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CHAPTER 1V

DIMENSICN OF SEPARABLE METRIC SPACES

Although wz are now in a position to establish most of the main theorems of di-
mension theory for general metric spaces, there are yet some theorems which make it
preferable to devote one chapter to separable metric spaces. We can extend some of
them to more general spaces than separable metric spaces. burt it is often true that
their best form is achieved only in separable metric spaces. We can exrend. for
example, Theorem 1V.5 about relations between dimension and measure to non-metrizable
spaces in a modified form. As for the imbedding theorem we can extend it to general

metric spaces !

, but imbedding into Euclidean spaces is possible only for separable
metric spaces.
The purpose of this chapter is to discuss theorems in which separability has its

own meaning and to give an account of classical theorems in Euclidean spaces.

Iv. 1. Cantor manifolds

Theorem 1V. 1. 1Ind # = ind & = dim R for every gseparable metric space & .

Prooy. Since Ind #>ind # is clear, let us show 1Ind R<ind ® .

if ind £ = - 1, then this assertion is obvious. Suppose that Ind 7 < ind R has
been esctablished for every A with ind R<n-1 . Jow, assume ind R=n for a
separable metric space A& with a countable open basis { Uil 1=1,2,...} . e
define open sets Wij’ £,d=1,2,... asfollows. If there exist open sers » satis-
fying UicWCUJ. and ind BfW) <n-1, i.e, Ind B(W) <n=-1 by virtue of the in-
duction hypothesis, then we put ng-=w for one of those ¥ , If there exists no

open set satisfying this condition, then we put V’i‘=0 ..
X

See Chapter VI.6.
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It follows from ind R=n that [Wiji 2,§=1,2,...} 1is an open basis with
Ind B(Vij) X7n-1 . Hence R satisfies the condition of Theorem 11.2, and hence
Ind R<n . This means Ind R<ind R .

Since Ind #=dim R 1is established for every metric space in Theorem II.7, we can
conclude Ind R=ind R=dim R for every separable metric space R .

By virtue of this theorem Ind R, ind # and dim A have the same meaning through-
out this chapter.

It is known that ind R=dim R for any space R which can be expressed as a
countable sum of closed subspaces with the star-finite property (or, more generally,
which has a 0-star-finite open basis)? On the other hand P. Roy [1] gave an example
of a metric space R such that ind R=0 and IndR=1 and thus negatively solved

the famous problem on the equivalence between ind and Ind for general metric spaces 3,

2 See K. Morita [4) and A. Zarelua [1].

¥ Ye shall give here only a description of his example, a complete metric space R
such that ind R=0 but Ind R=1 . For that purpose we introduce the following
notations, We mean by a sequence a function defined on either the set of non-
negative integers or the set of positive integers or any initial segment of either
of them,

X =the set of all finite sequences {z;} of real numbers defined on an initial
segment of the non-negative integers such that z,=0 only in case <=0 . If
x={x£| ©=0,...,n} , then we denote by l:rl theé integer n . Y =the set of all
sequences {y;} of positive numbers defined on the ser of all positive integers
sach that y,7ys if Z#j . If r is a positive number, then Y, denotes the
set of all members of Y which take the value » and we denote by F, a one-to-
one mapping from the positive numbers onto Y, . Z=the set of all sequences
{z;} of positive numbers defined on the set of all positive integers.

Now we define the desired space R as follows: R = A)URz , where R =the set
of all sequences of non-zero real numbers defined on the ser of all positive in-
tegers, Rp=XxYxZ with p(X) , p(Y) and p(Z) denoring the coordinates of a
peint p of Hp . The topology of R is defined by the open basis U consisting
of two types of subsets Ur and Up , of R . Let z={x;}€X ; then we define
Up = UV UU2Z as follows:

' {p€Rlipi=x1. for Z=1,...,| x| . if |=]>0},

v? {pERzllp(X)|;|;cl : pl¥l, ==z, for £=1....,{x} , if 'z[>0}.
where we denote by p(X). the %-th term of the sequence p(X) .
Let n be a positive integer and p a point of R : then we define Un,p =
YOuvtuU~ as follows: i}

Y {qERzlq(X):p(X): qfY) =p(¥) ; q(2), =p(Z); for t=l....,m-1,

if n>1},

—_— -3
. = i .
Ve 078 Apon-g)
where (Y(pj:_.*,j) Jg=1.2....} and {vyfp.n,-,§)|3=1,2,...} are two infinite
sequences of members of X such that

Vyfpom, e, 30| =V px) | +n +1
p(X); for i=0.....|ptX)| ,
Y(p.n.2j) = tp(Ylyes_y for Z=|pfX)|+ 1, )
FRUp(Y)) with r=p(t), o _, for i=|p(x)}+2,

and if n>1 | then Y(p,7n,%,4); = ¥p(2)yr with ©'=<-|p(X)| -2 for
L= iplX)| +3,...,|pX)| +n+1 .,

+

o
v = u
i=
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Definition IV. 1. For n>0 a compact n-dimensional metvic space R <8 called
an n-dimensional Cantor manifold if R - A g comnected for every at most (n-2)-
dimer.stonal subset A of R.

Note that the above condition preceded by 'if' implies dim B22n if &

contains at least two points,

A) Let R be a compact metric space and f a continuous mapping of a closed
subset F into S . If f cannot be extended over A , then there exists a closed
subset G of A such that

i) f cannot be extended over FUG , but

ii) f can be extended over FUZH for every proper closed subset # of & .

Proof. By use of Zorn's lemma ° we obtain a maximal family {Go.: a€A4} of
closed sets such that {G‘a} is totally ordered with respect to the order < , i,e.

either GQCGB or uaDGB for every a,BE€A , and
() f cannot be extended over FUGu for every a€4 .

if we let G =N [Go; ja€A} , then G 1is a closed subset of R . We can see that
f cannot be extended over FUG . For suppose f were extended over FUG , then
there would be, by the corollary to Theorem 1.7, an open set U containing FUG
over which f could be extended. By virtue of the compactness of R there would be
Ga satisfying Ga:U » and hence FUGaCU . But this contradicts (i).

If follows from the maximality condition of {Gﬂ} that f can be extended over

PUH for every proper closed subset & of G .

Theorem IV. 2. Any compact n-dimensional space R contains an n~dimensional
Cantor manifold as a subset (n>0) .

Proof. Since dim R = n, there exists, by Theorem IT1I.2, a closed subset 7 of
7 and a mapping f of R into Sn—l which cannot be extended over R . We get,
by use of A), a closed set G satisfying i) and ii) there.

Let us show that G 1is an n-dimensional Cantor manifold. For if we assume the
contrary, then there exist proper closed sets (}I and 02 of G such that
G = Gl UG2 and dim GI ﬂG2 <n-2 . It follows from ii) that f can be extended to

mappings fl and f2 defined over FUGl and FUGZ respectively. Bv virtue of

7 By Zorn's lemma we mean the following: A partially ordered system P each of whose
totally ordered subsystems has an upper bound, contains a maximal element. In the
present case we consider the system of all the families of closed sets satisfying
the conditions concerned,
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111.3.D) f'] can be extended to a mapping of FUG into Sn-I which is also an
extension of f over FUG . But this contradicts i) of A). (Note that dim G2n

automatically follows as remarked right after Definition IV.I1.).

