X = U:: 1F; for
locally compact closed sets F, ©1=1,2,... . Further suppose that XxY is
nommal, and X#@P or Y#¢ . Then dim XxY<dim X +dim ¥ .'®

Proof. Assume dim X=n , dim Y=m . Each Fi is a locally finite sum of compact
sets, Thus by Theorem VII.!4 and the sum theorem (for locally finite sums) we obtain
dim Fi xY<n+m . By use of the countable sum theorem we conclude that

dim X xY<n+m .

Let us review here some simple facts about the Stone-tech compactification,

B) Let X be a Tychonoff space; then there is a unique compact Tz—space RX
(called Stone-Gech compactification of X ) satisfying
(i) X 1is a dense subset of BX ,
(ii) (2| 2€1} is a closed base for BX , where I denotes the

collection of all zero sets of X,

. . _ kK s K
(iii) if Zi€Z , 2=1,...,k, then ni=lZi-ni=|Zi.

(In (ii) and (iii) the closure is taken in RX .) Every real-valued bounded
continuous function on X can be continuously extended to BX , and thus for every

cozero set D of X there is a cozero set D' of BX such that D'Nx=p .17

C) Let X be a normal space; then dim X=dimBX, Ind X=1Ind B8X .

Proof, Let dim X=n , dim BX=m . Suppose U 1is a given finite open covering
of X . Then there is a finite covering | of X by cozero sets such that V<l .
(Use 1.1 A) and Urysohn's lemma.) Now, by B), BV = {BY-(X—-VJ| VEV} is an open

'¢ K. Morita [7) proved this theorem for the Kat¥tov-Smirnov dimension without
assuming the normality of X XY . K. Morita [3] proved dim XxY<dim X +dim ¥
in case that X and Y are T2 and XxY has the star-finite property.

17

See e.g., J. Nagata [8] for a proof.
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covering of BX . Hence there is an open covering V' of B8X such that V' <8V,
ord V' <m+1 . The restriction of V' to X is an open refinement of U wich
ord<m+1 . Thus n<m .

Let W be a finite open covering of BX . Then by B) there is a finite covering
W' of BX such that W' <W , and each member of W' 1is of the form BX-(X-2)
for a zero set 2 of X . Then select a finite covering A of X by cozero sets
of X such that A<W' , ord A<n+1 . Now it is easy to check BA<W and

ord BA<n+1 , where
BA={RX-(X-A) |A€EAY},

Thus m<n , i.e. n=m . The proof of the second equality is omitted.

D) Let U be a g-locally finite open covering of a countably paracompact space

X . Then there is a locally finite open covering V such that V<l .

Proof. Let U = U:= Iui , where each Ui is locally finite. Put
v; = u{u] Vel }. Then, since X is countably paracompact, there is a locally
finite open covering {Vil i=1,2,... )} such that ViCUi . Put Vi:{ VinU| Ue Ui}:

then U:___ 1 Ui is a locally finite open refinement of U .

E) Let Y be a metric space and X XY a countably paracompact normal space.
Suppose that B={Bh| h=1,...,k} 1is an open covering of X xY . Then there is a
cozero set D of BXxY and an open covering U={Dh | A=t,...,k} of D such
that XxYc<D and Dhn(XX.Y)CBh, h=1,...,k .

Proof, Let |/=U°,Z= : Ui be a 0 - locally finite base for Y , where
Vi:{ Val aEA_;} , ©=1,2,... are locally finite open coverings of Y . We may

V.cV, . . . i
assume V. V‘L+ , and thus ALCA1,+I Define

1

Aéz{(a],...,ai)|ul€Al,...,ai6A£, EF\ Ve 0}
=1 2
and
7
V(al,...,ai)=£f3‘ V“L , (al,...,ai)EA;: .

Then V(a’,... ,ai) is a non-empty open set of Y . Further we define open sets of
X by
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U is an open set of X such that

U(al,

N I VIR 1 X8/ i
7 ’ UXV(a],...,ai)cBh

t
(al""‘o‘i)EAi , 1<hsk .
Then we obtain
) U(al,....ui; h)XV(al,...,ui)CBh.

