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CHAPTER VI

INFINITE-DIMENSIONAL SPACES

We shall first introduce notions which distinguish some types of infinite-dimen-
sional spaces from general infinite-dimensional spaces. It will be a natural idea to

extend definitions of Ind and ind by transfinite induction.

Definition VI. 1. ) A space R has strong (weak) inductive dimension — 1 s
Ind R=-1(indR=-1) 2f R=g,.
i2) Let o be a transfinite ordinal mumber. If for every dis-
Jjoint closed sets F and G (for any neighbourkved U(p)
of any point p) of R there exists an open set V such
that

FcVcR-G (pE€EVCU(p)} and 1Ind B(V) <a (ind B(V) <a)

then R has strong (veak) transfinite inductive dimension <a,

Ind Aga (ind R<a) .

In the above definition the word 'large (small)' may be used in place of 'strong
(weak)'.

Definition VI. 2. If for every countable mmber of pairs {Fi‘ai} ,t=1,2,...
of disjoint cloced sets F, and G
1 =1,2... such that

; ©f a space R, there exist open sets u.

k
FiCUiCR - Gi and n E(Uz.) = £ for some rumber k ,

Z=1
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then we call R a weakly infinite-dimensional space. Otherwise R 1is called strong-
ly infintte~dimensional.

The decomposition theorem states that a space R has dimension < n if and only
if A can be decomposed into 7 +1 O-dimensional spaces. Therefore it is natural to

define countable-dimensional spaces as follows:

Definition VI, 3. A space 7 is called countable-dimensional if R = U::]Ri
for some subspaces R, oy dimension < 0 . By the decomposition theorem this is
equivalent to the gtatement that R s the countable sum of finite-dimensional

spaces.

Definition VI. 4. If a space R <is the countable sum of finite-dimensional
elosed sets, then we call R a countable-dimensional space in the strong sense or
strongly countable-dimensional.

A countable dimensional space in the strong sense is countable-dimensional, but the
converse is not true as shown by the counter example R , the set of points in r
at most finitely many of whose coordinates are rational 2,

We shall discuss some relation between weak infinite-dimensionality and countable-
dimensionality later in VI.|. A famous problem of P. Alexandroff in this aspect has
recently been answered by R. Pol [I] in the negative °. Namely he gave an example of
a compact metric space which is weakly infinite-dimensional but not countable-di-
mensional. Thus for compact metric spaces the latter is a stronger condition than the

former,

' L. Tumarkin [5] proved that if R is a countable-dimensional separable space, then

R can be decomposed into countably many O-dimensional subspaces Ri , T =1,2,...
so that for every n , l12= lRi is O-dimensional., K, Nagami [6] generalized this
result to general metric spaces. (See also A, Arhangelskii [1]).

See Yu, Smirnov [6] or J. Nagata [3].

In the construction of R. Pol the following two propositions play important roles:
A. Lelek's [1] proposition that for every separable completely metrizable space X
there is a metric compactification X such that X-X is strongly countable-di-
mensional, and L. Rubin - R. Schori - J. Walsh's [1]) proposition that there is a sepa-
rable completely metrizable space which is totally disconnected but not countable-
dimensional.

As for relationships among compactification, weak-dimensionality, and countable-
dimensionality, see (besides the above-mentioned paper of Lelek) E. Sklyarenko [1],
A. W. Schurle [i] , 2. Shmuely [1], and K. Nagami - J. H. Robers [1] in which it is
proved that the set X4 of points in I% , whose coordinates are all zero except
for at most finitely many, has no countable-dimensional (metric) completion.

It is also known that a normal space X is weakly infinite-dimensional if and
only if BX is weakly infinite-dimensional and that Ind X<a if and only if
Ind BX <a , where BX denotes the Stone-Cech compactification of X .
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Another famous problem was Tumarkin's: Does every infinite-dimensional compact
metric space contain closed sets of arbitrary high finite dimension? (Note that
every n(<®)-dimensional space has an m-dimensional closed set for every mZ<n
and also that every countable-dimensional compact metric space has an m-dimensional
closed set for every natural number m because of 3 C).) L. Tumarkin [4] himself
proved that every infinite-dimensional compact metric space contains either compact
sets of arbitrary high finite dimension or an Znfinite-dimensional Cantor manifold,
i.e. an infinite-dimensional compact set F such that for every finite dimensional
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subset A4 of F the complement F-4 is connected. This problem has remained un-
solved for a long time until D. Henderson [1] constructed an infinite-dimensional
compact metric space which has no n-dimensional closed subset for every n with
1&n<® in 1965. His complicated original construction was improved meanwhile by
several authors, e.g. R. H. Bing [2] and A. V. Zarelua [3). Further J. J. Walsh [1]
constructed an infinite-dimensional compact metric space containing no n - dimensional
(1 gn<®) subsets.

Up to the present we do not know as much about infinite-dimensional spaces as
about finite-dimensional spaces because of some difficult circumstances which are
peculiar to infinite-dimensional cases. In this chapter we shall give a brief account
of infinite-dimensional spaces and especially of countable-dimensional spaces, and

strong transfinite inductive dimension “.

VI. 1. Countable-dimensional spaces

The purpose of this section is to extend some results of the theory of finite-
dimensional spaces to countable-dimensional spaces. As a matter of fact, the foun-
dation of the theory of countable-dimensional spaces is established by III.4 A),
II1.7 A) and IIL.7 B).

To begin with, let us show that not every space is countable-dimensional °.

“ P, Fletcher - R, McCoy - R, Solver [1] defined another kind of infinite-dimensionality

as follows and studied its properties: a space X 1is called boundedly paracompact
if for each open cover U of X there is a natural number n (dependent on U)
such that U has a locally finite open refinement of order < n . Another class of
infinite-dimensional spaces was considered by D. Addis - J. Gresham [1].
In contrast to this fact every metric space is homeomorphic to a subset of the topo-
logical product of countably many one-dimensional metric spaces. H. J. Kowalsky [1]
proved that every metric space is homeomorphic to a subset of the topological prod-
uct of countably many star spaces. A star space is a l-dimensional metric space de-
fined by Definition VI.6. As for finite-dimensional spaces J. Nagata [2] proved
that every n-dimensional metric space can be imbedded in the product of n+1 I1-di-
mensional metric spaces. 2

On the other hand K. Borsuk [4]) proved that § cannot be imbedded as a subset
of the product of two I-dimensional spaces. Thus it is generally impossible to re-
present an n -dimensional space as a subset of the product of n l-dimensional spaces.
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A) Consider the n-dimensional cube

Irl‘= {z] Ixi];l, i=1,...,n}

where we denote by x, the 7 - th coordinate of the point z€E" . Put

- = L = -
£y {x|x€I’l‘,x l}’Fi {:x:la:EI?,xi 1},

Z
for 2=1,...,n . 1If Vi’ Z=1,...,n are open sets of 1}: satisfying
n
F.cy - F : , .
FoeV eIl - F} , then N7 _ B(V.)#0

Proof, Assume the contrary, i.e. nz= IB(Vi) =0 .
Then by use of the corollary to Theorem 1.6, we can construct real-valued continuous

functions fi , £=1,...,m such that
F = £ ') == = =
FolFp) =1, FiFl)=-1, B(V) ={z|fzx)=0}, |f |21 .

We define by f(x) = (f| (x),...,fn(x)) a continuous mapping of I’II into itself,

It is clear that
FFJ<E, , FIFLCFL, po€fIT))

where po denotes the origin of " . Letting I’; = {xz] I:::i lg22,4=1,...,m} we
consider a given point x of I’;--(I’lx UB(I’;)) . By a,b we denote the projections of
x from p, to B(I’:) and B(I’E‘) respectively. Then we denote by g(x) the point
which divides the segment joining ffa) and b , in the ratio o¢fa,x)/pf(x,b) . Fi-

nally, we define a continuous mapping h of 1"2l into itself by

Ffl(xz) for ::EIT,
h(z) = { glz) for z€I,-(IUB(I})) ,

x for .rEB(I;f) .

