CHAPTER V

DIMENSION AND METRIZATION

It is interesting to find in the following list a remarkable analogy between di-

mension theory and metrization rheory.

Dimension theory

Theorem [I. 2.

has dim<n {f and only i there exists

A metriec space R

a o - locaily finite open basis V such

that 1Ind B(V) <n-1 for every VEV.

II1I. 9.
has dim <n if and only if there

Theorem A metric space R
exists a sequence {Fili=1""} of
locally finite closed coverings of R
which satisfies the follewing conditions:

i) for every neighbourhood U(p) of
every point p of R , there exists
some 1 with S{p, Fi) cilp) .

ii) Fi:{F(al,...jai)lak€Q s
k=1,...,21}, wvhere F(al,...,ai) may
be empty,

! First proved by K. Morita [5].

Metrization theory
Theorem 1. 3 (Nagata-Smirnov's
Metrization Theorem). 4 regular space
R 1s metrizable if and only if there
exists a O - locally finite open basis
V.

4 T,-space R is metrizable if and
only if there exists a sequence
(F, | £=1,%,...} of locally finite
closed coverings of R which satis-

fies the condition i) on the left ' .



iii) F(ul"""o‘i—l) =
U {”“1’“"%-1’3) | BeEQ} ,

iv) ord Fi;n+2 .

Theorem II. 1 (The Sum Theorem) . ZLe: Let {FYl YET} be a locally finite
{Fyl YET} be a locally countable alosed covering of a topological space
eclosed covering of a metric space R R such that each F_ 1is metrizable.
such that dim FY in for YET . Then Then R s metrizable ? .

dim F<n .

Let f be a closed corntinuous mapping Let f be a closed continuous mapping

of a metric space R of dim<n onto a of a metric space R onto a topologieal

metric space S such that for each poini space S such that for each point
g€35 the set B(f-z (q}} consists of at qES the set B(f-l(q)) 18 compact.
most one point. Thern dim Sgn s, Then S +s metrizable “.

Theorem 1. 2 (Alexandroff-Urysohn's
Metrization Theorem). 4 T,-space R
18 metrizable if and only if there
exrists a sequence Ul >U§ >U2 > U} >...
of open coverings U. such that
{S(p,Ui) | £2=1,2,...} is a neighbour—
hood basis for each point p of R.

To complete the list we can also find theorems in dimemsion theory (Corollary to
Theorem V.!, Theorem V.2) which correspond to Alexandroff-Urysohn's metrization
theorem. In this chapter we shall first establish Theorem V.1 and related theorems
as the foundation of further investigations. Then by applying them we shall investi-

gate relations between dimensions and metric functions of metric spaces.

First proved by J. Nagata [!]. Yu. Smirnov [2) and A. H. Stone [3] proved, under
some additional conditions, that the union of countably many closed metrizable
spaces is metrizable. :

This statement is the special case m=0 of Theorem III.7.

This theorem, a part of Theorem 1.9, is due to A. H. Stone [2) and to K. Morita -

S. Hanai {1). To this list we may also add Theorem 1I.9 corresponding to Theorem 1,3,
Incidentally, it will be interesting to see the corollaries to Theorem I1.6 and
Theorem III1.2 in comparison with the ccnditions for p3racompactness and normality,
respectively.

w
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V. 1. Characterization of dimension by a sequence of coverings

Theorem V. 1 °. A (metric) space R has dimension < n if and only if there
exists a sequence {Uk| k=1,2,... 1} of cpen coverings such that
i) ul>u2>u3,...,
ii) ord Uk:‘n+l L k=1,2,...,
iii) mesh Uk*o as k-+® ,

Proof. Since the necessity of these conditions is clear, we shall prove only the

k

sufficiency. We can assume without loss of generality that mesh Uk<2_ . Let
u, = {ukal a4l , ¥={(ka [ k=1,2,..., a€Ak).

With each 0.€Ak (k>2) we associate by use of i), an index B8=f(a) €Ak-l such

= i i i . Th
that Ukacuk- 18 Suppose @ {QY| YET} 1is a given open covering of K . Then
we let
Vk={:clp(:c,R—Qy)>2—k for some YET} , k=1,2,..., I/_l =V0-¢.

It is clear that Vk is open and satisfies chvk+l . For any (k,a) €N we ob-

tain
) Uka-Vk=(b or Ukanvk-l=o’
because the contrary would imply

6(Uku) =diameter Uka > Z-k

 This theorem was first proved by P. Vopenka [2] after C. H. Dowker - W. Hurewicz
{1] proved that the existence of_a sequence {Ur} of locally finite open cover-
ings satisfying i)' Uy >U; > Uz > U, ..., 1i), iii) implies the n-dimensionality of
R and J. Nagata [2] proved the corollary to this theorem.

"Is the existence of a sequence { Ux} of open coverings satisfying only ii)
and iii) sufficient for a space R to be of dimension < n ?" had been a major
problem posed by P. Alexandroff until K. Sitnikov [l] gave an example of a 2-di-
mensional separable metric space which has a sequence { Uy} satisfying ii) for
n=1 and iii).

We define the metric dimenstom pdimR of a space as the smallest number =n
such that there exists a sequence {Ug| k=1,2,...} of open coverings satisfying
ii) and iii). Yu. Smirnov [5], V. Egorov [1] and M. Kat&tov [4] investigated metric
dimension., In particular the last paper established for every space R the follow-
ing relation between udimR and dim R : pdimR<dimR< 2 pdimR .

Various other kinds of metric-dependent dimension functions were studied by
K. Nagami, J. H. Roberts and his school; see e.g. K. Nagami - J. H. Roberts [I],
J. H. Roberts [2], and J, C. Nicholas - J. C. Smith [1]: the last showed that the
finite sum theorem does not hold for y-dim and other metric-dependent dimensions.
J. R, Isbell [1] and Yu. Smirnov [8] studies uniform dimension and proximity
dimension, respectively. For further developments in this aspect, see H. Herrlich
(13, H. Pust 1],
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which contradicts our assumption., Now, we define open sets Wka by

'Vka = Uku n (Vk - Vk-2) for (k,o) €N . Then we can easily see that
(2) {chx; (k,a) €N } covers R,

because for every x €R there exists k>1 satisfying :c€Vk - vk-Z and (k,a) €N

satisfying x €U, . We divide N = { (ko) | (k,a)€¥ , W, #6} into three dis-
ko 0 ko

joint parts 4, E and C as follows:

= {tk,a) | (ko) €4, Mg Weo ) =81,
3= {({<,a) | %, ) €y . W, <V b
-'{(x.,a)lfk,a)ﬁﬁo. Wea Vi1 * 9 . Vkanvk-l#a}'

Furthermore we let

A= (W, i(ku €A},
B = {wka| (k,a)€EBY .
C = {hkul (k,a) €C} .

Then we can prove the following
(3) 1f aE.»‘-il and ”lu # 9, then (1.2)€4 .