Then we put

P

U(oll,...,o;i)=hl;lI U(al,...,ai L)

Now it is obvious that
= { ! . L=
w (U(a],....ui)xV(:x],...,ci)|(u],...,ui)EAi, £=1,2,...}

is an open covering of X XY . For each fixed % , {V(a],...,ui)l (al,...,ai)€A1':}
is a locally finite open covering of Y . Hence W is a g-locally finite open
covering of XxY . Since XxY is countably paracompact and normal, by use of D)
we can find a locally finite open covering N={N_ | YET} of XxY such that
N<W@ . Shrink N to an open covering L ={LY | YET} satisfying ZYCN . Then

Y
put

U 1is an open set of X such that

2 L‘“l"""‘i”)“ul” UxV(@,,...,0)) CL

14
(al,...,ai)€Ai . YET .

v

Each L(al,...,uigy) is an open set of X satisfying

(3) L(ul,...,a 1Y) XV(al,...,ai) c._,YcLYcNY .

. .
For (al,...,ai s BI""’Bj)EAi+j , we define

) Hloy, .0, Bl""’Bj) =U{L(u],...,cxi R B],...,Bj;y)l

Y satisfies J‘JY':U(al,....ai) ><V(cL|.....011:) }.

Then H(al,...,ui s Bl""'B;j) is a closed set of X because of (3) and the

local finiteness of L . Furthermore, observe that
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(5) H(al,...,ai H Bl""“Bj)xV(al"”’ai : BI""-‘BJ')

c:U(otl.... .ozi) x V(cxl,... ,ai)
follows from (3). Hence

H(ul,....a. s B

i .....Bj)CU(al,...,a_;)

I

holds in X , because V(a,,...,0. , B.,...,B.)#0 .
1 1 1 J

Since X 1is a normal space, for each (ul,...,ai , BI,...,BJ.) €Ai*j
select a cozero set M(u,,...,ui H Sl""‘Bj) of X such that

we can

H(al,....ai B Bl,...,Bj)cM(a],...,ai H 81'"-’5,,')5”("1'-"'%) .

Since

k
U(al..--.ai)= l_J U(al,...,ai 5 hY
h=1
there are cozero sets M(ul,...,ai H Bl""’Bj s Y , h=1,...,k , of X such
that
k
(6) hgl M(al,...,ui : Bl""‘Bj s h) = M(al,...,ai : Bl“"’Bj) ,

M(al,...,ai H Bl,...,Bj H h)CU(ul,...,ai s h) .

Now, let p=(x,y) be a given point of XxY . Then pELY for some YE€T , and

" 12
NYCU(GI""’ui) xI/(ul,...,(xi) for some % and (a],....ai) EAi , because N<W .
Since V 1is a base for Y and AicAi-l-l , there are Bl €Ai+ l""‘BjeAi+ .

J
such that

p=(x,y)€UXV(al,...,0.i , Bl""’sj)CLy
for some open neighbourhood U of x . Hencs by (2)

zeL(ul,...,ui . 8],...,Bj ;YD .

By (4)

xEH(aI....,ai H B],...,Bj)cM(al,....ai 1 B

preeeB)
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and hence

p€M(al,...,ui: B ,...,B.)XV(al,...,a. s BI,...,BJ.) .

1 J (A

This proves that {M(“l""’ai H Bl,...,ﬂj)*l/(al....,ai , B‘.....BJ-)I

P i,5=1,2,...} covers XxY.

1]
(al""‘ui , SI""‘Bj)EAi+j
Therefore {M(al,...,ui; BI""‘BJ' : h)XV(ul,...,ai ) Bl""’Bj)l
(ul,...,ai , Bl,...,Bj) 5‘41&+j; 2, 7=1,2,000 53 h=1,...,k} covers XxY,
By B) there is a cozero set D(ul""’ai H B],...,BJ. ;s #) of BX whose inter-

section with X is M(al""’ai: B,,...,Bj s h) . Then

{D@ay, a1 Bloee e RIX V(A .ou ey, By1eer B [G@,..niay, B).,..-.B,)€
€A1’:*j 124,d=1,2,...3h=1,...,k} is a collection of cozero sets in BX XY which
covers X xY .