Then & leaves every point of B(I;f) fixed while poﬂh(Ig) . But this contra-

dicts IV.3 A). Thus our assertion is proved.

B) The Hilbert cube IY is neither countable-dimensional nor weakly infinite-

dimensional.

Proof. To proof the first assertion let us assume the contrary. Let

™=

Z

=1

1 i
l['j{, Z] y
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Fi:{:cl:nEI'u, xi=l/i}, Fé—‘-[:x:leIm, :ci:-l/i],
where we denote by x, the © - th coordinatz of x . Since by assumption I® can be

decomposed into countably many O-dimensional subsets, IIL.4 A) implies the existence

of a sequence Vi s, 1=1,2,... of open sets such that

Ficvicf"—zré , and
ordp{B(Vi)|i=l,2,...}<+°° at every pEl’w.
Define

Inr{:r€Iw|[xi|ii/1Z for i=l,...,n;:cj=0 for jan+1},

Then I" is topologically equivalent to the n-cube. It is clear that Viﬂl’n is
an open set of I* such that

_pt!
Finr"cvinr"cr" Finr".

Hence by A) we obtain
n n ”
2 B(Vi): n BIn(Viﬂ. )$0 .

Since ~ is compact, this implies

(=]
n B(Vi) $0 ,
=1
which is a contradiction. Thus I® is not countable-dimensional. Note that the

second assertion is also implicitely proved in the above.

Theorem VI. 1 ®. A space R is countable-dimensional if and only if there erists
a o - locally finite open basits V such that ordp B(V) <+= at every point p of
R.

Theorems in Sections | and 2 are mainly due to J. Nagata [3). Characterizations of
strongly countable-dimensional spaces are discussed in J. Nagata [2] and

A. Arhangelskii [1]. The latter proved that a metric space X 1is strongly count-
able-dimensional if and only if it has a base U such that tankIU<+=° at every
point x of X.
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Proof. Let R be countable-dimensional; then R is decomposable into countably

many O-dimensional spaces Ai , £=1,2,,.. . By the corollary to Theorem I.l there
exists a sequence of locally finite open coverings Ui of R such that
{S(p,ui) | £=1,2,...} is a neighbourhood basis of each point p . Assume

Uy =y lm;_ga<t}, 15=0.

Then by virtue of the local finiteness of Ui there is a closed covering

lFal L l;u< Ti} such that FQCUQ . Defining

T=sup{'r_£|1, =1,2,...}

we get an open collection {Uul a<T} and a closed collection {ch |a<t} which
satisfy the condition of III.4 A). Hence we can construct an open collection

v - {Val a<1} according to that proposition. Now, letting

v.=(v |,

<o<T.
7 a 1.-1=a Tz}'

we know that V 1is the desired O - locally finite open basis of R .
Conversely, if there exists an open basis V which satisfies the condition in the
statement, then we let
A, = {pl ordp B(V) =n-1}, n=1,2,...

Since U={V¥n Anl VeEV]) 1is a 0-locally finite open basis of An such that

ord EA (U) gn-1

n
from Theorem II.9 we can deduce that dim An;n-l . Thus from the decomposition
theorem it follows that R = U:= \ An is countable-dimensional.

C) A space R 1is countable-dimensional if and only if for every open collection
{Uo.l a<T} and closed collection {Fu | <1} such that F,cU, and such that
{UBI B<a} 1is locally finite for every a<7T , there exists an open collection
{ Val a<T} such that

F c [
‘o Va Uu’

ordp{B(Va) |a<T}<+e at every point pE€ER .
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Proof. The "only if" part is a direct consequence of III.4 A).
To prove the "if" part we consider a 0 -1locally finite open basis U of R which

is decomposed into locally finite open coverings

. = . <a<T, [ = cee -
u, = o l1,_ | ga<t,}, 2=1,2,

Then there exists a closed covering {F_| 1

' i—léa(ri} of R such that F cU_ .

If we put
T = sup {Ti|i=l,2,...} s
then

U= {u la<t)= u

i

LI ool

! T

and { Fa| a<t} satisfy the condition of the assertion. Hence we can construct the
open collection V = {Vul a<T} in the assertion. Now, it is easy to see that V

is an open basis satisfying the condition of Theorem VI.!, and hence A is countable-

dimensional.

Theorem VI. 2. A space R 1i8 countable-dimengional if and only if for all se-

quences {Ui i=1,2,...} of open sets and {Fil £=1,2,...1 of closed sets satis—
fying F,cU., i=1,2,... there exists a sequence V - {Vil £=1,2,... } of open

sets such that

Ficvi‘:ui’ £=1,2,... and
orde(V}<+°° at every point p of R.

Proof. Since the "only if" part is an immediate consequence of C), we show only

the "if" part. By use of Theorem I.4 we can find a 0 -discrete open basis

u' = ul

1

nCcCs
%

z
of the space & . Suppose U% = 1{ U§| YE Q } is a discrete open collection; then we

decompose each U; as

@

U' = U F':
Y j=1 Yd
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for closed sets F;j , Furthermore, we let

—_ 1 - !
Uy =u LUy | YET; ), and I"Z:-U{Fw.lyel‘i}.

Note that Fi is closed by virtue of the discreteness of U% . Then, since
E%‘:Ui , 1,d = 1’2’2" , by use of the condition of the theorem we construct an open

collection V = { V%I 4,5=1,2,... 1} such that

Fecvlcu. , and
PR
orde(V)<+w at every pE€R.

Defining
wW=-wWnu' for YET.,
Yy~ iy i

we get a locally finite open collection

w o= (| ver,) .

T Y

Here we note that
a(w;) nazwi,) =9

if v, v’ €Fi , Y#Y' , because in this case it follows from the discreteness of U%
that

Wow,ciind:, = 0.
Y My edy Uy, -8

Hence
weulwl|d5=1.2,...}

is a 0 -locally finite open basis of R such that ord B(W) <+= at every p€R .

Hence by Theorem VI.!, we conclude that R is countable-dimensional.
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Corollary. Every countable-dimensional compact space R <s weakly infinite-di-

mensional 7.

Theorem VI. 3. A space R 1is countable-dimensional if and only if there exists a
sequence { Fil 2=1,2,...} of locally finite closed coverings of R satisfying
i) for every neighbourhood Ulp) of every point p of R there exists some z
with S(p,F.)cl(p) ,
i) F, = {F(al,...,cxi) | ©€Q, k= Leoo,i}, where Fla,...,0.) may be empty,
iii) Flo,....a._ ) =U {Fla....,0,_ .8 |seq} ,
iv) sup{ordp Fi|i=l,2,...}<+°° at every point p of R.

Proof. Let R be a countable-dimensional space such that R = U:=| An for

O-dimensional spaces An . Then III1.7 B) assures us that there exists a required se-

quence {Fi £=1,2,...} of closed coverings.
Conversely, if there exists a sequence {Fil £=1,2,...} satisfying i)-iv), then

we define
A, = {p] sup{ordp Fi|1-l,2,...}=n+l} , n=0,1,... .

Since ordp Fi;n+l at every point p€An , by Theorem III.9 we obtain that
dim A <n . Since the condition iv) of F, implies that R=U, _ 4 , R is
countable~dimensional.

Theorem VI. 4. A space R s countable—dimensional if and only if there exists a
subset P of a generalized Baire's O-dimensional space N(Q) for suitable Q and a
closed continuous mapping f of P onto R such that for eack point q of R the

i{nverse image f_l (q) consists of finitely many points ° .