IV. 2. Dimension of E°

A) Let {5.;%=0,...,5} be the faces of an n-simplex 7 and {F‘il i=0,...,n}
a covering of “Tn for which FiCTn-Si . If K is a given geometrical complex
triangulating 7 , then X contains an n-simplex which intersects every member of
{F.li=0,....m} 5.

Proof. We assign to each vertex p of X a number <¢(p) for which pEFi(p) .
To each r-simplex T = [po....,pr] of K we assign the set {i(po),...,‘i(pr)} of
numbers, which is denoted by <Z(T) = {i(po),...,i(pr)} . Suppose {TJIJ‘ l,00.,k}
are all the m-simplexes belonging to K . Denote by s the number of Tj's such
that i(TJ.) = {o0,1,...,n} . Then we shall prove by induction on n that & |is
odd,

In case of n=1 this assertion is clearly true, because 0 1is assigned to a
vertex of Tl and | to another vertex.

Now we assume this assertion for (n-1)-simplexes to prove it for the n-simplex
7" . Let g, be the number of the (n-1)-dimensional faces 7' of TJ. such that
Z(7') = {1,...,m} . Then it is easily seen that 8,7' =0, | or 2. For, if 8,#0 ,
then there exists a face T' = [pl,...,pn] of Tj = [po,p‘,...,pn] for which
“Ur') = {1,...,n} . 1f i(po) =0, then T' 1is the only face satisfying this con-
dition, and hence 8. =1 . In this case we note that i(TJ.) ={o,1,....n} .

1f l;i(po);n , then clearly sJ.=2 . We denote by t the number of such Tj's .
Thus we obtain

] §.-g+2t .,
(1) | %

J

X

On the other hand, we denote by u the number of (7 -1)-simplexes T' of K for
which

29(r') = {1,....,n},
(2) n
7' 1is contained in u s.,
. 7
1=0

® This proposition is due to E. Sperner [!] and called Sperner's lemma. As for

elementary knowledge of combinatorial topology see P. Alexandroff -H. Hopf [1] or
J. Nagata - Y. Kodama [1]. See also the introductory portion of VIII.! especially
the footnote to Example VIII.] for the definition of a complex.
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and by v the number of the n- l-simplexes T" of K such that (7)) ={1,...,n},

0
of T, d=1....,k} ., and the latter type faces just two of them. Therefare we ob-
k

. . . n . .
and T" 1is not contained in U L= Si . The former type of simplex faces just one

tain X 3J.—‘u+2v . which combined with (1) implies g8+2t=u~+2v .

=1
Thus, to prove that s 1is odd it suffices to show that u 1is odd. We note that

if T' 1is an (n-1)-simplex of K which satisfies (2), then T' must be contained

r

in So . For, if T is contained in Si for some 7 different from O , then

from E‘iCTn—Si it follows that Z(T') cannot contain ¢ contradicting (2).
Hence u 1is the number of the (n- l)-simplexes T' of X contained in So with
£(?') ={1,...,n} . Applying the induction hypothesis to the covering {FiﬂSOI i=

i,...,n} of the (n-1)-simplex S we conclude that u 1is odd. This completes

0 k]
the proof that s 1is odd, and hence X contains at least one n-simplex 7, with
i(TJ.) ={0,l,....n} , i.e, a simplex which intersects each of (Fil 2=0,....0} .

Now we zre in a position to prove

Theorem IV. 3. dim 7" = n .

Prooy., Since dim E’"_f'n is deduced by the product theorem from dim £ <1, in
view of T cE' we obtain dim Tn;n . Hence it suffices to show that dim Tn;n .

Let {Sil £=0,....n} be the faces of T' . Then we consider the open covering
{Tn—Si|i=0,...,n} of T . Suppose U = {Vi|i=0....,n] is a given open
covering of 7" for which ViCTn—Si . Then there exists a closed covering
{F.li=0,...,n} of 7" such that F.evV, .

Now we shall show that N ;,}=0 £, $0 .

If the contrary is true, then since 7° is compact, {Tn—Fi[ £=0,,..,n}
is a uniform covering of 7 . Hence there exists €>0 such that for every peTn
Se(p)CTn-F'i for some 7 .

We cons:ruct a triangulation K of T each of whose simplexes has diameter <€ .,
Then every simplex of K 1is contained in some Tn-Fi , but this contradicts A).
Thus we obtain M 2=0 Fi #0 , which implies N 7_2:0 V’L' #0 . This means ord V>n+1.

Therefore we conclude that dim Tn;n . which completes the proof,

Theorem IV.3 implies dim I"=n , dim s"<n aund especially
Theorem IV, 4. dim E' = n .

B) Let A and B be countable subsets which are dense in e . Then there exists

a topological mapping of " onto itself which maps 4 onto B .,

Proof. 1In case n=1 we write £ = {aii £=1,2,...} and B = {bil £=1,2,...1}
to establish a one-to-one mapping Ff between A and B . First we define f(al) :bl'
Suppose we have defined f(ai) = b’”i , £=1,...,k=-1 , so that f preserves the

natural order, i.e. ai<aj implies f‘{az.)<f(aj) . Then we define f(ak) as fol-
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lows, We denote by My, the first number of [fk = {m|m#m’,...,mk_ . if tgk-1
then a;<a; or a,>a, implies bm-,;<bm or brni>bm respectively } . Note that
ﬂk is not empty because B is dense in £ . Then we put flap) = b”’k .

It is easy to see that f 1is a one-to-one mapping between A and B preserving
the natural order. To prove by induction that the mapping is onto. assume that
{bl""’bi- | YefrA) . Then {1,...,2-1 }C{ml""’mk} for some k . Assume
iE{ml,...,mk} and let e.g.

b <b <...<} <b,<b <,..<b_ .
1™ Ti-1 P Tk

<a <a. for some w>k . If w is the
-1 w g

first number satisfying this condition, then mw=i , i.e. f(aw) = bi€f(ﬂ.} .

Then, since A 1is dense, we obtain aj

We can extend f to a topological mapping from E'] onto itself as follows. For
‘={a|a<x,a€A} and

Ay = {aja>x , a€4} . Then A, and A, are subsets of A such that

B = j‘(A]) Uf(AZ) and such that b <b' whenever b€f(A]) and b'Ef(Az) . Note

that f{A]) has no maximum, and f‘(Az) has no minimum. Since 3 = E‘I , there is one

a glven point x of E‘ -4, we put A

and only one number ¥y such that bEf(Al) or bEf(AZ) implies b<y or b>y ,
respectively, Setting f(x) = y , we obtain a topological mapping (= homeomorphism)
f from E‘ onto itself which maps 4 onto B.