Define for h=1,...,k

Dh=U(D(u|....,a. : 8‘,...,83. : h)XV(u],...,cxi , BI"“'BJ)I

1
’ - A g -
(@ ,....a;, B]""’Bj)€Ai L 5, 3=1,2,... ).

*J

Then Dhn(XxY)cBh can be proved as follows. D(al""’ai H BI""’BJ' s h) x
xy(ql,,,_,ai, Bl,...,Bj)ﬂ(XxY)nM(QI,...,Gi: SI'”"BJ' s h) x
XV(rxl,....ui , Bl‘”"Bj) . On the other hand (6) and (1) imply

M(a'....,ai s B ,eva,B,t h)XV(cx],...,ai . S],...,Bj)

1 Jd
cU(ul"“’O‘i s h) XV(otl,...,ai)cBh .
Thus it is proved that Dhﬂ(XXY) CBh .
Finally we shall prove that Dh is a cozero set of BXxY . For fixed 1, J
, . o .
{V(ul....,ui . Bl”"'Bj) | (ul,...,ai y 61""‘8,7')€Ai+j } is locally finite in
?ooThus {DGapeeeiap s Bluee B s W) XV, ByseeriB) |
’ , AP . .
(xl.....ui , Bl""'ej)€A£+j ; £,§=1,2,...} 1is a collection of cozero sets of
BxxY , which is 0 -locally finite in BXXY , Thus Dh is a cozero set of BXxY .,

Put D=U:‘1= th and D={Dl,...,Dk} . We obtained the desired result,

We owe the following theorem to Y. Kodama [3].
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Theorem VII. 15. Let Y be a metric space and X xY a countably paracompact
normal space. Suppose XF@ or Y#P . Then dim X xY<dim X +dim ¥ .*°

Proof. Assume dim X=» , dim Y=m . Then by C) dim BX=#n . Thus by Theorem
VII.14 dim BXXY<n+m . (Note that the product of a compact Tz—space and a para-
compact Tz-space is normal. See J. Nagata [8] for a proof.) Let B be a given
finite open covering of XxY . Then we consider a cozero set D of RXXY and
its open covering D mentioned in E). Since D 1is an Fc—set in the normal space
BY xY , it is normal as a subspace, and thus by the countable sum theorem dim Dg
dim RX XY <n +m . Hence there is a finite open covering D' of D such that
D' <D, ord V' <n+m+1 . Then the restriction of D' to XxY 1is an open refine-

ment of B with ord<n+m+1 , Hence dim XxY<n+m .

V. Filippov [3] generalized Theorem VII.15 as follows: If X xY is countably
paracompact and normal, and if there is a perfect mapping from Y onto a metric
space, then dim XxY<dim X+dim Y (X#9 or Y#@) .

This theorem implies practically Theorem VII, 14,

B. Pasynkov [6] further extended this theorem as follows: dim XxY<dim X +dim ¥
whenever X xY is a rectangular product and X , Y Tychonoff (X#9® or Y#@) ,
where dim 1is the Kat¥tov-Smirnov dimension, and where it is defined that a product
XxY 1is called rectangular if every finite covering of X XY by cozero sets has
a 0-locally finite open refinement by sets of the form UXV for cozero sets
and V of X and Y, respectively.!®

T. Hoshina - K. Morita [1] studied general conditions under which XxY 1is rect-
angular and extended Pasynkov's theorem further to non-Tychonoff spaces.

As for large induction dimension, Ind XXY<Ind X+1Ind ¥ (where X#¢ or
Y#@) was proved under various conditions, for examples in case that X xY is
hereditarily paracompact ’I‘2 and has the stazr-finite property (Y. Katsuta [1]),

each of X and Y 1is the inverse image of a metric space by a perfect mapping and

1% M, E. Rudin - M. Starbird {1] proved that if the product X XY of a countably

paracompact space X and a metric space Y 1is normal, them X %Y 1is count-
ably paracompact. Thus Theorem VII.15 can be improved as follows:

Let Y be a metric space, X countably paracompact and X XY normal.
Suppose X#@ or Y#@ . Then dim XxY¥<dim X+dim ¥ .
The product X XY of Tychonoff spaces is rectangular, e.g., in the following
cases; (1) Y 1is locally compact and parzcompact, (2) the projection 7: ¥xY=>J%
is a closed mapping, (3) there is a perfect mapping from Y onto a metric space,
and XxY is countably paracompact and normal, (4) (implied by (3)) there is a
perfect mapping from each of X and Y onto a metric space.