(4) 1f (k,«J€EB , then (k-1 , f(@))EAUC and Wkach'

k-1 f(a) *
(5) 1f (k,u)€C, then (k-1 , f(u))€EA.
Since V0 = ¢, (3) is obvious, If (k,a)€B , then k>1 , Wkacvk-l , and
hence
-V =i
Uk PV Vo Vo) T 7 0

This implies

v

v k-2

(v

S AR T N

k-1 7l "

because U So Wk—lf(a)-vk—Z* 6 ; thus (k-1,f(a)) EAVC , and

x-170a) 2Vka -

ko T Ve "Mt T Ve SV Y Vaem s T Vi S ey -

Now, let us turn to the proof of (5). First note that (k,a)€C implies

[

"kanvk—l ¥ ® . Since by the definition of Wka R Wkand_z = @ , we obtain

g MV | = V) 2 0.




Therefore
U M (Vi =V ) 0
and hence

Ve i sty ™ Vo ~Vi-3/ %0

which means #, _, f(a)#@‘ Next, we note that (k,a) €C implies W, N(R-V, )40,

Since by the definition of Wk(! y WkaCVk , we obtailn

1

Wkuﬂ(Vk—Vk_])#(d .
On the other hand
P P

follows from Wkacuka . Thus we obtain L’ka—Vk_ | #0 . which implies
V-1 fta) " Vx-179-
i = -1.F
Hence it follows from (1) that U, _, f(a)nvk_z ®. Thus we get (k-1,7(a)) €A
proving (5) .

We define open sets er by

| (k+1,0) €C, fla} = B}]

Hig = Mg VLYW, 4l

for (k,B) €4 . Then it follows from the definitions of HkB R ”kB and 4 that

" . -k
(6) akSCUZ(S , i.e. 6(Hk8) <2 ",

7 HkBCVkH'Vk—l

To see (7) we should note that (k,B) €4 implies WanVk— | =@ and accordingly
Wanf/k_ 29 . Furthermore we claim that

(8) Hyg N Vo, Wy

kB Tk g’
For, if f{o) = B , then

.Vk+land=Uk§ lcxn(vk—vk—I)CUY(Bn{Vk-Vk—Z) = HkB .

Hence (8) follows from the definition of EkB .
We know, in view of (3) and (4), that B<AUC . On the other hand, the definition

of HkB , combined with (3) and (5) , implies that AUC<(HkB| (k,B)€A} . Hence,
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by (2) {HkB} covers £ . Let us denote this open covering by H .

Now, let HkB be a given element of H . Then we choose a point xEWkB . Evi-
dently x €V, , and hence

D(x,R-QY) >2-k for some YET .

Since by the definition of HkB we have .rGHkB , we obtain from (6) HkBCQ'Y .
Therefore we conclude that H<Q={ QYI YETY} .

Finally, let us prove that ord Hin+1 .

Let x be a given point of R : then we choose r such that xGVP—VP_I . If
a:EHkB , then from (7) we obtain either k=r or k=r-1 . We suppose
9) :EHr_ 18 for p distinct indices B ,
(10) ;r€Hm, for q distince indices a',

It follows from LA g< Vr'- j that J:EWr_ 18° Hence by virtue of (9) and the

definition of HkB we have x€h’m for at least p distinct indices a with

{r,a) €C , because the mapping f(a) = B is unique. On the other hand, by (10) and

(8) we have x€Wm, for at least ¢ distinct indices a' with (r,a’) €4 , be-

cause xEVp . Therefore xEWmCUm for at least p+q distinct indices a .,
Since ord Up;n+l , this implies p+gsn+1 ,

Therefore °rd;,;H§” +1 i.e. ord H<n+1 . Thus we conclude dim Rgn .

»

Corollary. 4 T,~space R i8 a metrizable space of dimension < n <if and only if

there exists a sequence
% *
u, >u> U, >ug> ...

of open coverings U, such that { stp, u, | £=1,2,...} 1is a neighbourhcod basis of
each point p of R, ord Ui;n+1,i:1,2,... .
Proof, Combine Theorem I.2 with Theorem V,I,

We shall need later the following proposition which is a slight modification of the

"only if" part of the above corollary.

A) A space R of dimension < n has a sequence
u] >u§>u2>u;>...

of open coverings such that { S(p, Ui) | £=1,2,...} 1is a neighbourhood basis of each
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point p of R, and such that each element of Ui meets at most n+1 elements

of U..
7

+ 1

Proof. Since R is a metric space of dimension < n , by use of the paracompact-
ness of R we can construct a locally finite open covering Ui with mesh U; <1 and
ord U; n+l .

Suppose U; = {UY'| YS—T} 3 then by I.I_A) we can find an open covering
u = {U_(l YET} with UYCUY' . Since U, 1is a locally finite closed covering with
ord U] &n+1 , we obtain from the corollary to Theorem I1.6 a locally finite open
covering Ué such that each element of U, meets at most n+ 1 elements of Lll

2
and such that

L1
u%*<ul , mesh U2<5 , and ord Ué;n**l .

Then we construct a locally finite open covering U2 satisfying UZ<Ué . (72 is

a locally finite closed covering with

mesh U2<L , ord UZ;n+I , and W*<U

2 1’

such that each element of U2 meets at most 7+ 1 elements of U] . By repeating

this process we get the desired sequence U] >U3> +«. of open coverings.

Theorem V., 2. Let R be a metrizable space. Then there is a metric p of R
such that the completion <R*,p*¥> of <R,p> satisfies dim F* = dim B . If more-
over R tis separable, then we can choose as p a totally bounded metric.

Proof. Assume that dim R<» . Then it is easy to see that we can introduce a
metric p (a totally bounded metric p if R 1is separable) such that there is a

sequence Ul >U2 >.,.. of uniform coverings of <R,p> with
mesh Ui-’O as 1+ , and ord U.gn+l

Construct the completion < F¥,p*> of <R,p> (see 1.2.). Now, suppose

Ui = {UY|Y€I'1:}. and put
= -R-U *
Vys{m-RU | ver;},

where the symbol -#* denotes closure in ¥ .

Then by 1.2 C) each Vi is a uniform covering of < 7*,p*> . By use of 1.2 B)

and the definition of p* we can easily prove that {Vi} satisfies

V>V, >... ,ordV.<n+1 , and mesh V,.=mesh U, .
1 2 = i T
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The last equality implies that mesh Vi->0 as 7= , Hence from Theorem V.l it
follows that dim F*<7 .

On the other hand dim R<dim F* is obviously true, and thus we obtain
dim R* = dim R .

V. 2. Length of coverings

We shall apply the result of Section | to the notion of the "length of a multipli-
cative covering" (due to P, Alexandroff and A. Kolmogoroff) to establish another

theorem for n-dimensionality.

Definition V. 1. We call a covering U a multiplicative covering if FEU and
if every non-empty intersection n’; 1Yz of elements Ui st = 1.0k, of U 1s
also an element of U .

Definition V. 2. Let U be a multiplicative covering. We mean by the length of
an element U of U the greatest number r such that there exists a sequence
U= U1§U2§ ?Ur of elements of U . We mean by the length of U the greatest
length of elements of U, Z.e, length U = max { length U] U€EU} . It {8 easy to see
that for every multiplicative covering U length U<ord U . We can easily construct
examples of multiplicative coverings U for which length U<rank U , rank U <
length U and length U = rank U respectively hold.