In case n=2 we suppose A = {ai:(ai‘) af:) | 2=1,2,...} and
B={b,=(b,, bh)|i=1.2,...}

We may assume that A satisfies ail # aJ.I and aiz 4 aJ.2 whenever % #J ,
because, using the previous argument on E‘ . we can map A to a dense subset of
2%Q by a homeomorphism ¢ from E’2 onto itself, where @ denotes the set of all
rational numbers. Then consider the rotation € of E’Z around the origin by w/6 .
Now 0+¢ is a homeomorphism of E? onto itself which maps A to a dense subset
satisfying the above condition. We assume the same condition for B , too.

To define a one-to-one, order-preserving mapping f from 4 onto B, first let
f(al) = bI . (The following definition of m, will indicate what we mean by 'order-
preserving'.) Assume that we have defined fla;) = b, : for 7<k-1 . Define
”k: {m] m;‘m‘,...,mk_l ;3 if £<k-1 , then ail < ak] (a::>a;() implies

1 1 1 I 2 2 2 2 . . 2 2 2 2
b”’i <b,, (b’"i >b,) , and a;” <a, (ai >a, ) implies bm.,: <bm (bmi >b,") }. Denote
: . . , -
by m, the first number of N, ~and define f(akz b’"k .
f(A) = B can be proved analogously to the one-dimensional case. Then it is also

P 2 :
easy to extend f to a homeomorphism from £ cnto itself, We can prove the

. n o, c . .
assertion for £ in a similar way, but the details are left to the reader.

Theorem IV, 5. Let S be a subset of E' . Then dim § = n if and only ¢f S

contains an open set of £
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Proof. Since the "if" part is clear, we suppose § contains no open set to show
dim S<7n-1 . Then -5 is dense in E° , and hence we can choose a countable sub-
set 4 of E'-S such that A is dense in E' . By E’Z we denote the set of all
points of z* exactly k of whose coordinates are irratiomal. Note that dim E’Z=O
for each X follows from the sum theorem, Then Eg is a countable set which is
dense in E' . Hence, by use of B) we can construct a topological mapping f of £

onto itself which maps 4 onto E! . Hence S is mapped into En—E’g by f . Since

o]
En—Eg = U ;f:] E’Z , and dim E:é=0 ,Z=1,...,m , it follows from the decomposition
theorem that dim (En—E'g) <n-1 . Therefore dim §<n-1 , which proves the "only

if" part of this theorem.

1V, 3. Some theorems in Euclidean space

In this section we shall give an account of some classical theorems due to Brouwer

as examples of interesting applications of dimension theory.

A) The identity mapping f from I* onto itself is essential,

Proof. 1f we assume f to be inessential, then by use of a projection to the
boundary Sn-l of In from an interior point of _Zn we can construct a continuous
mapping g from 7 into 577! such that gl(q) = q for every qESn_l . Then,
since dim I = n s by Theorem III.5 there is an essential mapping % from " onto
itself. Now ge+% is a continuous mapping from I ineo Sn-lgIn . If
p€h-l(sn- |) , then g+ h(p) =h(p) , which contradicts the fact that % is essen-
tial. Thus f must be essential.

In a similar way we can also prove that the identity mapping from 5" onto itself

is essential.

Theorem IV, 6 (Brouwer's fixed-point theorem). Every continuous mapping f of
% into itself has a fired point, i.e. a point pEIn such that fi(p} =p .

Proof. Let us assume the contrary; then there exists a continuous mapping f of

I into itself such that f(x) # x for every point €I . We regard gt as

the boundary of I . Then for z€I" we denote by g{(xz) the intersection of Sn-l
with the ray beginning at f(x) and passing through x . One can easily see that g

. . . . n- . -1 _.
is a continuous mapping of I* into § and leaves each point of S fixed.

This contradicts A).

B) Let S5 be a closed subspace of ' . Then a point p of 8§ 1is contained in
the boundary B(S5) of § with respect to ' if and only if for every neighbourhood
V(p) of p in 5 there exists a neighbourhcod #(p) of p in S such that
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U(p) cV(p) and such that every continuous mapping of S-U(p) into "' can be

continuously extended over S .

Proof. To show the "only if'" part, for the given neighbourhood V(p) of a point
p €S we choose a spherical neighbourhood Sfp) in E® such that Ulp) =
S(p) nsS<v(p) .

Let f be a given continuous mapping of 5-U(p) Iiato "~ . since B(S(p)) =
Sn-I , we obtain dim B(S(p)) <n-1 . Hence by use of the corollary to Theorem III.2
we can extend f to a mapping g of (S-U(p))UB(S(p)) into Sn-I . Now, choose
a point q€S(p) -S and define @ as the projection from g on B(S(x)) . Then

we get an extension 7 of f over S5 by putting

h(x) = glo(z)) for every z€UNS ,
h(x) = flz) for every x€S5-U.

To show the "if" part we suppose p 1is an inner point of § . Then there exists
a spherical neighbourhood S(p) of p satisfying S(p/c$ . Let U(p) be an
arbitrary neighbourhood of p contained in S(p) . We denote by f the projection
of S-U{p) from p onto ' vhich we regard as the boundary of Sfp) . Then f
cannot be extended over S . To show this we suppose ¢ is a continuous extension
of f over 5. By restricting g to 3(p) = I we get a continuous mapping g’

of I" onto Sn—l which fixes every point of Sn-l

. But this contradicts A).
Let f be a topological mapping of a space AR onto a space S ; then f maps
each open set A of R to an open set B of S . On the other hand if f 1is a
topological mapping of an open set A of R onto a subset B of S, then B may
not be open in S (e.g. let R =4 = g, s=£2%,8=1 {x,y)€E2|y=0}) . How-
ever, if R =S = I , then B must be open as the following theorem asserts.

Theorem IV. 7. Let f be a topological mapping of a subset A of £ onto a
subset B of . If p€A is an imner point of A, then ff(p) is also an inner
point of B . In particular, if A 1is open, then B s also open.

Proof. This theorem is a direct consequence of B) because B) characterizes the
inner points of a closed subset S of o only by the topological properties of S
itself. To be more precise, choose p€1Int 4 ; then there is €>0 for which
WCA . Note that _S?p_) and f‘(m) are both closed sets of E . Hence by
B) we obtain that f(p)€1Int f(W)CInt B.

1V, 4, Imbedding

The purpose of this section is to topologically imbed a given separable metric

space R of dimension < »n in a 2n+1-dimensional Euclidean space. More precisely,
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. : . . 7+ . : -
we can construct a universal zn -dimensionzl set in E’2 , L.e. a set in which every
separable metric space of dimension < n can be imbedded, but in which no space of
dimension > n can be imbedded. Generally speaking. we cannot imbed R in a

Euclidean space of lower dimension as will be shown in the following.

Example V. 1. We consider a tetrahedron [ao,al,az,a3] in £ . We take two
poiats b, ¢ on the edges [ao_,a3 and [al,aZ] respectively such that » and ¢
do not coincide with any vertex. Then the six edges of the tetrahedron plus the seg-
ment [b,e] are intuitively seen to form a one-dimensional space which cannot be
. . 2
imbedded in £ .

Definition IV. 2. Let F be a contimuous mapping of a space R 1into a space S
and V a covering of R . If for every point y of S there exists a neighbourhood
Uty) of y such that f—z(u(y))cl/ for some VEV , then f is called a V-map-
ping.