19
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X %Y rtotally normal (J. Nagata [12)) , ¥xY 1is normal, X locally compact and
paracompact, and the finite sum theorem holds for Ind in X and Y (V. Filippov
{3]) , and more generally in case that XXxY 1is a rectangular product and normal,
and the finite sum theorem holds for Ind in X and Y (B. Pasynkov [6]).2°

On the other hand the equality dim XxY=dim X +dim ¥ holds under rather
restrictive conditions. K. Morita [7] proved it in case that dim X=1, and Y is
a paracompact Tz-space which is a countable sum of locally compact closed subsets,
where dim 1is Kat&tov-Smirnov dimension.

[t is obvious that dim X xY <dim X +dim ¥ does not hold in general. Because
dim 2=0 implies that 2 1is a normal space, and hence if X , ¥ are O-dimensional
spaces such that X XY 1is not normal, then the product theorem does not hold. For
example, let X =Y =the Sorgenfrey line ( =the real numbers with the open base
{[z,z+e)|-w<x <+, £>01.)

What can be said if X XY 1is normal? This had been a long standing question until
it was negatively answered by M. Wage [1] under the assumption of the continuum hypo-
thesis and by T. Przymusinski [2] without the hypothesis. ! The former gave a space
X such that dim X=0 , dim X XX #0 , and XxX 1is locally compact and perfectly
normal. The latter gave, for every natural number n , a separable first-countable
space X such that X' is Lindeldf and dim X¥*=0 , ¥**! is normal and
dim 2 * ' 50 (x* denotes the n -ple product of X ).

Since dim X=0 if and only if Ind X=0 , the above examples show that the
product theorem for Ind does not hold either even if XY is normal., 22

V. Filippov [2] constructed compact Tz—spaces X and Y such that ind X =
Ind =1, ind Y=1Ind Y=2 , ind X*Y>4 ., Thus the product theorem for the inductive

dimension does not hold even for compact Tz—spaces.

2% Also note that Ind XxY<Ind X+Ind ¥ holds for regular spaces X and
Y (X#8 or Y#@) if the characterization theorem by means of a O -closure-
preserving base (footnote 5) holds for X and Y . Because it is known that if a
regular space has a 0 -closure-preserving base, then it is hereditarily paracom-
pact and thus the product theorem can be proved in a similar way as done for
metric spaces by use of the finite sum theoremand induction. Thus the product
theorem is true especially if X and Y are the images of metric spaces by
closed continuous mappings.

The problem still remains open if XxY is paracompact 7’2.

%2 5. Mrowka [1] and P. Nyikos [1] studied relations between O-dimensional spaces
and ¥ - compact spaces ( =closed sets in products of countable discrete spaces).

21
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VII. 7. Characterization of dim by Ak(x)

Pontrjagin-Schnirelmann's theorem (Theorem IV.6) was generalized to non-metrizable
spaces by J. Bruijning [1] by use of totally bounded pseudo-metrics. However, in the
present section we are going to define a new function Ak{X) , which has a remote
resemblance to Pontrjagin-Schnirelmann's function N(€,R, p) in its basic idea, and
we shall see that Ak(X) is a more appropriate function to characterize dim of
non-metrizable spaces. The main results and method of this section are due to
J. Bruijning - J. Nagata [1]. In the following we denote by Cﬁ the set of all
m - element subsets of {1,2,...,k} and by (:) its cardinality, i.e.

(X) = er/me (= m 2.

A) A normal space X has dim<n if and only if every open covering

{Ul""’Un-i»Z} can be shrunk to an open covering {Vl""’vn+2} such that
n+2
n£=l Vi—ﬂ .

Proof. The 'only if' part follows directly from I A).