Theorem V. 3 ® . A T,-space R <is a metrizable space of dimension £ n if and

only if there exists a sequence

* *
Ul>U2>U2>U3>...

of muliiplicative open coverings of length < n+1 such that (S(p, u,) |i=1,2,...}
i8 a neighbourhood basis of each point p of R (n20) .

Proof. 1f dim R<n , then by the corollary to Theorem V.l we cam construct a

sequence Ul >LI‘§'>U2 >... of open coverings of order < m+1 such that

® It remains open whether we can replace the condition ii) in Theorem V.1 by length U
<n+1 to improve Theorem V.3. K. Nagami [2] generalized this theorem as follows:
A Ty-space R is a metrizable space of dimension < »n if and only if there exists
a sequence {F.,:I ©=1,2,...} of locally finite multiplicative coverings such that
Fi+1<F; , length F:<n+1 , for every neighbourhood U(p) of every point p of
R there exists ¢ with S(p, Fi)CU(p) .

k
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(sfp,u;) | €=1,2,...} 1is a neighbourhood basis of p . Since U, plus all the in-
tersections of a finite number of elements of Ui is obviously a multiplicative
covering of length < n+1 , the necessity is proved.

Let us assume the existence of a sequence satisfying the condition of the propo-

sition. First we shall construct an open covering Ml such that

U, o<M <l , ord M <n+1 .

As a matter of fact, this is the principal part of the proof. We denote by

umlueAr} all the elements of U, of length r . Then

u, = {umlaur, r=1,...,n+1}

because length Ul;n+l . We define open sets Vz(*;) st =1,...,n+1 by

) _ (z)
v =u Vm

(£-1) .
o o ? =Int{x|S(3:,Ui)=Vm Y, i=2,. .m0,

where we denote by Int § the interior of the set S . It follows directly from the

above definition and U; <Ui - that
(1 V;Z*”c...cvg)cvr(‘;) -u, .
@) u, <{V(“|aEA s Pl L}, D0, 04,
3 sl u)evEV paa e
Next we define open sets Mm , aEAr ,r=1,...,n+1 by
Mla: Vfclx) :Ulu
(4) M=V m [u{S(v("), u,,,a€41lu
[U{S(V(r), U,,la€s}lu...u
tutsof™ Lu  olaea,_ V1, re2,...n+1.

Let us show that

(5) Uy o <M, ={Mm|aEAr,r=l,...,n+l].
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Let U be a given element of Un+2 ; then by using (2) for ©€=n+1] , we can
find V;Z+ X with Uc VY(Z+ ”. Hence from (1) we can deduce that UCVZJ , which
implies

(r) _
Un+2<{Vm chEAp s r=1,...,m+1},
Therefore for every UEUn_l.2 we can find the least number »r such that
(r)
(6) UCVm .
To prove (5) we shall show that
(r) _
M unsevy o UL, =8
for this »r and every Xk with 1<k<r-1 and for every aEAk . If we assume the
contrary;
(r)
UﬂS(Vka , Un+2) $#0
. _ * .
for some k , a with 1gk<r-1, aEAk‘, then from Un+2<Ur, (1) and (3), it
follows that
ch(v(r) (r—1) _ (k)

ka ’ ur)cyka Cvka *

This contradicts the definition of »r because k<»r . Hence we obtain (7). This
combined with (6) and (4) implies UCMm , which proves (5).

Now, to show that

(8) ord M’ n+l,
we prove
9 MI‘QnMI‘B =9 for a#B and for every »r .

In case a, BEA‘ , a¥B clearly implies

MlanMIB = UlunUIB =9
because length Ulc. = length UlB = 1., To prove the same assertion in case r>1 , we
show that
(10) UanrB = UI'"Y for cx,BEAr and YeAr'

implies
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(r) (r)
ra rB r'y

(7)

First, by the definition of Vra , it is obvious that

(2) (2) (2)
Vr YcV nvre .

(2) (2

Conversely, suppose =z € Vpa B 3 then there exist neighbourhoods P(x) and

@(x) of x such that
S(P{x),U )::Um R S(Q(::),Uz)curB .
Hence

S(P(x) nQ(x),Uz)cUruﬂU =u_,

rB r'y ’

This means that xGVf’i , proving

(2) _ (2) (2)
Vory = Voo M Vg

Repeating this process, we conclude that

V(z') - V( r”,(r)

r'y et r8 for every r.

We now turn to the proof of (9). By use of (10) and (4) we obtain

(r) (r)

)
Mz-a nMrB c VPO.

u{smi™ )|a€a, _ Y1evT

la’ n+2 ra

for r' determined by UrGITU =V

’n

because r'<r

(r
[U{S(V s UL, [ a€a Ylu...v

V(r) (r)

fors S(V

un+2)=0

and in consequence

rB r,IY »
(r) (r)
SV s Uy ) LULSV O U ) [a€d b ] UL
(r) R
tulsv, o U, ) la€a, 3]

holds. Thus (9) is proved for r=1,...,n+1 .

Since

M, = {Mmlc!EAr, r=1,,,.,n+1},

the assertion (8) follows directly from (9). Since MI <Uu

bined with (8) we obtain the desired open covering Ml

is clear, from (5) com-

satisfying
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A .
Un+2<Ml <(.ll , ord (l;n-bl
Repeating this process, we get a sequence Mi . £=1,2,... of open coverings such
that
. < . <M . < . .
ord Mzmn+l » and Ul +ifn+1) Mz ul +(T-1)(n+1)

Therefore from the corollary to Theorem V.l we can deduce dim R<n and the

metrizability of R .

Corollary 7. 4 space R has dimension 2 n if and only if for every open cover—
ing U of R there exists a multiplicative open covering V of R such that
Vel | length Vgn+1 .

V. 3. 0Dimension and metric function

It is an interesting problem to characterize the dimension of a metric space by the
property of its metric function. We know that if D(I’yi) <g , £ =1,2,3 on the I-di-
. . 1 .
mensional Euclidean space E° , then p(yi,yj) <e for some two points Y; s yJ. of

the three points ¥y, . ¥, , Yz and the same is also true for seven points y; o
2 =1,...,7 and a point x of E° , The number of points ¥, having such a proper-
ty will increase with the dimension number n of E° . This example leads us to a
new idea to characterize the dimension of a metric space as follows.

The main theorem (Theorem V.4) of this section was first proved by J. Nagata [7]
and P. A. Ostrand {2] independently, The proof to be presented here is a modification

of Ostrand's proof.

A) 1If dim R&n ., then for each open covering U of R , there is an open covering

V such that V<l and V = UZ:: V_‘: , where each Vi is a discrete open collec—

tion %.

Proof. By use of the method of the proof of I1.7 B) we can construct an open
covering W such that W<U and W = UZ:: wi with open collections wt. of order

1. Let W, = (Wial 0.€Ai} . Select an open covering P such that P*<{! and put

Vey = U (p| PevP, S(P,P)cwia},

7 P, Alexandroff - A. Kolmogoroff [1) provad this theorem for a normal space KR and

for finite open coverings U , V .
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1

v
1

n

v, = {Viu‘““i} , V=

IWC +

. i
z

Then V is obviously an open refinement of U because Viozcwiu and W<U . Each

Vi is discrete, because each member of P meets at most one member of Vi .