7 This assertion is not true unless R is compact, because we can easily see that

et , the set of points in I at most finitely many of whose coordinates are dif-
ferent from zero, is not weakly infinite-dimensional though it is countable-di-
mensional in the strong sense.

There is another definition of weak infinite-dimensionality which is obtained by

| E(Ui) = ¢ for some K" in Definition VI.2 with "ﬂ:! lB(ll?:)=¢".

This definition is due to P. S. Alexandroff while the previous one is due to

replacing "nif -

oo
Yu. Smirnov. They are equivalent in compact spaces. The discrete sum U n= lIn of

n - dimensional cubes is strongly countable-dimensional and weakly infinite-dimen-
sional in the sense of Alexandroff, but not in the semnse of Smirnov. Every count-
ably~dimensional space is weakly infinite-dimensional in the sense of Alexandroff.
(In fact the same is true for every hereditarily normal space.)

E. Sklyarenko [2] proved that a compact space R is countable-dimensional if and
only if there exists a continuous mapping f of the Cantor's perfect set p* on

R such that for each point q of A, f—l(q) consists of countably many points.
J. Walker - B, Wenner (1] proved a similar theorem for strongly countable-dimensional
spaces.
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Proof. The "only if" part is an immediate consequence of Theorem VI,3. In fact,

let R be a countable-dimensional space and (Fi[ £=1,2,...} a sequence of

closed coverings satisfying i)-iv) of Theorem VI.3. Then we define a subset P of
N(Q) by

<0

P={(a,n,,...) Iif;!l F(cxl,...,ai)#ﬁ)

and a mapping f of P onto R by

@™

flo) = 0 F(al,...,ai) for a:(ul,a

).
T=1

g

We can show, quite analogously to the proof of Theorem III.8, that f is a closed
continuous mapping such that for every g¢gE€ER, f.l(q) consists of finitely many
points,

Conversely, if there exist such WN(f1) , P and f , then we let
An ={q| f—l(q) consists of n+! points}.

Since f restricted to f_‘(An) is obviously a closed continuous mapping of
f_l(An) onto An , by Theorem I11.8 An is an at most 7 -dimensional subset of R .
o
Thus from the fact that R = Un=0 An we deduce that R
Theorems VI.I, VI.2, VI.3 and Theorem VI.4 are extensions of Theorems II.9, II.8,

is countable-dimensional.

1I1.9 and Theorem III.8 respectively to the countable-dimensional case.

VI. 2. Imbedding of countable-dimensional spaces

In this section we shall give a universal space for countable-dimensional spaces.

A) Let R be a countable-dimensional space for which R = U:_ IAn , dim An'O .
Let {Uml m=1,2,...} be an open collection and {Fm | m=1,2,...)} a closed col-

lection such that FmCUm . Then there exists an open collection V = (Vr'zr [m=

1,2,...,]r| <VZ/2m , » rationall satisfying

i) PcV _cV eV _,cV_,clU_  if r<r'.
m mr ‘mr 'mr mr m _
. _ ' - ]
ii) er_n{v et er}, v -U{er,lr <r} ,
iii) orde(V) <n-1 at each point p of A, -
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Proof. First we consider m fixed and index all the rational numbers satisfying
|r| <VZ]2m so that

rml ’

< <
rmZ ot “Tm3 >

< < < < <p _<
rm& rmZ 2"mfa rml r‘mG m3 pm7 ’

D R I I R S A R IR

Note that these rational numbers are naturzlly ordered as

Y

] *
-k2 —k2+l k_2-
2 > 2 e ey 2 il
—k3 ’-k3+l ﬁ
3 3 H A T

L I I R I R S A A

for ki = [V/2/2mli; then to suit our requirement this order must only be modified
slightly.

Now, we put

”ml = {rml} ’
¥op = {rra)
”m3 = {rmlo’rmS’rm6'rm7} ’

“eeccestererssresres s e

We shall define open sets er satisfying i) iii) and

. . . s-1, . .
iv) if r succeeds r . in U N, , i.e. r . <pr and there exists no
mk mi h=1 "mh mi  “mk

. -1 . - .
number r in Uh-l th satisfying rmi<r<rmk’ and if rm;)'E”ms’

r .<r .<r then
mi ‘mg “mk’

v, csl/s(Vr ) for odd g,

“mg_ mi
R-V, <S ,(R-V_ ) for even s,
rmJ. 1/8 rok
where we denote, for brevity, V by V .
mr_. r .
mt mi

- Then it will be easily seen that

@

{v, Ir.¢ hl-J] Kpt=tv  lirl </2/2m}
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satisfies also ii). In fact, assume that {Vr | 1"”1‘I:EU';:=l th) satisfies iv).

We consider a number r .€N and a point for which gV . Then we
mt  meg-1 p p r .

select an odd ¢ satisfying me

1
p(p,vr )
mi

t2max [ s,

]

. . t .
and the number rmjeﬂmt which succeeds rmi in Uk= l”mk . It follows from iv)
that

v, .csl/t{Vr )3p .

mg mt

Hence

7 — ]
Vo= n{v lr'>r}.

Subsequently we consider a number rmkeﬂms- ! and a point p for which

p€Vr . Then we choose an even t satisfying
mk

1
t;umx [ 8, E?Erﬁjrv;——yl
mk

: . t .
and the number rmjeﬁmt which rmk succeeds in Uk= l”mk . It follows from iv)
that

PER-S , (R-V_ JcV_ .
1/t Tk rmj

Hence
4 :U{f’r,lr’<r},

proving 1ii).

Now, we define er for all m and r by induction in the following order

(The point is that the order of {rml'rmZ"" } for a fixed m 1is kept in the

sequence {I'”,rlz,rzl,...) . As long as this condition is satisfied we may choose
any other ordering.)
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First, by use of dim Al = 0 we construct an open set V such that
11

FICVr”ch”cU] and B(VP”)!\A] =9 .

Since the construction procedure is quite analogous to that for V. in III.4 A)

o)
it will be omitted here.
Suppose that we have defined all V before V and that r ,€X¥ .| Then to
o r ., J 8
mg
define Vr we choose numbers
mg
g=-1
Tmi? Tmk u A’mh
h=1
‘ s~1
. . < . .
such that rmt<rm0 rmk and such that L succeeds r’m' in Uk=l Nmk By use
of dim An = 0, we can construct Vr such that
mg
Vr ’CVr .ch _ch ns]/s(vr .) if & 1is odd,
mt mg mg mk mi
(R-8,,(R-V JIUV cVv <V <V if s is even
/e Pk "mi  Tmj rmj Tk
and such that
ord B(V .)<n-1, at each point p€4 ,
po mjl = P *5
where
L= {v, v V. ...V Y.
mJ 1y Ti2 Ty Tmd
The construction procedure for Vr is quite parallel to that for Va in IT1.4 A)
mg

aud hence its details are left to the reader. Thus the proof of the assertion is
complete,
. w o 1
Recall that we defined I =ni - [-7’:
Theorem VI. 5. Let R be a space with a o - star-;inite open base. Denote by 7"
the set of points in I%  at most finitely many of whose coordinates are rattonal.
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Then R <s countable-dimensional if and only if- R is homeomorphic to a subset of
¥2) xRY  for suitable Q° .

Proof. Let R be a space with a 0-star-finite open basis. Then, since by 1.2 F)

R is homeomorphic to a subset of ¥(Q) xIT% | we obtain a sequence
NI >N2>...

of star-finite open coverings such that {S(p,Ni)|<i=l,2,... } is a neighbourhood

basis of each point p of R . We put

Si ={s (N’Ni)

NEN.},
1

recalling that
o
® = 7
S (N,Ni) nlzjl S {H’Ni} .

Then, for brevity, we define

S; = {Sa|a€ﬂi} , where SanSB=¢ for a¥B .