A) Let us denote the metric space of all continuous mappings of a secparable metric

space R into 1.2n+l by C(."i’,Izn+ l) . Let L be an n-dimensional plane of

I2n+l and V a finite open covering of R . Then

DiL,V) = {f|FeCRI™* ), FIEFNL=0, 7 is a V-mapping)

2n + |

is an open subset of C(R,T ) .

Progf. To prove A) it suffices to show that a given point f of D(L,V) 1is an

interior point of it.
For every point x of I2n+] we fix an open neighbourhood Ufx) of x such
that f-l(U(:t))CV for some VEV . Since I"%' is compact, there exists a

n+ | .
}, l.e.

finite subcovering { U(.'L‘J-) | d=1....,8} of {U(z)]|zx€ r

IZn+l :

J

nCo

(x,) .
IU.':LJ)

. n+1 . P
By virtue of the compactness of 1'2 there exists a positive number & such

2n+ 1

that for every x €I and for some J

) Sé(x) cilz.) .
J
Since f(R) and L are compact because of the compactness of I2n+l . for the
metric p of I2n+] we have D(fiR),L) >0 . Hence we can choose & such that

(2) 8§ <pf(f(R),L) .
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Now, let g be any mapping satisfying

(3) p'(f,g) <3 6,

)
where we denote by p' the metric of C(R,I"”' 1) . Let x be a given point of

! and put N = g-l(Sié(x)). We denote by y a fixed point of N . Then we
s

assert that
(%) F CSG(f(y))CU(J:j)

for some J . For, if 2z €N , then gly) €g(¥) cS_gé(x) , and g(z)Eg(N)cSls(:c) .
This implies p(gly), gfz)) <38 . ¢ :

On the other hand, from (3) it follows that poff(y), g(yl}) <%6 , and
olglz), flz)) <36 .

Therefore we get pf(f(yl),f(z)) <'§6 <6 , which means f(z) ESé(f(y)) . Since 2z is
a given point of N , this means f(N)CS‘S(f(y)) . The latter half of the relation
(4) follows from (1), Thus from (4) it follows that

¥=g (s (x))ef otz ) ey
66 J

for some VEV . The last part of this relation is deduced from the definition of
U(x) . Hence g is a V- mapping.

Furthermore, we can deduce from (2) and (3) that g(RINL=¢ . Consequently
g€D(L,V) , which proves S%G(f)CD(L,V) . Therefore f 1is an interior point of
D(L,V) .

B) Under the same assumption as in A), D(L,V) 1is dense in C(R,I2n+ l) if
dim R<n .

Proof. Let f be a given point of C(R,I2n+ I) and &8 a given positive number,

We shall construct g such that p'(f,g) <8, g€D(L,V) . First we let

m _ -1 . _
) 2l ooy S%é('rj) , and W= {f {S%G(IJ-))IJ—],...,W} .
J=1

Then, since dim R<n , we can choose a finite open covering N of R such that

(2) M <vaw,
(3) ord Nén +1 .
. 2n + 1
Suppose N = {Nil t=1,...,8} ; then by use of the property of I we can
choose vertices x(Ni) in IZn+ ! and Pps-evsP, 4 in L[ such that

) PIFN.), (N)) <6 , and
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(5) the vertices :c(NI),...,m(NS), PisevesPyyy s
are in a general position, i.e. if 0<m<2n , then any
m+2 vertices do not lie in an m - dimensional plane of E2n+‘ .

(Note that L 1is spanned by p‘,...,pn+l.)

Now we define a Kuratowski mapping gEC(R,I2n+ h by

38
; £ 1 plz, R -8 Jz(H_)

(6) glz) = 5
1 ofz,R-N_)
i=1

where each .r(lli) should be regarded as z position vector. To show p'(f,g) <8 , we
suppose x 1is a given point of R . If xQ?ii R ther: o(;c,.’?-Ni) =0, If xEHi
then we obtain from (1) and (2) that o(ff:c),f(y)) <36 for every yEN_i . Hence
from (4) it follows that pff(z),z(N.)) <8 . Hence by (6) p(f(z),glx)) <§6 holds
for every x €R . This proves o'(f,g);§6<6 .

It only remains to prove g€D(L,V) .

Suppose Ni]*"‘*”i are all the members of N which contain a given point p
of R . Then we denote by L(p) the (t-1)-dimensional plane spanned by
.r(Nil),...,:x:(Nit) . Since there is only a finite number of distinct planes L(p) for

p running through R,
n = min { o(L(p),L(p')) | Lip) AL(p') =0 }>0 .

Then any two of those planes L(p) and L(p') either meet or else are at a
distance 2> n from each other.

We consider a given point z of 2 e p,p’ Eg_l(Sln(J:)) :+ then
olg(p),gfp')) <n . Since g(p) €L(p) and g(p') €L(p') folldws from (6), we have
o(L{p),L{p')) <n . Therefore from the property of n we obtain

€] Lip) NL(p') #0 .

Suppose Lfp) 1is spanned by x(ﬂil),...,x(ﬂi) and L{p') 1is spanned by
.r([ljl),...,;t(ﬁju) . Then by (7) ::(H.,;l),...,x(llit) 5 x(le),...,:c(NJ-u) lie on a
(t +u-2)-dimensional plane. On the other hand, it follows from (3) that t<n+1 ,
u<n+1; hence t+u<2n+2 , Thus, in view of (5) we conclude that at least one
of the x(llil),...,x(ﬂ,jt) coincides with one of the I(le),...,x(ﬂju) . Suppose,
for example a:(Nil) = ::(NJ-]) , i.e. N; = W3 - T}—u]an this implies p, p’€1$lil , and
hence p'€S(p,N) for every p, p' with p,p'€g {Sln(“’)) .

Therefore, by (2) g—](S%n(x))cS(p,N)cV for some VEV . Hence g is a
V-mapping.

‘Now, let p be a given point of R and ”il---"” all the members of N which

it
contain p . Since I(Nil),...,:c(lvit) s PjseeesD, ,, are in a general position by

(5) , we obtain p(L(p),L) >0 . Since there is only a finite number of distinct ZL(p),
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n' = min { p(L(p),L) | pER}> 0.

Then p(L(p),L)2n' for every p€R . Since g(p) €L(p) . we have olg(p),L)} >0’
for every p€R . Therefore we can conclude that -gan=0 , which proves
gE€D(L,V) . Thus the proof of this assertion is complete.

We should note that this proof implies the following assertion, which will be used
later, because the mapping (6) maps R 1into an n-dimensional polyhedron in Iz’Hl
whose vertices are :z:(Nl),...,:r(Ns) .

C) The set of all mappings in C‘(A’?,Izrz+ h
polyhedron in I2n+] is dense in C(R,Izn*l) if dimR<n .

which map A into an n-dimensional

Theorem IV. 8 (Imbedding theorem) ®. A separable meiric space R has dimension
< n if and only if R 1is homeomorphic to a subset of

=t lg gt Lyginrly | ygintl

5 n+l n+2 “en+1

} >

2n +1

where we denote by Ef:n +1 the set of points in E exactly 1 of whose coor—

dinates are irrational.