To prove the 'if' part, assume the condition and let B=(B|,...,Bk} be an open

covering of X . Assume k2>n+2 and put C':‘_,)={A],...‘Ap} . Suppose

A]={1l....,1n+2} .
Then, let {Fl""’Fk} be a closed covering of X such that F,L.CB?: ,
£=1,...,k . Put
K‘=F. U...UF. and U.=(X-X )JUB. for J=1,...,n+2 .
1 J 1 .
1 n+2 J
Then {Ul""’un+ 2} is an open covering of X , and hence it can be shrunk to
. n+2 _
an open covering { Vl""'Vn+2} such that ﬂj= X Vj-Q) . Now put

U.=V,NB, , §=1,...,n+2 ,

T J ‘Lj

1 . . 8

.=8B. i i <7 <K F L e .
U,L Bt for 7 satisfying 1£1<«, 1#7, Ty 42

Then Ul ={U:....,U}(} is an open covering of X because VJ.nchBi nxl .
7
Observe that u' shrinks B and satisfies ﬂ{U:: | iEAl l=0.

By use of the same argument we can shrink u' to an open covering
U2=(U?,....Ui) such that n{U,Iz: | i€A2}=0 , and accordingly n{uf | TEA, }=90.
Repeating the same argument we obtain an open covering P = { U‘?, ...,Ui} which

shrinks B and satisfies 0 { U_p; | iGAZ }=¢ for £=1,...,p . Thus ord Upfrn +1

proving dim X<n .
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Definition VII. 2. Let X be a topological space and k a natural nunber. Then
we define A k(X) as the least natural number m such that for every open covering
U of X with |U| <k, there ig an oper covering V of X such that |V|zm,

vheau .

B) Let X be a normal space with dim ¥<n (n>0) , and k a natural number.
Then

B (002X -1 iE kgnr,

OIS L EIORY W

n+d

) if kxn+d o,

Proof. We shall prove the inequality in case of ~>n+1 , Let U be an open
covering of X with [U}] £k . Then we may put U={ Ul""’Uk} by counting a same
element repeatedly if necessary. Now, shrink U to an open covering V-={ Vl”"’vk}
with ord V<n+1 . Then select an open covering W={W ,...,#} such that ﬁiCVi .

For each AEUnt] Ck, we put
m=1 "m

P(A)=(n{V,| ieA})n(n(x-EzilizA , 1gi<k M.

Then it is obvious that

n+1
P={pPa)]| A€ U c',’;}
m=1

is an open covering of X such that

PA<U<U, and l”;(’f)*---* k).

n+l
Thus
. & k
sme()eo(L5)
In case of X<n+] , we can use the above argument to get
X k ky _ Lk
Ak(X);(|)+(2)+...+(k)—2 -1,

C) Let X be an infinite normal space with dim X>n>0 . Let k be a natural
number. Then there are k closed subsets of X with dim>»n which are disjoint

with each other.
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Proof. Lf n=0, then, since X 1is infinite (contains infinitely many points),
just choose k distinct points.

If n>0 , then it suffices to prove that X contains two disjoint closed sets
with dim2n . Since dim X2n , there is an open covering U={Ul,...,UJ.} of X
which cannot be shrunk to an open covering of ord<n . Let F-= { Fl""’Fj} be a
closed covering of X such that FiCUi . Then dim Fi;n for some % because of
the sum theorem. Let V be an open set such that FiCVc VCU_I: .

Then dim (X-V)2>n : Assume the contrary, dim (X-V)<n . Since {Uf_-f’, Uilf#i}
covers X~V , there is a collection w={wl,...,wj) of open sets of X such that
W.clU., WoclUp-V for L#i, ord Wr , and ui=]wk:>x-v. Now, put
PizlliUV and P£=W£ for £+#7 . Then P={Pl""’Pj} is an open covering of
X such that ord P<n , and PkCWk for k=1,...,J , which is a contradiction.

Thus we obtain two disjoint closed sets Fi and X -V each of which has dim>n .

D) Let X be an infinite normal space with dim X>7n . Let X be a natural

number, Then

Ak(X);Zk—I if k<n+1 , and

Ak{X);(k)+...+( k ) if k>n+t .

1 n+ 1

Proof. Assume k2n+1 . By C) there is a collection {cta) | ouEC':+ i } of dis-
joint closed sets of X with dim Cfa)2n . By A) there is an open covering
ufa) =A{ Lg] t€a} of C(a) which cannot be shrunk to an open covering of Cfa)

with an empty intersection. Define open sets of X by
(0 Ug=(x-ulct@ |aecdt  Lurulid|ieal), i=1,..0 k.