Definition V. 3. Let U be a covering of a espace R. Then for each non-negative
integer n we define

Wi = {fw,w | veut ,

where SO(U,U) =U.

B) Let dim R<n . Then there is a sequence Ul .\ UZ"" of open coverings of =
such that
i) Uj ZUZZ: U;’: , where each U:;'. is a discrete collection,
ii) mesh U,<1/J ,
oo e .
iv) if J<k and_ 1<t<n+1 , then each member of [Uk] meets at most one

member of UZ;. .

8 Obviously the converse of this proposition is also true. P. A. Ostrand [1]

obtained a similar characterization of dimension as follows:
A metric space R has dim<n if and only if for each open covering U
of R and each integer k>n+1 there are k discrete open collections

k .
Vl""’vk such that Ui=l Vi<U , and the union of any n+1 of the V_':

is a covering of R .

He applied this theorem to prove the following theorem concerning the re-
presentation of a function of many variables as a composite of functions of
one variable, which gives a good example of an application of dimension
theory. (Another such example was presented in IV.3.):

Let XP , p=1,...,m be compact metric spaces such that dim xP = dp<°=
and let nz):; | dp . Then there are continuous functions ®F9: xP+[0,1},
p=l,ee.,m, q l,...,2n+1 such that every real-valued continuous function

L IET

f defined on N -1 Xp is representable in the form
2n+1 m
flzpeesz = 10 () W),
g=1 7 p=i P
where ©; , g=1,...,2n+1 are real-valued continuous functions with a real

variable.

E. Stepin [2) and R. Mané [!] also obtained interesting results in dimension
theory related with other fields: The former proved that every finite-dimen-
sional compact ANR (see J. Nagata [8] for the definition) is metrizable, and
the latter proved that if a compact metric space R has a homeomorphism

f:R+R and there exists € >0 such that O(fL(:x:) , f"(y))<€ , 1=1,2,...
implies x=y , then dim R<= .
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Proof. By use of A) we find an open covering U satisfying i) and ii) for jJ=1.
Then each point x of R has a neighbourhood P(x) which meets at most one member
of U7|' for each % and is contained in some member of Ul . Select an open covering

Q such that [Q]20<{P(J:) |z€R }. By A) there is an open covering Ll2 such that
_on+l 1z . . z .
U2 <Q , mesh U2 <1/2 and U2 = Ui=l UZ for discrete collections U2 y Te ..,

n+l .
Then {U],Uz} satisfies i) - iv). Continue the same process to get a sequence

{UI Uyseen } satisfying the desired conditions.
T g
C) Let @* denote the set of all rationals of the form 2 +2 tle. 42 5

where m, are natural numbers satisfying 1< m <m2 <.ve<m

we can define open coverings S(m) for all m€@* such that

: If dim R<n , then

i) S(m) = U::: Si(m) , where each Si(m) is a discrete collection,
ii) {5(x,S(m)) | m€Q*} 1is a neighbourhood base at each z€R ,
iii) if mp€@* satisfy m<p , then S(m)<S(p) ,
iv) if mp€@* , m<p, 157<n+1 , and 5, ESi(m) R SZESi(p) , then either
Slcs2 or Sll"ls2 =@,
v) if m,p€@* satisfy m+p<! , and if 5, €S(m) , SZES(p) satisfy

s, ns, # @, then 5,Us,c5, for some S3€S(m +p) .

Proof. The proof given here is somewhat sketchy to leave the detail to the reader.

To begin with, construct open coverings U , U which satisfy the four con-

| PIRTE
ditions of B). (We assume that each Ui contains no empty set.) Then define open

collections by

L _ ;20 7 , .
) vj_{s (u,ug.”)lueuj}, 1ci<n+1 , §g=1,2,...
n+l ;
V.= o0 V;.
J i=1 9

For AcR, 1gi<n+1 , j>1 and k>0 , we define sets Tk(A,i,j) and

T(A,1,J) as follows

(2) 7°¢4,1, )

sca, v;.) .

S -, .. A
™(4,1,4) = sg’k (A,3,3) , Ve, 0 for k21,
T(A,Z,§) = U Tk(A,i,J') .
k=0
Let m=2" 4, +27"t€Q* , where lgm

<...<mt , and 1<2<n+1 ; then for

i
each AcR we define an open set S(A,Z,m) as follows.
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3 S(A,1,m) =T(A,i,m1+l) if t=1
S(A,%,m) = T(S(S(A,Z,m'), V), i,m ) if t>1,
t
-m -m -m
where m' = 2 ‘+...+2 t-1 =m-2 t .
-m, -m,
Now we define open collections S({m) for m=2 +...+2 “€g* by

. z n+1 <

s*tm) = (S(U,&,m) | UELW } , 1<ign+1, Stm) = U STm) .
1 =1

In the rest of the proof we denote by m and p members of &% such that
! e K3 Py
ms=2 +oas +2 > p=2 +...0%2 > I;ml<...<mt,and 1<p,<...<p, -
Since U;" <S8*(m) and since Un7 covers R, Sfm) is a covering of R . From
1 1
iii) of B) and (1) it follows that VJ.<U3. , and accordingly by (2) we obtain

T(A,Z,4) CSA(A,UJ-) . Thus from (3) it follows that

%) s,,mestwu_ ) if t=1.
m o+ 1
Hence by iv) of B), each member of Um 4| meets at most one member of S*(m) .
1

In the general case t>1 , we can prove without much difficulty that

(5) s(v,i,m <s'w,u_ . )
’1)’" 3 m + l E

and thus each member of Um 4| meets at most one member of S°(m) because of iv)

.1
of B). Therefore each S*(m) is discrete.

From (4) and iii) of B) it follows that S(I,S(m))CS(x,Um _ l) if o m=271,
Thus ii) of C) follows from ii) of B). :

Now, to prove iii) of C), suppose m<p .

Case a): mo=py o, my =p2 seees mt:pt, and t<u .

Then S(m) <S(p) is obvious because

(6) S(U,i,m) cS5(U,i,p) for each % and UEU;" -U; .
1 1
Case b):ml—‘p] seses My 1 TPg_ s My > Py for some s&>1 .
Then put
, - Py -ps
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Now, by use of iii) of B), we obtain
§0,5,m) <5°(S(U,5,m" ), U_ ) =S(S(U,5,m'),U_ ) .
8 p8
On the other hand by (3) we get
S(u,z,p') 28(s(U,t,m'),V_ ) o8(S(U,Z,m'),Uu_) .
ps Pg
Thus
(7) S(U,t,m) cS5(U,%,p') <S(U,Z,p)

holds for each UEU;:'I= U;I , and we have proved S(m) <S(p) .
Case c): m>p, .
Let ueu;;] ; then by (4) and (5) S(U,i,m)cslo(U,Um ) . Hence by iii) of B)
StU,i,m)cl’' for some U'EUpl .