Proof. To begin with, from the product theorem and the sum theorem we can deduce
dim E?in+] =0, t=n+l,...,2n+1 , Hence by use of the decompositon theorem we ob-
tain dim S<n , which proves the "if" part of this theorem,

Conversely, let dim R<n to prove the "only if" part, For every subset
(Z,,....7,

} of {1,...,2n+1} and every set RPN of =n+1 rational

+ |
numbers, we define an 7 -dimensional plane

+1

L={(xl,...,x }.

)|a:i L WETRIE e

n+ 1 nt

Then we denote by LI’LZ"" the totality of those planes. We note that

<«
S:IZn+l_ U Li'
=1

Moreover, we take a countable basis {V],!’Z....} of A and construct, for any

pair Vi B VJ' with -I}ic:VJ. , an open covering {VJ.,R-T-/i} . Then we denote by
VI’VZ’”' the totality of those open coverings. Now. we denote by DfL,, Vk) the

subspace of C(R,Izn+ I) defined by

2n+ 1

D(Ly, V) = {f| fECRT ), FRINL, = ¢, f is a V,-mapping}.

¢ This theorem is due to K. Menger [1]), G. Ksbeling [1], L. Pontrjagin - G. Tolstowa
(1], and W, Hurewicz [4]. The present proof is due to C. Kuratowski [3].
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Since by A) and B) each D(Lk, Vk) is open and dense in the complete metric space
C(ii’,l'zn+ ) , from Theorem I.5 we obtain N :=‘ D(Lk, Uk) #0.

Let f€ﬂ:=‘ D(Lk’ Vk) ; then f 1is clearly a continuous mapping of R into S .

Let W(p) be a given neighbourhood of a point p of R . Then there exist open
sets Vi and Vj with pEViC_VichcW(p) . Since f is a Uk:r:\apping for every
k , there exists a neighbourhood U(f(p)) of f(p) such that f (U(f(p)))CVj or
f-l(U(f(p))) CR—Vi . Since from pEVi it follows that

pef wirpnIny 4o,

we conclude f_l(U(f(p))JCVj. Hence, if q€W(p) (3V.) , then flq) £U(f(p)) .
This means that f is a homeomorphism between R and a subset f(R} of 5.
We shall see in the following that the same technique of imbedding produces various

interesting results.

IV. 5. ¢ -mappings

It is natural to try to approximate n -dimensional compact sets in Euclidean space
by elementary figures like n - dimensional polyhedra. In the present section we shall

7

give an account of Alexandroff's theory ' in this area which is also of great im-

portance in the history of topology itself.

Definition IV. 3. 4 contiruous mapping f of a space R <into a space S <8
called an € -mapping if the trwerse image f-l(q) of each point q of S has

diameter < € .

A) Let R be a compact metric space with dim R2>n . Then there exists a positive
number € such that R cannot be mapped by any € - mapping onto any metric space §

of dimension < n-1.

Proof. Since dim R>n , there exists such a positive number € that any open
refinement U of S_ = {Se(.r) ] z€R} has order 2 nm+1 . Suppose f is an
€ -~ mapping which maps R onto a space S of dimension < n-1 . Then by virtue of
the compactness of R , we can choose &(e) >0 such that plx,y) 2e in R implies
o'(flx), f(y)) 28(e) in S .

See P. Alexandvoff [!]. In this connection there is another interesting aspect of
investigations using the concept of inverse limit. H., Freudenthal [1] proved that
a compact metric space R has dim < n if and only if it is homeomorphic with
the inverse limit of an inverse sequence of compact polyhedra P; of dim < n.
S. Mardefi¢ (1] extended Freudenthal's result to compact Ti-spaces. See also

K. Nagami [3], [4], B. Pasynkov (1], [3], and V. Kljudin [}
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In view of dim $<n-1 we can choose an open covering V of S satisfying
(1) ord V<n and V<S = {sé(e)(y)lyes}

Let V be a given element of V ; then Vcsé(e) (y) for some y€S . Choose a
fixed point :rEf_l(y) ; then by the property of &(¢€) f_l.’V) CSe(x) .
Hence {f-l(V) | VEV} is an open refinement of SE and has order < n by virtue

of (1). But this contradicts the property of SE .

B) Let R be an n-dimensional compact set in a Euclidean space " . Then for a
given positive number € , R can be mapped onto a polyhedron of dimension < n by

such a continuous mapping f that plx,f(x)) <e for every T €R .

Proof. The first half of the proof is quite analogous to that of the imbedding
theorem. For a given €>0 we denote by V = {Vil t=1,...,86} an open covering of
R such that

(1) v<s={sle(p)|pe1?} ,
[
(2) ord V<n+1 .
With any member Vi of V we associate a vertex :r(Vi) satisfying
i
(3) p(x(Vi),Vi) <:e

such that n+1 of the :c{Vi) , t=1,...,5 , never lie on an (n - 1)-dimensional

plane. Then we define a Kuratowski mapping g by

g
; Z ]o(:c,R -V z(v)

glx) =

)
olx,R-V.)
i=1 e

Let V‘il""’v‘it be all the members of V which contain a given point x of & .
Then g(x) 1is contained in the simplex [x(ViI),...,x(Vit)] . Since from (1), (3)

and :r:€Vik it follows that p(x,:c(Vik)) <§€ , we obtain
(4) plz,g(x)) < e for every x€R.

Thus ¢ is a continuous mapping which maps R into the polyhedron P composed of
such simplexes [x(Vi]),...,.r(Vit)] .
Now, we construct a triangulation of P into simplexes TI""’Tr with diameters
1
less than 3¢ . We assume

dim Tl;dim T2_>‘...3 dim Tr- .
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If T ¢g(R} , then by the compactness of gfR) , T —-g(R) contains an interior
poiat p of Tl - Hence we denote by ¢, the mapping which projects T] Ng(7) onto
the faces of T, from p while it leaves the other points of g(R) fixed. If
T <g(R} , then we regard g, as the identity mapping. We define Gyseeesdy for
';'2,....,1"

. in the same way, Then f = Gpe 9,9 is obviously a continuous mapping of

A onto a polyhedron P' contained in P .
Since (2) implies t<nm+] and accordingly dim P<#n , we have dim P'<n . On the

other hand, since
S(Tj) = diameter Tj<§€ s d=l...,r

we easily see that p(g(x),f(x}) <i‘€ . This combined with (4) proves that pfz,f(x))

<e for every x€R .

Theorem IV, 9. 4 compact set R in a Euciidear space has dimension <n if and
only i for every £>0 it can be mapped onto a polyhedron of dimension < n by

such a continuous mapping f that plz,f(x)) <€ for every z€R %,

Procy. The "only if'" part is a direct consequence of B). On the other hand, a
mapping fF satisfying this condition is clearly a 2e-mapping. Therefore the "if"

part is a direct consequence of A).

Theorem IV. 10. 4 compact metric space R has dimension

2n if and only if for
n

every €>0 it can be mapped onto a polyhedron of dimension by an € -mapping.