Since Ni is star-finite, each set SG is a sum of countably many elements of

Ni . Hence we can decompose Sa as

5,=U {Naj|3=1,2,...} for Na,jENi .

For each % we construct an open covering Pi of R such that

= . €EQ., j=1,2,... ith P ,c¥N ..
(Byy la€8y, bowith Fogely

Z
Defining

UiJ.=U{NaJ.|uEQi} and F,, = U{Pcw.]a€ni}

Concerning the imbedding of countable-dimensional spaces in the strong sense
Yu. Smirnov [6] and J. Nagata [3] proved that a space R with a 0-star-finite
open basis is countable-dimensional in the strong sense if and only if it is homeo-

morphic to a subset of N(§l) K" for suitable R , where X" denotes the set of

points in % at most finitely many of whose coordinates are different from zero.

It is easy to see that in Theorem VI.5 § may be taken as the set whose cardi-
nality is equal to the weight of R (namely the minimal cardinality of its base).
The same applies in the strongly countable-dimensional case as well.
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we obtain an open set Ui' and a closed set Fij satisfying F'L'jcuij . Then we

put, for brevity,

Ww..15,d=1.2,...={U_|n=1,2,...}
1J m
{Fij]z,,7=l,2,... }={Fm|m=l,2,...} .

Now, suppose R is countable-dimensional. Then for these Um and Fm we define

er by use of A) and construct a real-valued continuous function fm over R by

inf{rlpEer} if p€v . for some r,
2 = s22m if p€V_ for all »r.

Then by i) of A) it is clear that fm is a continuous function such that

m

50 == V2/2m , f (R-U ) = Vilzm 1fm|;/7/2m .

Suppose
pEU{B(er)l [r]</2/2m, r rational };

then we shall show that fm(p) is irrational. To this end we consider a given ra-
tional number »r satisfying |r|</2/2m . If pGer , then by ii) and i) of A)
there exists »’ for which »'<»r , PEV ., . Hence fm(p) ir'<r . If pEer .
then by ii) of A) there exists r’ for which r'>r, pEVm:r" . Hence fm(p) 2r'>r,
Thus fm(p)#r in either case. So from iii) of A) it follows that at most finitely

many of {f] (p),fy(p),... } are rational, and hence

flp) = (fl(p),fz(p),...)

. . . o s w
is a continuous mapping of A into R .

Now, we put Q=U:= | Qi and consider the generalized Baire's O-dimensional space

N(R) . Then we define a continuous mapping ¢ of A into MN(R) by
e(p) =a = (ul,az,...) if pESai , ai€ﬂ£ , t=1,2, ... .

Finally, we define a continuous mapping ® of & into J(Q) xRrY by

@ip) = (clp),fipl), PER .
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Note that ¢ 1is a one-to-one continuous mapping. To see that ¢ is homeomorphic,
we suppose U(p) is a given neighbourhood of a point p of R . Let us take <%

for which S(p,Ni)CU(p) . Since {Fij |7=1,2,...} is a covering of B, there

i . s i i S F..=F
exists Ft satisfying p €FLJ We suppose y m

Since S, = {Sal QEQk} is a covering of R, for each k, 1<k<i , there

exists aPEQP satisfying pﬁﬂ;;= | Sak . Then we define a neighbourhood V{@(p))
of w(p) by

Ylolp)) = N(a],...,(xi) xN(f(p))
where

N(a’,...,ai) ={(ol',a2',...) | 4=y, k=1,...,2 e N(Q) ,

Nifp)) = { (a,a,...) | a <0}cr".
One can easily see that
o tvierp))) cutp) |

which proves that ¢ 1is a homeomorphism. Thus the "only if'" part of this theorem is
established.

Conversely, it is clear that

7)) xR%=u Q) <K
n=1
for
A= { (a‘,az,...)laj,j>n , are irrational; Iai| <H/Z for ©=1,2,...1}.

o

Since dim n'n = n , the product theorem implies
dim (M) xR*) = n .

Hence 7(Q) *xR" is countable-dimensional. This proves the "if" part of the
theorem.

The following is an immediate consequence of this theorem.

Corollary. Let R be a separable metric space. Then R is countable-dimensional

if and only if R is homeomorphic to a subset of RY,
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VI. 3. Mappings and countable-dimensional spaces

Various good results were obtained on mappings and infinite-dimensional spaces. We
have already seen such an example in Theorem VI.4 and shall show another example in
the following. In particular we will discuss mappings which preserve countable-di-

mensionality.

A) Let A be a non-empty countable compact set in a space R . Then A contains

an isolated point.

Proof. The easy proof is left to the reader.

B) Let U be an open covering of F . Then there is a 0 ~discrete open covering
V such that V<U .

Proof. Let F be a locally finite closed covering such that F<U . Apply the
method used in the proof of the corollary of Theorem II.! to get a 0 -discrete
closed covering G such that G<F . By swelling the members of G slightly we ob-

tain a desired open covering V .

C) Let U= U:‘= | Un be a 0-1locally finite covering of R such that each member

of U is countable-dimensional. Then R 1is countable-dimensional,

Proof. First observe that the proposition is true if U 1is O -discrete. Because
in that case Ll’1 is discrete, and thus each member of Un is closed in the sub-
space Un =uf{u| U€Un }, and hence v, is countable-dimensional by the sum theo-
rem.

. 3 . L
Now, by use of B), we can find a 0 -discrete open covering V =U v such
n m=1 nrm
that each member of Vn intersects at most finitely many members of Un . Then

anun is obviously o -discrete, Hence U v Aun is a 0 -discrete covering

©
n,m=1 nm
which refines U ., Thus by the previous observation we conclude that R is count-
able~-dimensional.

D) Let f be a perfect mapping from R? onto 5 . (Namely [ 1is closed con-
tinuous, and f—‘(y) is compact for each y€S5 .) If U 1is a locally finite

collection in R, then fF(U) = { f(U)|UEU} is locally finite in S .

Proof. Let y be a given point of S . Then each x€f-](y) has an open neigh-
bourhood W(x) which intersects at most finitely many members of U ., Since f-‘(y)
is compact, it is covered by finitely many of W(x)'s, say W{Ii) , t=1,0.0k .
Then V =8 - f(R - U$=~ |k’(x_b.)) is an open neighbourhood of y because f is
closed. It is obvious that V intersects at most finitely many members of f(U) .

Thus the proposition is proved.
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E) Let f be a perfect mapping from R onto § such that f'-l(y) has an

isolated point for each y €S . If K 1is countable-dimensional, then so is § .

Proof. Let U = U:., U, be a o-discrete base, where each U = {Uul aEAn}
is a discrete open collection. Pick an isolated point x(y) from each f'—l(y) . For

each a€An we put

1 . .
= {z(y) | U ns oty - {xfy)}, and G, = FF ).

F
nat
It is almost obvious that [ maps :“m topologically onto Gna . Since R is
countable-dimensional. so is T and Gy-;_; . Note that chllu , and {UuIGGAn}
is discrete. Therefore {le a.EAnJ is discrete. Hence by D) {Gm | a€.4n, n =
1,2,...} 1is o-locally finite. Hence S is countable-dimensional by C).

The following theorem is an infinite-dimensional counter-part of Theorem III.7.

Theorem V1. 6. Let ; be a closed continuous mapping from a countable~dimensio-
ral space R onto S such that B(j‘-I (y)) is countable for each y€S . Then S

ig countable-dimensional '°,

Proof. Put
5, = (yes| B (y)) = 0) and S,=(yes| 85 ty) # 0} .

To each yGSl we assign a point z(y) of f_l(y) . Put Rl = {x(y)IyESl} s
then it is obvious that - f maps R, copologically onto S, because f_l(y) is
open for each yESl . Thus Sl is countable-dimensional.