Pt

Suppose U'EU‘; s then
1

(U, £,m) <U' <S(U", §,p) €S0 (p) <S(p) .

This implies S(m) <S{p) .

To prove iv), we first note the following fact,

(8) If a) or b) (defined in the above) is the case,

then S*(m) <S*(p) for each 1 .

Because m =p, holds in this case, and, as shown in the above ((6) and (7)), for

each U€U; = U; , we have S(U,i,m)<S(U,i,p) . Now iv) follows from (8) and the
‘1 1.
discreteness of Sz(p) if a) or b) is the case.

Assume the case c) and also that pg<m <p m =p8+k‘ (where s>1 , k20) .

g+1 7
Suppose that S(U,7,m) €S*(m) and s(i',z,p) ES‘L(p) meet each other, where
veuwr , ureu .
! P,
Assume & >1 . Then by (3) there are sequences OI,...,on of open sets such that

!
9, (U,S”,Slz......) ,

g, = {VZ,SZO,SZI......} .
o, = (Vs,sso,ssl,...,ssk,...} ,

ou=(vu,s 1,

uO’SuI"""
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where V,€V_ , §.,€
Jp; Ji
its non-empty successor in the same sequence, the sum XJ. of the members of Oj

and UY X, meets S(U,i,m) .
Jd=114

V; +7 OF Sjl =¢ , each non-empty member of a sequence meets
J

meets Vj+| , !
Case a): S(U,t,m) ﬂXJ.#ﬂ for some Jj<g& or S(U,i,m)ﬂVs#(b .

Then we may assume S(U,7,m) nVs)‘G , because Vp is a covering. By (4) and (5)

8
. 10 20 z
S(U,Z,m) S (U,Um +I)CS (U,Up +k+l)€vp ek
1 s s
because UEU” k" Since SZO(U,U tke+ ])I'\Vs e,
Pg Py

s, <,m) <s2°w, u, Jes',i,p) .

+k+ 1
8

Case B): S(U,i,m)ﬂsszfﬁ for some 1 with O0gKl<k-1 .

By an argument similar to the above S(U,Z,m)cS(U',%Z,p) can be proved.

Case Y): S(U,Z,m) ﬂSSk#ﬁ .
Let

_ .20 1
Sy =S (”o’“psnun” uoeups+k

Since S(U,i,m)CSIO(U, uPs"k* 1/ , there is a member of [ ]20 which

u
Pyt k+1
meets both U and UO . Thus by iv) of B) U = U0 . Hence

S(U,z,m) Cssk cs(u',1,p) .

Case 6): Ssk#(b , and S{U,i,m)nssl#(b for some I>k
or S(U,i,m)an #@ for some J>8 .
Let

_ 20 i
S =S (UO’upS+k+l)“ uoeup3+k

Then there is a chain of ten members of U

which connects S and
pg tk+l sk

S(u,<,m) C510(U,Up ke ]) , where we mean by a chain a finite sequence of sets each
8

]20 which

member of which meets its successor. Hence there is a member of [Up c ke
8

meets both U and U0 . Thus U =V and S(U,Z,m)<S(U’,i,p) .

0
Case €): Ssk=¢ , and S(U,‘ll,m)ﬂSsz#Q for some 1>k ,
or S{U,i,m)nXJ.#¢ for some Jj>s .
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Assume that Ssk is the last non-empty member of the sequence

[od
SsO"'sl" “’Ssk -1

Then there is a chain of ten members of U

S Ps*k"‘l which connects Sak with
StU,t,m) S (U,Ups vk+ I) . Thus
220 1 20
S (U,UI7 *k+l)€vp k> and $§ (U,Up +k+l)nssk#0 .
s 8 s
Hence
500, %,m =5*°(w,u ) <500, 1,p)
2 b :p3+k+| st,p/ .

If Sg00t gk - are all empty, we can prove the same by use of V“3 in
place of Ssk + In the above argument we have assumed g >1 , However a similar argu-
ment is valid in the special case & = | . Thus iv) of C) is established in all
cases.

Finally, to prove v), let m+p<1 , Suppose S(U,Z,m)NS(U',7,p) #+ @ , where
. . p

veur |, vew
™ Py

Case 1: m =p; .
It follows from (4) and (5) that

. 10
S(U,i,m) eS8 (U,Uml .l

S(U',j,p)cs'o(u',um

ls

J

p
10 10,.,
5 (U,uml”)ns (.U

)+,

+1
Thus by iii) of B)

S(U,1,m) US(U',§,p) eN<S,

-(ml-l)

for some h’EUm - and SOES(m+p), because m+p=2 toeeer .

i
Case 2: m >p, (and thus m<p) .

Assume that P <m Do, (e21) .
[=3

Case 2.1: ™ <ps+|

Assume e.g. 3=1) . It follows from (4) and (5) that

10 - .
S (U,um] +|)ﬂD(U',J,P) +0 .
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+ l_<_p2 , by (3) there is a chain of six members of Um . which con-

Since m
! 1

. . 10 -
nects T(U”J’p|+l) with § (U,Uml+]) . Thus

. 10 20
S(U,t,m) <8 {U,Uml+l)CS {U’Uml-vl)evm] ,

and

20 .
s (U,Um N l)nT(U',J,pl +1) #8.

1

Hence

s(u,i,m) CS(T(U',j,p] +1), Vrr Jestu'.j.a) ,
‘1

P

™ EZ) Py

+2 o *2 . On the other hand we obtain S(VU',j,p)<

where q = 2 |-»2

S(U',5,q) from (7). Thus

s(u,Z,m) usS(v', j,p) CSO for some ,SOES(p +m) ,

because q<p+m .
In case of 8> 1 , too, we can prove the same by a similar argument. Also note that

a similar argument can be applied to the special case pu<m] if (6) instead of (7)

is used.

Case 2,2: m =Py -
Denote by & the number satisfying O0<k<s , p =Py s ps-l =

(Note that k=0 means

g+l !

Pg_yoreosPg g2 Pg_gur v @0 Po_py "1 7P g

Pg 4y~ 1>Pg » and k=8 means that pj+l—l=pj for all j=1,2,...,8.)
Case 2.2.1: k=g .
Then note that
-p -p -m '(P -0
2 Tele2 8 Tl <m+p<li .
. Vo 10,,,,
Since S(U',J,p)<=S (U ,Up +l) , and

. 10 10
S(U,i,m) <8 (u,um’+])cs (U’uplfl) s
it is true that
s u )ns'Ow,u )0 .

pl+l pl+|
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Hence
StU',4,p) VS(U,i,m) CUOCSO

for some erup and SOES(m+p) .

I-l

Case 2.2.2: k<sg .
Put

P Py-ok

-(r -1)
pl =2 +..+2 and p'' =p'ez STK*I

(Note that p'’<m+p) . Then it follows from (4) and (5) that S(U,i,m)c

SIO(U’um . |) , and there is a chain of six members of Up which connects
] s-k+i
S',J,p’') with SIO(U,Um . ]) . Denote by € the sum of the members of this chain.
1
Then there is (. €U such that
0 Pyika+i !
stu,i,muces'®w,u . Juceu
S5(U,i,m < A o+ <,
because Py g+ 5P - Since
g 20
UoﬂS(l/,J,p)#ﬂ and § (UO,V JEV oy
Pgk+ Pg_k+1
we obtain
. 20 [
S{U,z,m)cuocs (UO,V Jes', g,p'') .