Proof, Let dim R<7n ; then by the imbedding theorem R can be mapped by a topo-

. 27 + . .
logical mapping g onto a compact subset § of e : . Since R 1is compact,

there exists 6>0 such that g_l(Séfy))CSAE(.r) for every y€E‘2n+| and some
x€Ff . Then by use of B) we can map S ontoaa polyhedron P of dimension < n by
a continuous mapping f which satisfies p(y,f(y)) <8 for every y€S . Thus §f
satisfies f—l(z)csé(z) for every zEP . Hence we obtain g 'f '(z) CS’;E(m) for
every 3 €P and for some x€R . Thus feog 1is an € -mapping of R onto P .

The "if" part is a direct consequence of A).

IV. 6. Pontrjagin-Schnirelmann's theorsm

In the following we describe another good example of an application of the imbedding

technique,

! It is easy to see that this theorem is valid for every compact set A in a Hilbert

space, too.
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Definition IV. 4. Let R be a metric space with metric p and let €>0 . Then
N(e,R,p) = inf { |a| | a ie a finite covering of R with meshagel, where |al|
denotes the cardinality of a .

The following proposition is easy to prove, so that the proof can be left to the

reader.

A) Let P be an n-dimensional polyhedron with Euclidean metric ¢ . Then
c/cn‘iﬂ(e,P, pJ ;c'/sn
for some positive constants ¢ and e¢' 1if €>0 is sufficiently small,

The above proposition implies that

- D
n = din P = lin —lBA(EF0)
€+0 &
Generally we can characterize dimension of separable metric spaces by use of the

function WN(e,R,p) .

B) Let S be a compact subset of E’k with dim §27n , where k2>n . Then for
some n - dimensional coordinate plane E? of Ek dim 7(S) = n holds, where T

denotes the projection from E’k onto £ .

Proof. Let L be a covering of Ek by congruent k - dimensional closed cubes with
faces parallel to the (k- I1)-dimensional coordinate planes such that the interiors of

any two elements of L do not intersect and such that ord L = k+1 ., Such a cove-

ring may be called a Lebesgue brick covering, and an example is the covering of Z‘:‘2

by the squares whose vertices are (2m,4n), (2m+2,4n), (Zm+2,4n+2), (2m,4n+2) or
(2m+1,4n+2), (2m+3,4n+2), (2m+3,4n+4), (2m+1,4n+4), where m and n are
arbitrary integers. Obviocusly we can comstruct a Lebesgue brick covering of arbit-
rarily small mesh.

Now, denote by EI"" ’EZ all n -dimensional coordinate planes in E‘k and by

Tli the projection from E’k onto £. . Assume that dim ‘ni(S);n—l R A IR A

z
Denote by FI.FZ,... the collection of the intersections of n+1 elements of L .
Since S 1is compact, only finitely many of them, say Fl,...,Fs intersect S , and
x
. J > .
p(S, UJ:'=J+l FJ) 0

Now, Fl is contained in a (k - n)-dimensional Euclidean space E'k_n which is

perpendicular to some E‘i . Thus 'ﬂi(F]) is a single point of Ei . Since

dim Tri(S)f_n-l , Ei - Tri(S) is dense in I, . Hence we can map S to tl(S)CEk

by an arbitrarily small translation r‘,] parallel to Ei in such a way that
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t‘(S)ﬂFl =@ ‘and p(tl(S), u Fj)>0 .

Jj=s+l
By a similar argument we can find a translation tz such that
o«
tztl(S) ﬂFz =@ and p(tztl(s‘), F’I Uj:l:+| F.)>0.

Continuing this process, we obtain a translation ¢ such that ¢t(S)n (U;__ | Fj) =9@.
Then the restriction L' of L to t(S) is a closed covering with order <n. It
is easy to see that L can be slightly swelled to an open covering U of ¢t(S)
with order < n . Since mesh U can be arbitrarily small and t(S) is compact, this

implies that dim t(S)<n-1 , which is a contradiction, Thus the proposition is

proved.

C) Llet R be a compact metric space with dim R>n ., Then there is a continuous
mapping ¥ from R onto an n-dimensional subset R' of E°' such that plx,y) >

o' (Yfx) , Yly)) for every x,y€R , where p and p' denote the metric of R and
-4 , respectively.

Proof. Let al,...,akER be fixed points., Then define w:R*E‘k by

p(al,x) p(ak,a:)
olz) = —— ey .
/k 7k

It is easy to see that ¢ satisfies plx,y) 2p'(0fz) , ©ly}) . Now we can select
@yyenesdy  as follows to make ¢ satisfy another condition, namely dim @(R)3>n .

Let € be a positive number which satisfies the condition of 5A) Select Qpsenes@
in such a way that for each z€R there is a, satisfying p(ai,x) <g/2 , which is
possible because R is compact. Now, let x and y be two points of R such that

p{z,y) >€ . Then choose a. satisfying the above condition, which implies that
p(ai,y) 2polx,y) - p(ai,:) >ef2

and accordingly p(ai,.’c) #o(ai,y) . Thus @(x) #9(y) . This proves that ¢ 1is an
€ -mapping. Hence by 5 A) we get dim @(R) >n . By B) there is an n -dimensional coor-
dinate plane " such that the projection T(OfR)) = B' of @(R) ih E' has

dim > n . Now the mapping =7 «@ satisfies the desired condition.

D) Let <R,p> be a compact metric space with dim R>n . Then N(e,R,p) 2,0/5’1

holds for a positive constant ¢ and sufficiently small €>0 .

Proof. Let @ be a continuous mapping of R onto R'cE’ satisfying the condi-
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tion of C). Then since dim R'>n , by Theorem IV.5 R' contains an n-dimensional

simplex, Hence it follows from A) that N(e,R,p) 2N(e,R',p’) ;c/e’1 for some ¢>0 .

E) Let R be a compact metric space with dim R<n . Then there is a topological
mapping g from R into I2n+l such that

n+d.

H(ea.,g(R),p);l/si L i=1,2,...

for some monotone decreasing sequences {Ei} and {57_-} of positive numbers, both

. . B 2n + |
converging to O , where p denotes the Euclidean metric of T .

Proof. The proof will be carried out by repeated use of 4 A) and 4 B) (actually
the method used to prove 4 B)).

Let Vl >V2> .... be a sequence of finite open coverings of I2n+l with
mesh V; >0 and ord V‘L.;n+l . Denote by D(V‘i) the set of all Vi—mappings in
C(R,IZN*1) | First select a Kuratowski mapping g, ED(Vl) (see the proof of 4 B)).
Then g](R) is a compact subset of an n-dimensional polyhedron in IZ'H.l . Hence
by A) N(e,gl(R), p) ée/en holds for a constant ¢ and sufficiently small €>0 .
Thus we can select £ and (SI such that

n+d

O<e <1, O<6]<l , and N(t»:].g](ii‘),;_))<l/(»:l

]
and a finite collection Ul of open sets of 12n+l which covers g](R) satisfying
mesh U <2¢, and | u | =dle,,g (R),p) . Put

n, = o(gl{i?),Izn+l -u U|)>o .