Then U={ Uil £=1,...,k} 1is obviously an open covering of X . Let UV be an open

covering of X satisfying VA<U . Then we claim that

@ ),

To prove it, we shall show that for every BECII(UCJ;U... Uc:(1+l , there is a
member V(B) of V such that

3) V(B)CUi if and only if Z€8 .

If this is shown, we know that, for distinct B's , the V(8)'s are distinct sets,

which implies that U contains at least (Ilc) +a.. +(n§l) distinct members,
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Now, select a subset Y of {1,...,k} such that BNy=¢ , and a=BUYE C’f+l.
Put
(4) K=Cla)-u{U;| i€y},

Then observe that {U; [ /€BY is a collection of open sets of Cfa) which

covers K . Further we note that

(5) { U;] JEB} 1is a covering of X which cannot be shrunk to a closed

covering of K with an empty intersection.

We assume the contrary. Then there is a closed covering {KJ. | j€BY of K such
that

K.ctUF and N K,=¢ .
Jd J j€B J

Use )| B) to get open sets EJ. , J€EB , of C(a) such that

K.cH.cU and N H.=0 .
Jd J d JEB
Then {Hj | JEBYU{ UC;I 2€y} is an open covering of Cfa) with an empty inter-

section, and this covering shrinks U(a) , which contradicts the definition of
Uca) .

Now, we define closed sets G,j , JEB , by

(6) Gj={x€K|S(::,U)CUj},j€B.

Then G.CUOE follows from (1) and (4). It follows from (4) and VA<U that
U(Gj|j€8}:K. Hence by (5) we obtain ﬂ{GJ.IjEB)#@ .

Select a point ::En{GJ. ] F€EBY. Let V(R) be an arbitrary element of V such
that x € V(B) . Then V(B)CUj for each j€B8 , because =z €G, . (Recally (6).) On
the other hand .rQUi for each 7¢B follows from (1) and (4). Hence x € V(R) -Ui .
proving V(B)#U. for each €8 .

Thus (3) and accordingly our claim (2) is proved. This implies that

Ak”"i(;f)* *(nf 1) .
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In case of k<n+l , dim X>k-1 holds. Thus by use of the above results we ob-

tain
Ak(x);(ll()+...+(§)=2k-l .

Theorem VII. 16, Let X be an infinite normal space with dim X=-n (0<ng«) .
Let k be a natural raumber. Then
b =21 i
x =2" - if kgnm+1

Ak(X)=(7]<)+...+(n]:|) if k>n+1.%?

Proof. Combine B) and D).

Corollary. Let X be an infinite normal space. Then

log A k(X)
dim X = lim —im—‘l.

k>

Proof. This follows directly from Theorem VII. 16,

VII, 8. Characterizations in terms of C(X)

In IV.8 we characterized dim of a compact metric space R by the ring C(R)
of all real-valued continuous functions on X . In the present section we shall
discuss two characterizations of dim X of a normal space X in terms of C(X) .
These characterizations are based on quite different ideas as compared to those of

IV.8 and are due to M, Canfell [1] and J. Hejecman [2], respectively.

Definition VII. 3. Let us denote by C the ring C(X) of continuous real-
valued functions of a topological space X. A subset fC={fw|w€EC)} of C is
called a principal ideal, where f 1is a fixed element of C . A finite set
{fiC| i=1,...,n} of principal ideals ts called uniquely generated if the
following holds:

23 Theorem VII.16 and its corollary can be extended to a general topolegical space
if we adopt the Kat¥tov-Smirnov dimension, (See J. Bruijning - J. Nagata [1].)
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Whenever j‘iC:giC , ©=1,s00,n , there are eiec s ©=1,004,n such that
F;=98; , and 0,C+...+06C={80,+...+8 0 | ©55000,0,€CY=C .

Further we define p-dim C asg the least integer n such that every set of
(n+1) principal ideals is uniquely gererated, and p-dim C== <if there is no
such integer.

Theorem VII. 17. Let X be a non-empty normal space. Then dim X=p-dim C(X) .