Pe_k+

On the other hand S(U',J,p)<S(U',j,p''} follows from (7). Hence
StU,i,m) US(U’,,;I',p)CSO for some 50€S(m +pl),

because p’'’<m+p . Thus all conditions for Sf{m) are verified.

D) Let dim R<n (n20J) . Then there is a topology-preserving metric p of R
such that for every =»n+3 points 7Y TEEREN of R there is a pair of indices

i,J such that £#7 , and p(yi,yj);p(:,yj) .

Proof. Define S(m) , m€@* satisfying the five conditions of C). Then define
p:R*xR~+[0,1]1 by

plx,y) = inf { m|{m€Q*, y€5(x,Sm))} if y€S(X,S(m)) for some m ,

I otherwise.

plz,y)
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It is obvious that pfx,y) = ply,x) and pfz,x) = 0 . From ii) and iii) of C) it
follows that plx,y) >0 if x7Zy .

Assume p(x,y) <1 and p(x,z)<i for x,y,2€R . Then for every €>0 there are
m,p€Q* such that y€S(x,S(m}) , z2€5(y,S(p)) , plx,y) <m<plx,y) +€ , and
ofy,z) Sp<ply,z) +e .

By v) of C) there is WES(m+p) such that z,z3€W . Hence

p(x,z) sm+p<plz,y) +ply,z) +2e .

Thus it is proved that p(x,z) <plx,y} +0(y,z) . Therefore p is a metric function.

Note that
S(a:,S(m/2))cSm(x) cS5(x,S(m)) for each m€g* .

Thus by virtue of ii) the metric p 1is compatible with the topology of R .

Finally, let T,y s eeal be any n+3 points of R . If p(:c_,yk)-l for some

n+2
k , then p(yi,yk);p(x,yk) for any % . So assume that p(x,yk) <1 for

k=1,...,m+2 , Let €>0 be given., Then choose m(j)€@* , j=1,...,m+2 such that

p(:c,y JEm(f) <olz,y.) +e , and U,€SMm(j)) , j=1,...,m+2 such that =x,y.€U, .
Suppose U ES"(J)(m(J)) J= l,'.j..,n+2 . Then for some pair (j,k) of dgsti?\ct

indices we have i(j) = £(k) because 1<Z(j)<n+1 for J=1,...,m+2 . Suppose

m(j) <m(k) ; then from i) and iv) of C) it follows that chuk , and thus
yJ. > ykGUk . Hence

p(yj,yk) <m(k) <elz,y,) +e .

The pair (yj,y,,) may differ as €& differs. However, since there are only finitely

many such pairs, we can fix a pair (yj"yk) satisfying
p(yj,yk)<p(x,yk)+l/n for m=1,2,.... .
Thus p(yj,yk)f_o(x,yk) .

E) 1If one can introduce a metric ¢ into A which satisfies the condition of D),
then dim Rgn.

Proof. Actually we shall prove the following slightly stronger statement by use of
induction on n : If one can introduce a metric p on R such that for a definite
number &6>0 and for every n+3 points TYpseeesYy oo of R with plx,y.) <6,
J=1,...,m+2 , there is a pair of distinct indices <,j for which p(yl,ya)io(x,y .J,
then dim R<n .

Let p be a metric satisfying the condition for n=0 . Then for any x,y€AR and
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€>0 with £<§ , Sef.r) and Se(y) are disjoint or equal. More precisely
SE(.::) = Sr-:(y) if y€SE(x), and Se(x) nSE(y) =@ if yﬂSE(:c) .
Thus Uk = {Sl(x) |]z€R } for sufficiently large k's are disjoint open cover-

13

ings of R which satisfy the conditions of Theorem V.1 for n=0 . Therefore
dim R<O0 .

Assume validity of the statement for n=m-1 . Suppose that p is a metric satis-
fying the condition for n=m and &6>0 . Then we claim that for each positive
number €<& and for each closed set F of R dim B(SE(F));M-I , where
5.(F) =U {SE(:::) | x€ F} .

Assume the contrary; then by the induction hypothesis we can select m+2 points

T Ypseresy 4 EB(SE(F)) such that

plx,y.)<e , g=1,...,m+1 ,
p(yi,yj)>p(:c,yj) for every <, with 77 .

Now, choose a small neighbourhood U(x) of x such that for every =x’'€U(x)
' ' s P
plz ,yJ.) <e and p(yi,yj) >plz ,yJ.) if €#£7.

Then there is y  ,€F satisfying Se(ym+2)nU(:z:)7‘¢ because a:€B(Se(F)) .
Select a point z' ESE(ym+2) NU(x) . Then

p(x',y.)<5<6 > j-ly...‘m,,z ,
Plypy;) >o(z'sy,) if i#j and 1gE,dgmel
D(yi,ym+2);e>p(;c',ym+2) s L=l ..,m+1
D(ym+2:yj);e>p(x’,yj)’ F=lye,m+l,

This contradicts the property of p . Thus we have proved
dim B(SE(F));m— 1.

Now, let 7 and G be disjoint closed sets of R and my a natural number satis-

fying l/m0<6 . Then put

sS= u ('SI(F)-S]ZG)) .
m=m - —
C m m

It is easy to see that S 1is an open set such that
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a0 w
FcScR -G and B(Slcf( U B(SI(E'))) u¢ u B(Sl(G))) .
m:mo E m=m0 ﬁ
It follows from the sum theorem and the claim proved above that dim B(S)<m-1 .

Therefore dim R<m which completes the induction.

Combining D) and E) we obtain the following main theorem.

Theorem V. 4. 4 metric space R has dim < n (n>0) <if and only if one can
introduce a topology-preserving metric p or R such that for every n+3 points
TyYpseesly g of R, there is a pair of distinct indices €,j for which p(yi,yj)i
p(:c,yj) .

Definition V. 4. 4 metric p 1is called non—archimedean if it satisfies p(x,z) <
maxfplx,y) , p(y,z)) for every points z,y and 2z of the space.

9

Corollary. A metric space R 1is O-~dimensional if and only if one can introduce

a topology-preserving non-archimedean metric on R .

Proof. This is a direct consequence of Theorem V.4 because the condition there

for n=0 1is precisely the one for a non-archimedean metric.

We can slightly weaken the condition of Theorem V.4 if R 1is separable.

Theorem V. 5. '° A separable metric space R has dim < n if and only if one
can introduce a topology-preserving totally bounded metriec p <into R such that
for every n+3 points ZyYpsenoslpy of R, there is a triplet of indices <,J,k

satiefying p(yi,yj);p(x,yk) s and TZJ .

Proof. The 'only if' part follows directly from Theorem V,4.

We can prove the 'if' part as follows if R 1is compact. Let €>0 and M a
maximal subset of R such that plx,y)>€ for every x,y€M with xZy . Then
u_ = {SE(::)| z€M} is obviously an open covering of R . Suppose a:ESE(xk) ,
k=1,.0.,m+2 3 then p(a:,:ck) <g , k=1},...,n+2 .