Theorem 1.9 implies that B(f—l(y)) is compact for each y €S . Thus it follows

from A) that B(f—l(y)) has an isolated point for each y652 . Put

Ry =ULB(f '(w) |yes,t .

19 Several people contributed to this theorem, especially E. G. Sklyarenko {2},
A. V. Arhangelskii [2], K. Nagami [7] and A. Okuyama [2]): the last proved this
theorem for spaces more general than metric spaces. E. G. Sklyarenko [3]) and
I. M. Leibo [I] proved similar types of theorems on weakly infinite-dimensional
spaces.,
The following theorem (a counter-part of Theorem II1.6) is also due to
Arhangelskii: Let f be a closed continuous mapping from R onto a countable-

dimensional space S . If dim f-l(q)<°° for each g€S , then A 1is countable-
dimensional,
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Then RZ is countable-dimensional, and flh"z satisfies the condition of E). Thus
Sy = f(}?z) is countable-dimensional. Since 5 = Sl U S2 , S 1is also countable-dimen-
sional.

Corollary. Let f be a closed continuous mapping from a countable-dimensional
space E onto S such that

$' = {yes || B Ly | >x )

18 countable-dimensional. Then S 18 also countable-dimensional.

Proof. let R = f-](S-S’) . Then f| R satisfies the condition of the theorem.

Hence S-S8' 1is countable-dimensional, and so is S .

Another aspect to the study of mappings (in relation to dimension) is cthe charac-
terization of dimension in terms of mappings as shown in III.3. E. G. Sklyarenko
characterized in [3] strongly infinite-dimensional spaces as follows:

A compact (TZ-) space X 1is strongly infinite-dimensional if and only if there
is a continuous mapping f from X into the Hilbert cube ¥ satisfying the con-
dition that for every finite dimensional face F of I®  the restriction of f to
f-](F) is essential '!.

D. Henderson [3] defined a compact metric space J* for every countable ordinal

number & such that J°=I% if O<a<e , and Ind 7%=q , and also essential
mappings onto J%. Thus he proved that if there is an essential mapping from a

- _a .
normal space X onto J , then Ind X>a or 1Ind ¥ does not exist.

VI. 4. Transfinite inductive dimension

In this section we shall study results obtained by Yu. Smirnov [7] and

E. Sklyarenko [1] on the transfinite inductive dimension and related concepts 'Z,

A) 1If a space R has a strong transfinite inductive dimension, then it is weakly

infinite-dimensional.

Proof. If 1Ind R=-1 , then this assertion is obviously true.

1l gee also B. LevZenko [1].

'? "YWeakly infinite-dimensional" is understood in the sense of Smirnov unless other-
wise stated.
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Given a transfinite ordinal number & , we assume the assertion for every R with
Ind R<a . Then we suppose { Fi’ Gi }, i=1,2,... are pairs of disjoint closed sets
of a space A with Ind R=a ., There exists an open set U‘ such that

Flc:U] cR - G] and Ind B(UI) <a .

Thus by the induction hypothesis B(UI) is weakly infinite-dimensional, and hence

there exist open sets V2 s V3 yee. oOf B(Uli which satisfy

FinB(UI)CViCB(UI) - GinB(Ul) , T =22,3,...,
(Vi) = ¢ for some k .

We can easily extend Vi to an open set Ui of R such that :

f—'AiCU.,:CR - Gi and B(Ui) nB(Ul)cB (Vi) .

B(UI)

Hence r|¥= IB(Ui) = @ , which proves that R is weakly infinite-dimensional.

B) 1f a space R has a strong transfinite inductive dimension, then it is count-
able-dimensional.

Proo;y. 1f 1Ind R=-1, then the assertion is clearly true. Assume B) for every
space R of Ind<a ., Given a space A of 1Ind = a , we can construct a O - locally
finite open basis V such that 1Ind B(¥)<a for every VEV . By the induction hy-
pothesis each B(V) 1is countable-dimensional. Therefore by use of the sum theorem
we can easily verify that U{B(V) | VEV] is countable-dimensional. Since it is

obvious that
dim (R-U{B(V) |VEVH <O,

£ itself is countable-~dimensional.

The converse of B) is generally not true, but in the compact case equivalence holds

between the two conditions as follows.

C) 1f R is compact, then it has a strong transfinite inductive dimension if and

only if it is countable-dimensional.

Proof. Suppose that R 1is countable-dimensional. Then R = U‘:= lAi for Q-di-

mensional subsets Ai . Assume that A has no Ind R . Then there are disjoint
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closed sets F] and GI such that every open set Ul satisfying F]cU]CR ---GI

has a boundary with no Ind. We can select an open set U, such that B(Ul) nAl =0 .

1
Put Bl = B(U‘) and note that Bl # @ . Since B] has no Ind, we can repeat the

above argument, this time for the subspace B] to obtain an open set U2 of B]

such that

BBl(Uz) na, = e,

and B, (U,) has no Ind. Put B, = B, (U,) and note that B, #%® . Repeating this
B‘ 2 2 Bl 2 2

process we get a decreasing sequence Bl DBZD... of non—empty closed sets such that

. . *® . . . hed -
BinAi = . Since R 1is compact, ni‘ lB,;# ® in contradiction to Ui- IAi = R.
Thus R has Ind R .!'3?
Theorem. VI. 7. A space R s weakly infinite-dimensional if and only if it can
be decamposed as

R=Ku(
n

Pn)

nes

1

for a weakly infinite-dimensional compact set K and finite-dimensional open sets
P such that if {:cil i=1,2,...), xz, € U:= 1 P, 8 a sequence of points having
no accwnulatton point, then it is residual in some P Z.e. for some k and for

)
all i2k z.€P .

Proof. First we suppose R is weakly infinite-dimensional. Define

Pn-'-'J{U|U is an open set of R with dim Ugn}, and

Then by the sum theorem Pn is an open set of dimension < n . (Note that every
subset of R is paracompact.)

To prove that KX 1is compact we assume the contrary. Then there exists a sequence
{yil ©=1,2,.,.} of points of X which has no accumulation point. Note that every

open neighbourhood of each ¥, has no finite dimension,

13 as easily seen from this argument, a complete metric space R has a weak trans-

finite inductive dimension if and only if it is countable-dimensional. (Apply
Baire's theorem.)
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To prove simultaneously the property ol Pn , n=1,2,,.. we assume that there
. 3 @® I3
exists a sequence {:z:il £=1,2,...} of points of U _ P, which has no accumula-
tion point and is residual in no Pn . Then we can easily select a subsequence {x;:}

of {xi} such that

Note that by the definition of Pn every open neighbourhood of xr'l has dimension

>n. Thus it follows from either of the preceding assumptions that there exists a

sequence {zili =1,2,... } of points, each z, having an open neighbourhood V(zi)
such that

m dim V(zi)>i,

(2) {V(zi)|i=1,2,...} is discrete.

Combining (1) with the corollary to Theorem II,8 for each V?zi7 we get closed
sets Fi and G“Z , dJ=1,...,2+1 such that

PudcVia,
7 A

kA

(3) o
I~y _
.inc.‘f: =0,

and such that if WY , d=1,...,L %1 are open sets of R satisfying E‘Z:CWJCR—G;-’:,
then
AN

+
(4) n
i=

B ) 46 .

Further we define that

6‘171:(6 for G >t+1 .

"

o
A

Letting

8

?JZUFi:and(,‘j=

z=1

"C 8
\‘ﬁe.

o
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we get, by virtue of (2) and (3), disjoint closed sets ™ and & . Suppose W ,
J=1,2,... are given open sets such that FecwWecr-¢ ; then for any fixed num-

ber <
F'Z:CHJCR- Gi F=l,eei i+l .

B(w/) #8 which contradicts the fact

that R is weakly infinite-dimensional, Thus we have proved the compactness of X

Therefore from (4) it follows that ﬂ‘L::
as well as the desired property of {Pn} . Since K 1is a closed subset of the weak-
ly infinite-dimensional space K&, it is easily seen to be also weakly infinite-di-
mensional.