Choose 51 >0 such that
E] <min { ]/2,n|) , and SE Zg])cD(V]) (see 4 A)).
]

Next select a Kuratowski mapping gZED(VZ)' ﬂSg](gl) . Then gz(R) is a compact
subset of the intersection of an n-dimensional polyhedron and Snl(g](R))CU U] .

Thus we can find €y and 62 such that

0<g, <min { 1/2,e|} . 0<52<min { 1/2,5‘} , and

n+62
H{ez,gz{.‘?),p) < l/a2

and a finite open collection U2 in IZ’H-I which covers g,(R) satisfying i <u,,

2%
mesh U, <2, , and | U, | =N(e,.g,(R),0) . Put n2=p(gz(m,.r2""‘-uu2) and
choose 52>0 satisfying
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. 2 —_——
£, <min {1/2%,n, }, and 552(92) <D(V,) nsgl(gl) .

Continuing this process we obtain monotone decreasing positive sequences {Ei}
and {673} , a positive sequence {ﬁi} R gie D(Ui) s, £=1,2,... and finite open
collections Ui , t=1,2,... in I?%* 1 guch that

(1) 1lim €i=11m 5i=0 ,
@ g <12,

3 Sgifgi) cD(Vi) nSg

7 - l(gi' ’) ’

) gi(l?)c-UU'I:J
(5) ui¢l

(6) mesh Ui;ZEi s

<ul, ,
1

n+d,
= 1
N | u. N(Ei,gi(R),p) < l/si
Then by (2) and (3) {gi] converges to g in C(R,Izn+ I) . It follows from (3)
that gEﬂ‘.»_ D(V.) . Hence g is a topological mapping from R into I2n+l .
=1 1

From (4) and (5) it follows that g{R} 1is covered by every Ui , £=1,2,... . By
(6) and (7) we get

n+61:
N(Zei,g(}?),p)ﬂ/ei , t=1,2,...

By modifying the values of €; and Si slightly, we obtain the validity of E).

Definition IV. 5. Let < R,p > be a metric space. Then k(R,p) =

. _ log N(g,R,p)
sup { inf { _sﬁg—é— |0<€<€0) |€0>0}.

The following theorem, which we owe to L. Pontrjagin-L. Schnirelmann f1], is in-
teresting in the sense that dimension is characterized in terms of the global car-
dinality of coverings while it was originally defined in terms of local cardinality,

order of covering.

Theorem V. 11. If R s a compact metrizable space, then
dim R = inf { k(R,p) | p 18 a metric for R}.

Proof. The inequality inf {k(R,p)}>dimR follows from D), and so does
inf {k(R,p) }<dim ® from E).
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Corollary °. If R <s a separable metrizable space, then
dim R = inf { k(R,p) | p is a totaliy bounded metric for R}.

Proof. Generally, let <X',p'> be a totally bounded metric space and X a dense
subset of X' . Then it is almost obvious that N(g,X',p') = N(g,X,p} holds for
every £>0 , where p is the restriction of p' to X . Thus k(X',p') =k(X,p)
follows.

By Theorem V.2 (to be proved later) there is a completion A* of R (with an
appropriate totally bounded metric) such that dim R* = dim R . Then by 1.2 D) R*
is compact. Hence by Theorem IV.I| there is a metric p* for R* such that
dim R* = k(R*,p*) . Thus dim R = k(R,p) , where p is the restriction of p* to
R, and hence dim R2inf { k(R,p) }.

On the other hand, let p be a given totally bounded metric for R . Then the

completion <R2',p'> of <R&,p> is compact. Hence by the preceding Theorem
dim A <dim R' <k(R',p") =k(R,p) ,

which implies that dim R<inf {k(R,p) }. Thus we obtain the desired equality.

IV. 7. Dimension and measure

There is a remarkable connection between the concept of dimension and the concept
of measure. Measure is not a topological concept, but a separable metric space of
dimension < n is characterized as a space which is homeomorphic to a space with
n-dimensional measure zero (defined in the following). The purpose of this section
is to show this connection and apply it to an interesting metrization of 7 -dimen-

sional separable metric spaces.

Definition IV. 6. Let R be a separable metric space and p a non—negative
number. Define

A

€
m (&) 2]
4 7 *

inf{ ] (604 )1P|R =
=1 z

nes

G(Ai)<e Li=1,2,...}, and

m(R) = sup {m;(R)lc >0},

where we denote by 6(A) the diameter of A and put [6(A)]0 0 if A=f, ad
[G(A)]O =1 if A#F . Then we call mp(.’%) the p-dimensional measure of £ .

® This generalization of Pontrjagin-Schnirelmann's theorem is due to J. Bruijning [1].
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We can easily verify that this measure is an outer measure and that for a subset R
of En{nn(i?) =0 holds if and only if the Lebesgue outer measure m*(R) of R va-

10

nishes . The verifications of the following assertions A) and B) are left to the

reader.
A) mo(R) =n if R 1is a set of n points.
B) An n-dimensional polyhedron has n+ l-dimensional measure zero.

C) Let m_ I(R) = 0 for a separable metric space R and x a given point of
R . Then m (B(Sr{:r))) = 0 holds for almost every positive number r , i.e.
m*(4) =0 for A={r|r>o0, mp{B(Sr(x)))>0].

Proof. Since mp+](R)=0 , there exist coverings {A::'l £=1,2,...}, m=1,2,...

of R such that 6(.4?) <i/m , and

-+

(1) lim ] (6P -0

m+eo 1 =1

Define a . = sup { plx,y) IyEA’g} and b .= inf { p(z,y) |y€A';} . Then it is

clear that

m
2 s 2a . - b

We define functions dmi and dm on [0,®) as follows:

0 if Oér(bmi or r>a .,
(3 d _(r) =
mt mP .
[G(Ai)] if bmiéréami s
d(r)= § d_.r).
m mt

T=1
From (2) and (3) it follows that for any k>0

k
m,p+ 1
é d_.(r)dr < [§(4]))

which combined with (1) implies

© K
lim } fd .(ridr=0.
mreo =10 "

19 us for measure theory, see for example S. Saks [!] or H. Royden [1].
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Since dmi(r)io , we can interchange integration and summation in the preceding

formula and thus obtain

k
lim S 2 d .(ridr = lim fd (r)dr=0
m+eo o =1 m=+© 0
Hence we can find a subsequence {mJ. I j=1,2,...} such that
(4) lim d,,, {r) = 0 for almost all »r .

J-vco

The definition (3) of dmi implies

7 Jna(s (xm]"; | ;(r) for every r
J

and hence from (4) we can deduce

lim 2 [&(a .JnB(S (z)))1P =0 for almost all » .
Jre i=1
Since {A’ZJHB(Sr(m))li=l,2,...) , J =1,2,... are coverings of B(Sr(x)) with
S(ATI NB(S (x))) <1/m, we get m_(B(S_(x))) = 0 for almost all r .
7 r J D r

D) If M. ‘(R) =0 for a separable metric space R, then dim R<n.