Hence for some distinct %2 and J we obtain p(xi,:x:j) <g which implies x, = x
Thus ord Ueén#l .

Since A 1s compact, we can construct a sequence Ul,Uz,... of open coverings

which satisfies the condition of Theorem V.l. Hence dim R<n .

% This theorem is due to J. de Groot [1].
10 This theorem is due to J, de Groot [2].
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Now, let R be a separable metric space with a totally bounded metric p satis-
fying the condition. Then the completion <F*,p*> of <R,p> 1is a compact metric
space. We shall prove that p* satisfies the same condition as p . Assume that
:c*,y‘,...,y;’fl+2 are n+3 points of A* such that

D*(yz,y;.) >D*(x*,yi) whenever Z#j .

Since R 1is dense in R* , we can choose points x and yj of R which are so

close to x* and y‘;. , respectively that
D(yi,yj)>p(x,yk) whenever Z 77 ,

which is a contradiction. Thus p* satisfies the required condition, and hence, as
proved in the above, dim R* <n . Therefore it follows from the subspace theorem that
dim R<n .

11

Corollary. A compact metric space R has dim £ n if and only if one can

introduce a metrie p into R such that for every n+3 points T,Ypseeesly 4
of R, there tg a triplet 1,j,k of indices satisfying p(yi,yj);p(:z:,yk) , and

TG .

V. 4. Another metric that characterizes dimension

Every spherical neighbourhood of any point of £ has a boundary of dimension
n-1 . J. H, Roberts' improvement of the corollary to Theorem IV.12 (p. 85)
shows that we can characterize dimension of separable metric spaces in this direc-
tion. But we must face difficult circumstances to characterize analcgously dimension
of general metric spaces. Because the existence of a metric which satisfies the con-
dition of the corollary to Theorem IV.12 may not be sufficient for a general metric

space R to have dimension < n (even if it holds for every r>0) since

'' ft is unknown yet if this theorem is true for every metric space, In the following

is another characterization of dimension by a metric satisfying a stronger con-

dition:
A metric space R has dim g n if and only if one can introduce a topology-
preserving metric p on R such that if o(Se(x),yi) <g , t=1,...,m+2 for

2

€>0 and points Z,¥,,..., of R, then ply.,y.} <e for some distinct
¥ y 2Yj

n+2
indices %,J . -

This theorem was proved by J. Nagata [2) and a simpler proof was given by
S. Buzasi [1].
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ind R<n 1is not sufficient for that. However, we can develop this idea in general

metric cases as seen in the following.

Theorem V. 6 '2. A space R has dimension < n 1if and only if we can introduce
into R a topology-preserving metric p such that the spherical neighbourhoods
Se(p) ,€>0 of every point p of R have boundaries of dimension < n-1 and such
that {S_(p) |p€R} ie closure-preserving for every €>0 .

Proof. To show the "if" part let us note that
B(s (A)) = B{U{Ss(p) | pEA))CU{B(SE(p)) |pea)
for every subset A of R because {SE(p) |p€R} 1is closure-preserving. Therefore
{B(SS(A))nB(SE(p))IpEA}

is a closure-preserving closed covering of B(SE(A)) . Since dim B(Ss(p));n-l for
every p€A , from the corollary to Theorem II.1 we can conclude that dim B(SE(A))i
n-1.
Now, let F and G be given disjoint closed sets of R ; then by the above remark
we can construct two sequences
v, 31723U2:>... oF ,
Wl DWZDWZD... =¥¢

of open sets Ui and Wi such that

1
dim (U, -U) <n-1 , dim (W, =W ) <n=1
It is clear that U = U:= | (Ui-wi) is an open set and satisfies
w

FclUcR~-G , U-Uc U [(U.-UVJU(N.-W.)]) .
1:='l 1 A A 1

'2 This theorem is due to J. Nagata [5]. S. Buzasi's {1) idea is used here to simplify
the proof. Also note that as indicated by the proof, one can introduce into every
metrizable space R a topology-preserving metric p such that {5 _(p)|p€R} is
closure preserving for every €>0 . £
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The latter relation implies dim (U—U);n-l by virtue of the sum theorem. Thus
we can conclude that dim R<»n .

To show the 'only if' part let dim <7 ; then we can choose a sequence

{Uil £=1,2,...)} of open coverings such that
Ak *kk

a) ul>u2 >U2>U3 >,

b) mesh Um->0 as m>o |

c) (x,U* ) intersects at most n+ | members of U
m+1 m

for every x€R .

Note that for every ACA and integers I;m2<... <mp , the following holds:

m s¥...stau gu yesau ).
m m m,
2 14 2
The easy proof is left to the reader.
Now we define open coverings S(ml,...,mp) for integers ml,...,mp satisfying
1<m, <m,<...<m_ as follows.
=" 2 D

S(U;ml) = U for each UEU”z s

|
_ o2 2,0, ,
S(U;ml,...,mp) = 58%...8 (U,Umz)...,ump) ,
S(ml,...,mp) = {S(U;ml,...,mp) | ve Um] ).

It follows from (1) and a) that

3
S(U,ml,...,mp)CS (U,Um )CS(U,Um ).

2 1
Hence we obtain

(2) S(ml) = Um <S(m],...,mp) <U"r"

1 1

Now we can prove that

S(Z],...,Zq) <S(ml,...,mp)

holds whenever

i 1 m,

m
72 Ve v1729<h72 Ve w12 P
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To do so assume that

3) m =Z],-n,"7~ =1, , m.<l. for some < with 127<p,q ,

1 -1 -1 1 7

and put C = S(U;Zl,...,li_l

from (1) and a) that

) for any U€Um (C = U if <=1) . Then it follows
1 R

§(U;1,,...,1 Jes (e,u, Jestu ).
q Zi m.

S (C,u )Es(m ,---,”7-)
m. 1 1

follows from (3) and S(ml,...,mi) <S(ml,...,mp) is obvious, we have S(Zl""’zq) <
S(ml,...,mp) .
Now, we define a mapping p:RxR-+[0,1] by

m m
) plz,y) = inf {1/2 '+ ... 4172 P|ye5(:,3(m,,..,mp))},
plz,y) =1 if yZS(a:,S(m],...,mp)) for every S(ml,...,mp) .

First of all plx,y) = pl(y,z) 1is obvious., It is almost obvious that plx,y) = 0

if and only if x = y . To prove the triangle axiom for p , assume that
1>plz,y) =a>b=0(3,y) ,

because the case of p(x,y) = | 1is trivial. Let €>0 be given; then by (4) we can

choose l;ml<...<mp and l‘<=Zl<...<Zq such that 2<p, 2<q, Z|<mp , and

(5) z€5(y,S(m ,...,m J}) , 2€S(y,S(1 ,...,1)) ,
m P ! q
a<l/2 l~I-...+1/2p<a+s: ,
Z] l
b<t/2 T 4172 9%<bag
A l m

m
12 Ve v1729<uy2 Ve 12 B L

. < . L wi 1<i<p .
Then m1.=zl-5—m7,+l holds for some % with 1<Z<p

Case ': m.<1 <m. .
1 1 7+

Let UEU , VeEU , and
™ 4

(6) x,yEa(U;ml,...,mp) = A, y,z€S(V;Z|,...,Zq) =B
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be given. Further, put = S(U;ml,...,mi) . Then we obtain

3
(7) AcS (D,Umi+])CS(D,UE +]) .