Conversely, suppose R has a decomposition

[--]
R=Ku( U P),
n
n=1
as described., Let {Fi’Gi },7=1,2,... be given pairs of disjoint closed sets of
R, Since K 1is weakly infinite-dimensional, there exist open sets Ui , t=1,2,...

of X such that

k
and n BK(Ui)=0 for some k.

7] -G
F_L.cUicUicK G Py

i

To each point p of :?K(Ui) we assign €(p) >0 such that

(p)nGi=¢ and S (p)nBK('jJ.)=¢

Setp) e(p)

for every J with 1<j<k, pEBK{UJ.) . Then we put
v, = Kﬂ(U{Sée{p)(p) [ PEB(U.J}) and W, =V, uu..

We can easily see that Hi is an open set of K which satisfies I_]icWicK - Gi

and

Now, since dim Pn<+°°, using 1II.4 A) and the decomposition theorem we can con-

struct open sets 1‘17: , ©=1,2,... such that
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(6) UiCNiCNiCR- (K-Wi) , L= 0.,k

F.cN.cR-G,.,, t = k+1, k+2,...,
1 'z 7

o)) ordp{B(Ni)]i=1,2,...};mn<+w
at each point p of Pn . Assume that n§= lB{Ni) #@® for every integer £ . Then
we take =z enc. B(N.) . From (7) it follows that x,€P_ for every £ with

L =1 i L7 n

£>mn , and hence {:r:z} is residual inno P and has no accumulation point in

U:= an . (Because every accumulation point of {:cz} belongs to ﬂ:z lei) s
and hence by (7) it cannot be in any Pn .) Therefore (IZ} must have an accumula-
tion point x in K . Since Ty s Ty oy qreee are contained in the closed set
nk. B(N.) , we obtain
=1 7
k

(8) x€KN( N B(Ni)) .

=1

On the other hand, (6) implies

KﬂB(Ni)ch’i - Ui s

and hence (8) implies

k
r_1 {Wi - Ui)#ﬁ
1 =1

$=IB(N1:)=¢ for some £ .

This proves that R is weakly infinite-dimensional.

which contradicts (5). Thus we can conclude that N

D) We define a mapping B(a) of the ordinal numbers > - | in itself as follows:

B(-1
B(a)

wy where Wy denotes the first countable ordinal number,

sup {B(a")|a' cal+ 1,

Then B(a) satisfies
i) if a'<a , then B(a') <B(a) ,

where ., denotes the first uncountable ordinal

ii) if a<w, , then B(u)<ml s 1

1
number

iii) a<B(a) for every a .
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E) Let a space R have a decomposition as in Theorem VI.6. If X has a strong
transfinite inductive dimension 1Ind X, then Ind RSB (Ind X) , where B(a) is the

mapping defined in D).

Proof. We shall prove this assertion by induction on the dimension number of X .

If Ind K=-1, then R = U:= an . From the property of {Pn} it easily follows
that we can select a finite subcovering of {Pn] n=1,2,...} . Since 1Ind Pn<+°°,

by the sum theorem we conclude that Ind R<+~ , i,e. Ind R<wo = B(-1) .
Assume that the assertion is true if 1Ind K<a ., Let F and G be disjoint closed

sets of a space R for which Ind X = a ., Then there exists an open set U of R

such that
FcUcR -G and Ind (KNB(U)) = a'<a .
Then
™
B(U) = (KnB(u)) U(nlﬂll (PnnB(U)))

is a decomposition of B(U) satisfying the condition in Theorem VI.7. Hence by use
of the induction hypothesis we obtain Ind B(U);B(u') . Thus from i) in D) it fol-
lows that Ind B(U) <B(a) , which proves that Ind R<B(a) =B(Ind K) .

F) 1f a compact space K has a strong transfinite inductive dimension, then

Ind 1(<ml .

Proof. Assume the contrary and let o be the smallest ordinal, a2>uw for which

1
there exists a compact space K of dimension a . Let {Unl n=1,2,...} be an open
basis of X . Suppose both ¥V and W are finite sums of sets of {Un} such that

VeW . Then to each of such pair { V,W} we assign an open set P which satisfies
VePeW and Ind B(P)<a .

Note that this implies

n Ind B(P) <w .

We denote by P the countable collection of these open sets P . Since K is
compact, we can easily verify that for any disjoint closed sets F and G of R

there exists PEP satisfying

(2) FCPcR -G .
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On the other hand, (1) implies that

sup { Ind B(P) | PEP} + 1 =B<w <a.

Therefore from (2) we conclude that Ind K;B . Thus we achieve a contradiction,
proving Ind X <wy .
Theorem VI. 8. If a space R has a strong transfinite inductive dimension, then

Ind }?<(A.)1 .

Proof. By A), R is weakly infinite-dimensional, and hence by Theorem VI.7 there

exists a decomposition

Since R has Ind R, X also has Ind X . Since X is compact, by F)
Ind K<ml . Therefore from E) and ii) in D) we obtain Ind R<B(Ind X) <wl .
Example IV. 1. (Yu. Smirnov [6]) Define a compact metric space Qa for each
0.<w] as follows: If a 1is finite, then Qu=the o ~dimensional (closed) cube.
8

If a=B+1 , then @ =¢°x[0,1] . If a is a limit ordinal number, then Q" =

8

the Alexandroff one point compactification of the discrete sum U8<a @ . Then

it can be proved that Ind Qu=0t .

VI. 5. Sum theorem for transfinite inductive dimension

Generally speaking, properties of transfinite inductive dimension are considerably
different from those of finite inductive dimension, and there are not so many beauti-
ful theorems on the former as on the latter. The main purpose of this section is to
discuss (finite) sum theorems for transfinite inductive dimension by use of
G. H. Toulmin's [1] shuffling sum of ordinal numbers following the work by
M. Landau [1) and A. R. Pears [1].

Definition VI. 5.'" Let a and B be ordinal mumbers. Then we define the
shuffling sums otB and o+B as the infimen and supremum of the ordinal rumbers
of well-ordered sets obtained by shuffling the wvell-ordered sets T ={=zx |ogz<al
and Ty = {x]|0cxz<B} (without changing the order within T and Tg by the
shuffling) of ordinal rumbers. We make the convention:

% G. H. Toulmin defined the shuffling sum to prove sum theorems for weak transfinite

inductive dimension which were extended by Landau and Pears to strong transfinite
inductive dimension.
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- A <o <
aitfoawo,

. 5 .
a  tf o2uw,

A) Let a and B be ordinal numbers such that a=a'+p , B=8'+q , vhere

o', B' are limit ordinal numbers, and p,q are non-negative integers. Then

o if o' >B8" .,
a+B=qa+g=B+p if a'=8',
B if o' <B8' .

Proof. Assume o' >B' ; then B<a' and ‘I’B is isomorphic with the subset
g = {z€ Ta|x<B} of T . Shuffle Tg with T  in such a way that the members
of Té and those of TB are placed alternatively. Then the shuffled set thus ob-
tained has the ordinal number a , which obviously yields the minimum in the above
definition., Hence a+B=a .

Next, assume a'=R' ; then reasoning analogously as above we get a shuffled set
whose ordinal number is a+q . It is also easy to see that every shuffled set has an

ordinal number not less than a+q . Thus a+B=a+gq=B+p .

B) Put, for brevity, 8(a,B) =a+(B+1) for ordinal numbers a,8 with a28 .
Then

i)  6(a,B) <B(o,0) if a>8 ,
ii) 8(y.B) <8(a,B) if a>yv2B .

Proof. To prove i), assume a=a'+p , where a' is a limit ordinal number and

P 1is a non-negative integer. If B<a', then by A)
6(a,B) =a<a+p+1=08(a,0) .