Proof. Let dim X<n<« , Then suppose {fiCI Z=1,,..,m+ 1} is a given set of

principal ideals, Assume fiC(X) =giC(X) for Z=1,,.,.,n+1 . Then

) fi=g@. , T=1,.00,m+1
CEES o, T A R N AL
for some 0, wi€C(X) . Hence gizgi‘“i"’i , L.e,
(2) gi(l—wiwi)-o .
Let
3 Z :Z(“’i) s t=l,a0,n+l

7
r = _ . =
Zi—Z(wiH wilbi) s b=l 000,n+]

where we denote by Z2(9) the zero set {z€Xj@(x) =0} for @WEC(X) . Then Z;

and Zé are disjoint zero sets, and hence there is uiEC(X) such that

A2.) = (ZL) = <<t .
) u 2.0 =1 , u,(2:)=0, 02u, <l

Define a continuous mapping u« from X to 1"“.l by u(x)=(u|(a:),...,ur+l(:c)),
x€X ., Then u(Zi)cSn , u(Z_l’:) cs” , where we denote by s* the boundary of
In+l in E**! | Since dim X<n , by Theorem VII.I!, the mapping u is in-
essential. Thus there is a continuous mapping v from X into 5" such that
v(x) zulz) for z€u (5.

Let us express v as v:(vl,...,vnHJ , where UiEC(X) s, 2=1,ccu,n+1 , Then
put Qi:“’i"”i (1 "“’i“’i) , 2=1,...,n+1 . Let us prove
(5) Z(Gl)n...nZ(8n+|)'¢ .

To do so, let &« be an arbitrary point of X . Since v(x) €st , either vi(a:) =0
or vi(x) =1 holds for some < . Suppose vi(:x:) =0 3 then ui(;r)#l , because

H
otherwise we reach the contradiction vic'.r) lui(a:) =1,
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Hence by (4) xgzi . By (3) this implies cpi(x) #0 . Hence Si(a:) =&oi(ac) #0 ,

i.e. xQZ(Si) .
Suppose vi{x) =1 ; then ui(x) #0 , and thus xEZ,I': follows from (4). Hence by

(3)
ei(:c) =Lpi(x) +1 —wi(x)wi(x) #0 .

Therefore :ciZ(Oi) . Thus (5) is proved. This implies that

9,
A .
—_— (X}, D=1, mt] .
02 +... +02 ’

1 n+l
Hence

SIC‘(X) LR +6n+ ]C(X) =C(x) ,
and it follows from (1) and (2) that
;8,790 90501 ~0p¥;) 29,0, =5,

Namely {f]C(X),...,fn+ IC'()'(') } is uniquely generated, and hence p-dim C(X)<n .

Conversely, assume that p-dim C(X) <n<= . Let Zi R Zé , 2=1,,..,m+1 , be
given pairs of disjoint closed sets of X . Find, by use of Urysohn's lemma,
VA = t)=-1.
pi€C(X) such that p.(Z,) =1 and p.(Z}) 1. Put
.= . >1/2 L= , -
F,= {x€X |p.(x) 21/ }, Fi {xEX|p7’(x); i/2}

G, {ze€x |p.(x)gi/2}, _é={a:€X[pi(:c);-l/2} .

Now find qi€C(X) such that qq.(Fi) =1, qi(Fé) =-1,-12q,2<1 . Furthermore,

select s; s tiEC(X) such that

) Si(zi)=] R s_L.(Gi)=O N Oési;l s
+ ') =~ ') = -
(21 =-1, t.(G1)=0, -15¢.20 .
Put f.=g.+t,., . Then we claim that
RS A
(2) fp=a 1 f; 1.
If z€F., then gq.(x)=1, and f.(x) :si(x) +t(x) =s {x}20 .
U = - = s = -~
If x€F., then qi(:r) 1, and f,L.(.r) -si(.r) +ti(a:) ’ti(*);o .