Since

) E)

3
Bes (v,u, )csn/,u'{l o

2

there is WGUE .l such that y €W and WNV # @ . From (7) it follows that
1

yEWNSD,US ) 48 .

+1

Thus
2 2
x,z€AUV<S(S™(D,U* ), U, yes(p,u, ) ,
Z] +1 ll ll
which implies that

.r,z€S(U;m],...,mi,ll,...,lq) .

Therefore we conclude that
Zl A

1

m m.
ofx,z) <172 + . +1/2 84072 Ve v1/2 9<qgeb e 2e

Case 2: mi__ll , and Misen0, M, are integers in succession, i.e. m.=m

7 T 1-1

mi_2+2-...=m|+(1,-l) .

Case 2.1: ml-l
Then

m m. Zl
Ple,2) <1 = 12 +...+1/2 " +1/2 '<a+b+2¢e .

Case 2,2: ml>l B

Combining (2) and (5) we obtain
T €5(y,U* ) and z€S(y,U* )} .
K L

Hence

:z:ES(z’.,u':"’l‘)t:S(z,Uml )= S(z,S(ml -1)),
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which implies

m. l

m, -1
+o.r1/2 a2

1

n 1
plx,z) 21/2 =1/2

' <a+b+ 2.

Case 3: m. = Zl P My L aeem,  are integers in succession, and

+1< vhere 2<g<7 .
Mg - 1 Mg ==

We may suppose (6) holds. Further put £ = S(U;m],...,ms_ 1) . Then it follows from
(1) and a) that

ACS3(E,Um8) c:s(s,um8 _ ) and
Beg(v,U, Jeuy =u*x <u .,
LU my -

Since y€ANB#@ , these relations imply that

mo=1}) .

:c,zeAUBcSZ(E‘,U’r -l) =S(U;m|,..._,ms_I s

8
Hence

-1 m m l

Mg - ’" 1 Z 1
w1283 2 a2 e v12 2

m
plx,2) £1/2 ! <g+b+2.

Thus in every case we obtain p(x,2)<a+b>+2c , which proves the triangle axiom

for p . Since

S(x,um l)CS~I (x)cs(:c,Um)
i

is obvious, the metric p agrees with the topology of R .
Now for any sequence MMy e s of countably many integers with l;ml <riy Sane

and for UEUm we define an open set S(U;ml,mz,...) by
1

@
S(U;m],mz,...) = kgl S(U;m],...,mk)

and also an open covering S(ml,mz,...) by

S(ml,m ) = {S(U;ml,m )i UEUm .

2 1

IR

Let us assume in the remainder of the proof that

m m

0<e=1/2 '+1/2 2»..., and l;m] <m < ... .

2
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Then we can assert that
(8) Se(:c) = S(a:,S(ml,mz,...)) for every x€R .

For, if y(S(a:,S(m],mz,...)) , then y(S(:t:,S(ml,...,mk)) for k=1,2,... . Thus
m m
plx,y) 21/2 Va2 2+... , which means yiSE(.t) . Namely we obtain

Se(.x) CS(a:,S(mI,m )) .

IR

Conversely, if y€$(:c,$(m|,m2,...)) , then there is U€UmI such that
x,y ES(U;m‘,mz,...) . In view of the definition of S(U,’m],mz,...) we get

x,yES(U;ml,...,mk) for some k2>1 . Hence

7 "k
plx,y) <1/2 " +...+1/2 "<k

which means yGSE(x) . Hence

S(::_,S(m‘,m ))CSE(J:) .

PIRER

Thus we conclude that (8) is true.

To show dim B(Se(x)):n-l , we note that (1) implies
Stu;m mJicsiw, u_yesiwu
LS T e 4 > m2 Cmoo+ | M
Thus we obtain
9 S(Um ymy e ) €SOUU )
SMyplMgese 2m 17
Further note that by ¢) each S(:c,U;! +I) intersects at most n+1 members of
Um . Hence each x€R 1is contained in Sa(U,Um +]) for at most n+1 distinet
1 1
members U of Um . This note combined with (9) implies
1
(10) ord S(m],mz,...):rnl .

Now, let us turn to the proof of dim Bl’SE(:c));n-l .

Let y€B(S€(:c)) be given. Then we can prove

(1) ord Uu <n, k=1,2,... .
¥y m=
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For, suppose

yGUiEUm , t=l,...,n+l .
k

Then, since ﬂ::: U_’: is a neighbourhood of y , by (8)
n+l
(N uv)HINS(z,Sm  m,,...7) #@&.
=1 2 1’2

Hence there exists U’ EUm satisfying
1

xGS(U';mI,m )CS(:!:,S(ml,m

n+1

N N U490 .
£=17%

)) = Se(x) and

gse e VIR

S(U':m‘,mz,.. .
Since

S smsmysenn) = ULSWim,my o yens) | ueumk s USSWm e m) Y,

there is UEUm such that

k
(12) UcS(U';mI,mz,...)CSE(x) R
n+1
(13) S(U,mk,mk+|,...)ﬂ(i2] Ui)¢¢ .

Recall that
yEUinB(SE(:c))#@ s, t= 0.0+l

Thus it follows from (12) that U 1is distinct from each of Ui , =l aiam+l .

Hence (13) implies that
ord S(rrzk_,mk+ I,...);n*r?. ,

which contradicts (10). Therefore (11) is proved.
This implies that the restrictions U'm of Um (k=1,2,...) to B(SE(I)) are
k

open coverings of the boundary satisfyingk

u' >u'  >... , mesh U'm +0 as k+=® | and ord U'm <n .

1 2 k ko

Hence by Theorem V.| we conclude that dim B(Se(.r)) n-1,
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Finally we shall prove that { SE(:c) lz€r} is closure-preserving for every
m m
£>0 . (Note that we still assume e=1/2 |+ 1/2 2+... .) From (8) and (10) it

follows that each Se(x) is a finite sum of members of S(ml,mz,...) . Hence it
suffices to prove that S(ml,rnz,...) is closure-preserving. To do sc we note that

because of the condition c) of {Um} each element UO of Um intersects
|

+1

33(U, Um +l) for at most n+ 1| distinct members U of Um . Hence by (9) U0 in-
I I

tersects at most n+1 distinet elements of S(ml,mz,...) . The covering

S(ml,mz,...) must therefore be locally finite and accordingly closure-preserving.

This nroves {SE(J.') lx€R} to be closure-preserving and the proof of the theorem

is complete,

The following corollary is a direct consequence of the theorem.

Corollary. A4 space R has dimgn 1if and only if we can introduce on R a
topology-preserving metric such that dim B(SE(F)) in-1 for every €>0 and for
evary closed set F of R .