If B2>a' , then assume B=a'+q , where g is a non-negative integer such that

g <p . Then again by A)
0(a,B) = a+g+1<a+p+1=06(a,a) .

To prove ii), we still assume a=a'+p , If y<a' , then by A)
8(v,B) <a' <a=0(a,B) .

If B<a'<y , then by A) 8(y,B) =y<a=8(c,B) .

If B=a' , then put B=a'+q , Y=a' +r for non-negative integers gq,r , where
g<r<p . Now it follows from A) that
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0(y,R) =a' +r+gq+1<a'+p+q+1=6(a,B) .

C) If R has Ind R, and F 1is a closed subset of R, then Ind F<Ind R.

Proof. The easy proof (by use of induction on o =Ind R) is left to the reader.

D) Let R = FUG, where F and G are disjoint closed sets in R . If Ind F
and Ind G exist, then Ind R = max (Ind F, Ind G) .

Proof. Defining a=max (Ind 7, Ind G) we prove the proposition by induction on
a . ’

D) is obviously true if a=-1. So assume that it is true for all 8<a . Then
suppose that Ind GXInd F=a . Let H and X be disjoint closed sets in R.

Then there are open sets U and V such that

HNFcUcF - K, 1Ind BA(U)<a,
HNGcVeG - K, 1Ind Bp(V) <a .

Now UNV=W is an open set satisfying HcWcR - X and B(W) = BA(U) UBB(V) .
By use of the induction hypothesis we get Ind BfW) <a . Thus Ind R<a , and hence
Ind R = a follows from C) .

E) Let A be a subset of R such that Ind A<a . Suppose that F and G are
disjoint closed sets in A . Then there is an open set U such that FclUcR -G
and Ind B(U)N4<a .

Proof. Select open sets P and @ in R such that FcP, G<@, Png=¢ .

Since Ind A4<a , there is an open set V¥ of the subspace A such that
PnAcvcAa - @ and 1Ind B,(V) <a .

Define C = VUF and D= (A- V)UG . Then CND=9¢ , CND=0¢ , and hence
there is an open set U of R such that CclU and UND=@ . Accordingly U
satisfies FclU and UNG=¢ . Now, since B(U) ﬂACBA(V) , we obtain from C)
Ind B(U)NA<a .
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Theorem VI, 9.'°% Assume R = FUG for closed subsets F and G of R . If
Ind F and 1Ind G exist, then

Ind R<max (Ind F, Ind G) +(Ind FAG+1) .

Proof. Define a=max (Ind F, Ind G) , B=Ind FNG . Then by use of the symbol

of B) it suffices to prove
(l)a,B Ind #<6(a,B) .

The proof will be carried out by induction on (a,B) as follows.
(I)a -1 is true for every a by virtue of D).
Assume that (l)u 8 is true whenever S<Bo , or B=Bo and B;a<ao . Then we
shall prove that (1) is true.
a8
0’70
Remember that

a, = max(Ind F , Ind G) , BO = Ind FNG ,

where F and G are closed subsets of R such that R = FUG . Let H and X be
given disjoint closed sets in R .

Case 1: ao-Bo .

By use of E) we can select an open set U such that

HcUcR - K and Ind B(U) ﬂFnG<BO=(10 .

Put Y=Ind B(U)NFNG ; then Y<a Note that

0 *

max (Ind B(U)NF , Ind B(U) ﬂG);ao ,
B(U) = (B(U) nF) U (B(U)NG) .

Using the induction hypothesis we obtain Ind B(U) ée(ao,Y) . It follows from B) i)
that 1Ind B(U) <G(Go,uo) . Thus

Ind R2B(ag,0)=6(ay,B) .

s Actually this theorem and the following corollary hold for hereditarily normal

spaces and totally normal spaces (to be defined later) respectively.
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Case 2: ao>Bo .

By E) there is an open set U such that HcUcR - K and
(2) Ind B(U) nF<u0 .
Again by use of E) we can find an open set V¥ such that

(3 HeVcVel ,

(4) Ind B(V) NG <G.0 .
Put W = (U-G)UV . Then W 1is an open set satisfying HcWcR - K. We claim
that

(5) B(W) c(B(U)NF)U(BIVING)U(FNG) .
To prove it assume
x€(B(U)NF)U(B(VING)U(FNG) .

Then either x€F - G or x€G - F .

Assume first x€F - G . Since z€B(U) follows from x€¢B(U)NF , either x €U
or z€R - U holds. If the former is the case, then €U - GeW . If the latter is
the case, then R - U is a neighbourhood of x which is disjoint from W . Thus in
eicher cases we obtain z £B(W) .

Next, assume that x€G - F . Since x€B(V) follows from x€B(V)NG , either
#€Y or xz€R -V holds. If the former is the case, then x €W ., Otherwise
(R-V)-F isa neighbourhood of x which is disjoint from W . Thus we obtain
o€ B(W) in either cases. Therefore our claim (5) is proved.

Put, for brevity, B, = B(U)NF and B, = B(V)NG . Then observe that B NB_ =¢

! 2 1 2

follows from (3). Hence by use of (2), (4) and D) we obtain Ind BI U32<(10 « Thus

max(Ind BI U82 , Ind FNG) = §<a
lm:I(Bl UBz)n(FﬂG) = E;BO .

0’

Thus by the induction hypothesis we obtain
Ind(!il UBZ.’ UIFNG) c0(8,e) .

It follows from C) and (5) that 1Ind B(¥) <3(8,e) . On the other hand B) ii)

implies

8(8,¢) <8(a, , €) 36(ay, B .
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Therefore 1Ind B(W) <9(a0,80) , which proves

(g

Ind R<O8(x_ ,B.) ,
0’80 0°"0

and the induction is concluded.

Corollary. Assume R = FUG jfor closed gete F and G . If 1Ind FNG 18 finite,
and Ind F and 1Ind G exist, then Ind R=max (Ind F , Ind G) .

Proof. 1If both Ind F and Ind G are finite, then the corollary is simply a
special case of the sum theorem for finite dimension. If max (Ind F , Ind G) is

infinite, then the corollary follows directly from the preceding theorem.'®

' B. T. Levienko [2] showed that the equality Ind R=max (Ind F , Ind G) does not
generally hold even if R is compact: Assume R = AUB , Ind A =a=-a'+p,
Ind B=f=B"+q , where 4 and B are not necessarily closed in R, and
a' , B, p, q are as in A). Then B. T. Lev¥enko [3] proved that
Ind R <max («,B8) if a'$B' ,
Ind R<a' +p+g+1 if a'=8" .
M, Landau [1] proved
) +Ind R< (1 +a)+ (1+8) .
A. Pears [1] proved
Ind R <max («,B) + (min (a,B) +1) ,
which is a reformilation of Lev¥enko's result. (The above three theorems were
actually proved for hereditarily normal spaces.) L. A. Luxemburg [1] gave an
example of a compact metric space X such that Ind X=w0+2 , ind X:w0+l .
which sharply contrasts the coincidence of Ind and ind in the finite-dimen-
sional case. The discrete sum of the # - dimensional cubes In , m=1,2,... has
ind but not 1Ind. (However, it is known that if a hereditarily normal compact
space has ind, then it has Ind.)

On the other hand D. Henderson [2] defined a new transfinite dimension to prove
a subspace theorem, a finite sum theorem, a product theorem etc., which have the
same appearance as their counter-parts on finite dimension.

Also note that the locally countable sum of countable-dimensional closed sets
is obviously countable-dimensional, and it is easy to prove that the countable
sum of weakly infinite-dimensional (in the sense of Alexandroff) closed sets is
weakly infinite-dimensional in the same sense. The locally countable sum theorem
obviously holds for strong countable-dimensionality, too. See B. T. Levsenko [2]
for further results on sum theorems of weakly infinite-dimensional spaces.