If Iex_(FiUFz") , then xGGz.nG;: ) and_hence fi(x)=si(z:)+ti(r)=0 .
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Thus the equality (2) holds in every case. Observe that (2) implies
3) If_l:l :q‘l:f‘i .
Therefore
£ .0f = =
JiC.X) IfiIC(X) s t=l,.,.n+l

Since p-dim C(X) <n , there are el,...,en+ | €€(X)  such that fi:eilfil s
t=1,,..,m+1 , and BIC(X) .. +6n+ IC()(}IC‘()() . The last equality implies that

=0

2(6,)n...n2(6

Put Ui={x€X] 6,(=) >0} . Then, since for each €2, filx)=s.(x)+2.(x)=]
follows from (!), we obtain ZiCUi . On the other hand, for each .rEZé B
fi(x) =-1 follows from (1), and hence z%nui=¢ .

It is obvious that

n+l n+li
'n B(Ui)c.ﬂ z(ei)=o .
=1 =1

Thus by Theorem VII.8, dim X<n . Hence the theorem is proved. 24

We now turn to another method of characterization. It is interesting that dim
can be characterized in terms of the concept "partition of unity" which is important
in topology and analysis, though the characterization is not purely of algebraic

nature.

Definition VII. 4. A subset D of C(X) is called a partition of wnity if
every element of D 18 non-negative and szD f=1 (meaning Ifepf(x) =1 for
all z€X) . If D contatns only finitely many elements, the partition is called
finite. A partition of unity D is said to be subordinated to a covering U of X
if {P(f)| fED} <U , where P(f)={z€X|f(x)#0}.

To every partition of unity D and covering U the following real numbers can

be associated:

AD=1inf {sup { f(x) | fED}| x€X} and

2% M, canfell [1] proved the theorem in a more general form,
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D 1is a finite partition of

e(l) = sup lAD unity subordinated to U

Theorem VII. 18. Let X be a non-empty normal space and R the collection

of all finite open coverings of X. Then inf{c(l) |UEQ}=1/(dim X+1) .

Prooj. Assume dim X<n<= , Then for each U€EQR there is V={Vi|i=l,...,k}
such that V<U , ord V<n+1 . Let w:{Wi|i=l,...,k}€Q satisfy WiCVi .
- - £ () = - =
Then select fiEC'(/() , £=1,....% , such that "imi) 1, f‘i(X V—;) 0,
0f, st .
Put

L, =100,k
lfJ

N e~1x

97::.1{.1:4

Then D=(gl,...,gk} is a partition of unity subordinated to U . Let <z be

an arbitrary point of X ; then gi{x) # 0 for at most n+ 1 distinect elements of

D, because ord V<n+1 , and gizfi=0 holds outside of V. . Since
25___ (g;(x) =1 there exists © with g (x)21/(n+1) . Thus AD21/(n+1) , ubich
implies e(U)21/(n+1) , and accordingly

inf {e(U) |UERIZ 1/ (n+ 1),

Thus

inf{e(W) |UEQY> 1/ (dimX+1) .

Conversely, assume dim X2>#n . Then there is U€Q such that every open refine-

ment V of U satisfies ord V>n+1 ., Assume that AD>1/(n+1) holds for some
finite partition of unity D'—‘{fil £=1,...,k} subordinated to U . Then
A>1/(n+1)+e for some €>0 , and hence sup{fi(.r) |2=1,...,k}>1/(n+1) for
every xz€X , i.e. fi(x) >1/(n+1) holds for every x€X and some < .

Now, put Vi:{x | fi(x)> 1/(n+ 1)} ; then V={Vl""’vk} €Q . Since V<U
follows from the fact that D 1is subordinated to

U, we have ord V2n+1 .

Assume that ordxl/;ru-l holds at x€X . Thus there are =n+1 distinct elements,

say fl""’fn-lvl of D such that fi(x)>l/(n+l) for 2=1,,..,,m+1 . Hence

1

k
Z j‘i(m) >

e 4

fi{m) >,

=1

which is a contradiction.
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Therefore AD<1/{(n+1) holds for all finite partitions of unity subordinated to

U . Hence c()1/(n+1), which implies
inf {e(|UERY < 1/ (dim X +1) |

proving the theorem. 25

25 1ot Q' be the set of all locally finite open coverings of X . Define
e'W)y=sup{D I D is a (not necessarily finite) partition of unity
subordinated to U }. Then inf{e'() [UEQR"'} =inf{e" (W) |ueQ}=
inf{e(U) |UER}=1/(dimX +1) can be easily proved for a normal space X
in a similar way. J. Hejcman [2) proved the theorem in a more general form.