VL.6 - 154 -

VI. 6. General imbedding theorem

The purpose of this section is to extend the imbedding theorems to general metric
spaces '’. Up to the present, one has not succeeded in finding an imbedding theorem
for finite~dimensional general metric spaces which is very analogous to the one for
the separable case. We can, however, imbed them into a kind of generalized Hilbert

cube, i.e. a countable product of star spaces 18

. Although the contents of this sec-
tion are only partially related with infinite-dimensional spaces, the method used
here is analogous to that of Section 2 of this chapter, and this is the reason why

this section is located here.

Definition VI. 6. Zet (E, | a€4} be a collection of unit segments [0,1] . By
identifying all zeros in U {EOl |a€4} we get a star—shaped set S(A) . We introduce
a metric in S(A) as follows,

| x-y| if =x,y belong to the same segment E,

ofx,y) = .
| z+y| Zf =x,y belong to distinet segments.

Then we obtain a one-dimensional metric space 5(A) called the star space with the
itndex set A .

Now we can assert the following.

Theorem V1. 10. '° 4 metric space R with weight |A| has dim<n if and only
if it can be imbedded in the subset Kn(A) of the countable product FP(A) =
n:: lSm(A) of star spaces Sm(A) ,m=1,2,..., where we denote by Kn(A) the set of
points in P(A) at most n of whose nor-vanishing coordinates are rational.

Proof. To show dim Kn(A) <n , we decompose Kn(A) in the following way

Fi

n

Kn(A) = u
m=0

where &; is the set of points in P(A) exactly m of whose non-vanishing coordi-

nates are rational. We consider a given class { ajl J=1,...,m} of m rational

17

The content of this section is due to J. Nagata [6].
18

.We owe this terminology to H. J. Kowalsky [1].

'? |4] denotes the cardinal number of the set A . We mean by the weight of a topo-
logical space the cardinal number of an open basis which has the least cardinal
number among the open bases of R,
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numbers aj such that 0<aJ.;l . Then the set of points in K”" whose J-th coor-
dinates are equal to aJ. for every J 1is a O-dimensional closed set of K”" . This
assertion is easily proved by the product theorem, because the set of irrational
points and zero in a star space is a O-dimensional space, and so is the set of aJ.
from the distinct branches of the star space SJ.(A) . Hence it follows from the sum
theorem that K”’, as the countable sum of those O-dimensional closed sets is also
O-dimensional. By the decomposition theorem, this implies that dim Kn(A) in .
Conversely, we suppose R 1is a general metric space with weight |A| and

dim R<n . By Bing's metrization theorem, there exists a O -discrete open basis
wm E {Vm[ a€Am} ,m=1,2,... .

We can assume without loss of generality that there exist open sets Vmu R GEAm B
m=1,2,... such that Vmu = quCWm and such that for every neighbourhood U(p)
of every point p of R, there exist m and aGAm for which pEFmCh’mCU(p) .
Moreover, since AmCA can be assumed, we may further assume Am = A for every A

by adding as many empty sets as desired to the original wm . Putting

N :U{Wm|a€AmJ and Fm:U{Fm[aEAm},

we obtain open sets Wm and closed sets Fm satisfying FmCWm ,m=1,2,... . Now

by use of the decomposition theorem we decompose R in the following way:

n+l
R= U R
k=1 K
for O-dimensional sets R, , k=1,...,n+1 . We define open sets U __, m=1,2,...3
k mr

r=rational numbers with 0<r<y2/2m such that

_ _ e

(1) chumcumrcumr,cumr,cwm if rz>r',

2) Up =0l . |r'<r), Ump=U{I7mr,|r’>r},

(3) ordp {B(Urm’) |[m=1,2,...; r=2a rational number with 0<r<
vZ/2m}<k-1 for each point p of & .

k

The process to construct Ump is parallel to that used in the argument of 2 A), so

it will not be given here. Define

Uy v

ro mr  ma
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then, since each {¥ | a€A } is discrete, g is an open set for all €4
mo m ra m

m=1,2,..., r=rational numbers with 0<r<v/2/2m such that
-m .

Foctff c <y cW if r>r'

“ma < “ra F’r}n J;’u r'a “ma ’

m —
B(Um) = E(Umr)ﬂh/mu .

Hence (3) implies that

cr.EAm, m=1,2,,.., , and r 1is a

rational number with 0<r<v2/2m

4 m <k-i
(4) ordp [B(Um) =

for each point p of Rk . Now we construct star spaces Sm(Am) with the index set
4 = A and denote by E_, o €A the unit segments of which S (A ) consists. Let
m o m m m

fm be the mapping of & into Sm(Am) defined as follows:

0 if pgwW ,
- _ m . . mo
5,(p) = sup {r|pe Um}eEa if p€d . and pEU_  for some r,
i m
0 if p€h’ma and pEUra for every r.

Then it is easy to see that fm is a continuous mapping with the properties
F(R-¥ ) =0, and, if x€F , then f (x)=vV2/2m€E_ for some «€A . By use of
m m m m a m
(2) we can also easily see that fm(p) = r€£’a if and only if pEB(UI',"a) . Hence
j’m(p) is non-vanishing and rational if and only if p€B(U:';) for some aEAm and
r.

Now we consider the product

P(4) =
m

| Sm(Am)

n=as

and its subset Kn(;-‘;) mentioned in the theorem. Let us define a mapping f of &
into PfA) by

flr) = {fm(p) |m=1,2,...1} .

Then it follows from the properties of fm and (4) that § is a homeomorphic

mapping of R onto a subset of Kn(A) . Thus the proof of the theorem is complete.

As for the imbedding of countable-dimensional general metric spaces we can assert

the following theorem.
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Theorem VI. 11. A metric space R with weight |A| <is countable-dimensional if
and only if it can be imbedded in the subset K_(A) of a countable product
P(A) = ":= | Sp(A) of star spaces S,(A) s m =1,2,..., where ve denote by K_(4)
the set of points in P(A) at most finitely many of whose non-vanishing coordirates
are rational.

Proof. The proof is analogous to the proof for the finite-dimensional case and is

therefore left to the reader.

In contrast to the separable case, it is impossible to find a universal space for
n -dimensional general metric spaces among finite products of star-spaces, because
such a product and accordingly every of its subsets can be decomposed into countably
many closed subsets each of which has a 0 ~star-finite base while, as pointed out by
Yu, Smirnov, not every finite-dimensional metric space has that property.

S. Lipscomb [1), however, has recently constructed such a universal space in a finite
product of one-dimensional spaces as follows:

Let N({A) denote the generalized Baire O-dimensional metric space defined on the
set A. Let a = (a],az....) , B = (BI’BZ"") €N(A) . Then define 2 binary relation
R in ¥N(4) by aRBR if and only if

1) a=8 or

2) a$B and there is a natural number J such that

for every k<j oy, = Bk , and

i) Qj:8j+s for all 821 ,
ii) Bj-aj+s for all 821 .

Then the quotient space J(A) = N(A)/R 1is a one-dimensional mecric space, whose
point is either a singleton or a doubleton ciass; a former type of point is called
an irrational point and a latter type a rational point. Then he proved:

A metric space of weight [A4| has dim<n if and only if it is topologically im-
bedded in the set of points of Ja) * which have at most n rational coordi-~
nates.

An imbedding theorem for more general (non-metrizable) spaces is due to B. Pasynkov
(4] and A. Zarelua [2), who constructed an n - dimensional compact space P with
weight T such that every completely regular space of dim<n and weight <1 is

homeomorphic to a subset of P .2°

2% por other types of imbedding theorems see, e.g., B. R. Wenner [!], W. Kulpa [1],
A. G. Nemec [!] and L. A. Luxemburg [2].