Proof. 1f mn=-1, then this assertion is obviously true. We assume D) for every
space R' with mn(R’) = 0 1in an inductive proof. Let m, . I(R) = 0 ; then from C)
it follows that for every neighbourhood Ufx} of every point x of R there exists
a spherical neighbourhood Sr(x) satisfying Sr(x) cU(x) and mn(B(Sr(:c))) =
By use of the induction hypothesis we obtain dim B(Sr(.r));n—l . This means

ind R<n . Since R is a separable metric space, we conclude dim R<n .

E) A separable metric space R of dimension < n is homeomorphic to a subset S
of IZn+l such that m (S) =0 .
n+l

Proof. We still denote by C(R,Izn* N

the complete metric space of all continu-
: . n+ N . .
ous mappings of & into 1'2 as in the proof of the imbedding theorem. Moreover,

let
= {r| fectr, ™), '”‘ (FTRT) <1 /k ).

Then every Dk contains the set D consisting of all continuous mappings f such
that m (f(}?)) =0 . Since by B) any n-dimensional polyhedron has n +l-dimensional
measure zero, by 4 C) Dk is dense in C(R, I2r+l .

To show that Dk is open, we suppose f 1is a given point of Dk . Then we can

choose € satisfying
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n' /% (FRT) <e <1k .

n+]

Thus we can construct a covering {Ai l =1,2,... 1 of FfR] such that 6(.41:) <1/k

and

«©

) Iorsan™ e,
=1
Now it is easy to see that we can construct open sets Ui , £=1,2,... in 1_2n+1
such that
4t n+l 1 z
(2) AU, , &(U)<1/k , and [G(Li)] <[6(Ai)] + (g-e)df2
which combined with (1) implies
@ +'
(3) I s 1t <k
Since F(EJ is compact
p(FURT, R U U) n>a.
=1
2n+ 1

Let g be an arbitrary point of C(R, T ) satisfying p'(f,g) <%n , where we

2n+l)

denote by p' the metric of C(R,T . Then we can easily verify ?RJCUO?_ Uv..
y g i=

171
Hence from (2) and (3) it follows that

l/ka<1/k

?"+]

This proves g €D, . In consequence S1 (f)CDk . Thus each Dk -is an open dense set
of (R I**!
defined in the proof of 6 E). Then we obtain, by use of Theorem I.5,

) . Now we denote by D(Vk) the set of all Vk—mappmgs with Vk as

©

n [DknD(Vk)] $#0.

k=1
. s . P . . . . 2n+ 1
Any mapping contained in this intersection is a homeomorphism of R into I
which satisfies m o, I(f(’?)) =

Combining E) with D), we obtain

Theorem 1V, 12. *' A separable metric space R has dimension < n if and only
tf R 18 homeomorphic to a subset S of 1.2n+1 with mn+1(S) 0.
11

This theorem is due to E. Szpilrajn [1]. Szpilrajn's theorem and Pontrjagin-
Schnirelmann's theorem are based on scmewhat similar ideas. Let <R,p> be a
separable metric space; then hd(R,p) =sup{p |m,(R) >0} is called the
Hausdorff dimension of <R,p> . J. Hawkes [1] proved hd(R,0) <k(R,p) for
every compact metric space. But they do not coincide in general.
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Corollary. A separable metric space R has dimension < n <if and only if one can
introduce a metric p in R such that for aimost all r>0 the boundary B(Sr{x))
of the spherical neighbourhood Sr(:r) of each point x has dimengion <n-1.

Proof. This statement is directly deduced from Theorem IV.12 in combination with
C) and Theorem IV.I.

Another interesting application of the imbedding technique can be found in L. Janos'
theory to characterize dimension by use of "bisectors". A metric d for X is called
strongly rigid if d(x,y) # d(u,v) whenever (z,y) and (u,v) are different pairs
of different points. L. Janos [1] proved that: dim X=0 holds for a non-empty
separable metrizable space X 1if and only if X adnite a compatible strongly
rigid metric.

Let Y and 2 be subsets of a metric space <X,d> . Then Z is called a bigec-
tor of Y (denoted by YPZ) if YD>Z and there are distinct points ¥y y2€Y
such that 2={=z€y¥|d(zyJ)=d(z,y,)} . A chain X = XX PX, >0 PX X of
subsets of X 1is called a reduced bisector chain if dim Xn- . >0 and dim Xn-<=0 s
and n 1is called the length of the chain. Denote by »r(X,d) the maximal length of
reduced bisector chains in <X,d > , and let r(X) = min{r(X,d)|d is a metric for
X}. Then L., Janos [2) proved:

r(X) = dim X 12f X s a non-empty compact metrizable space.

An important role in his theory is played by J. H. Roberts' [1] theorem:

If X 1is a separable metric space with dim<n , then there i3 a topologteal im-
bedding f: X+5’2n+1 sueh that dim(f(X)NY) <0 for every (n+1)-dimensional
plane Y of 52n+1.

The first theorem of Janos was extended by H. Martin [!] to more general metric
spaces, and the second was extended by L. Janos - H. Martin (1] to separable metri-
zable spaces.

J. H. Roberts [1] showed that his theorem above practically implies the following
stronger theorem:

If X <8 a separable metric space with dim<n , then there is a topological im-
bedding f':X+E'2n+1 such that for every k-dimensional plane Y of 52n+1 we
have dim (f(X)NY) <k-n-1.

This theorem implies the following theorem which improves the corollary of Theorem
IV.12:

A separable metric space R has dimension < n if and only if one can introduce
a metric p in R such that for every r>0 the boundary B(Sr(:z:)) of the spheri-
cal neighbourhood Sr(x) of each point x has dim<n-1.
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Another interesting imbedding theorem for n-dimensional compact metric spaces can

be found in M. A. Stanko [1].

IV. 8. Dimension and the ring of continuous functions

Let C(R) denote the ring of all real-valued continuous functions defined on R .
It is well-known that the topology of R is completely characterized by the ring
structure of C(R) if R 1is a compact Hausdorff space. In this respect it is an
interesting problem to study relations between the dimension of R and the algebraic
structure of C(R) .

M. Kat&tov [1] defined dimension of C(R) and established a remarkable connection
between the dimension of C(R) and that of R . The purpose of this section is to
give a quick review of his theory in the most interesting case in which R is a
compact metric space.

Note that in the folloQing discussion in the present section all spaces are assumed

to be compact metric, although some propositions are true for more general spaces.

A) Let U be an open covering of a space R and T a closed set of R . Then
8(T) <U if and only if the decomposition of T into its components is a refinement

of U ., (Recall Definition III.8.)

Proof. The 'only if' follows directly from Definition III.8.

To prove the 'if' part, let us denote by X(x) the component of T which contains
x€T . Them X(x) will be proved to be an intersection of sets which are closed and
open in T . Put X' =N{F|F 1is a closed and open set in T such that F>K(x)} .

To prove that KXK' 1is connected, assume the contrary. Then X' = X, VK, where
K111K2 = ¢ for some non-empty closed sets Kl and K2 in R . There are open sets
UI and U2 in R such that Ul DK‘ ,UZDK2 , UlﬁU2 = @ . Since UI UUZDK' and
since R 1is compact, there is a set F closed and open in T satisfying
K(x) CK'CFCU] uu, .

Assume e.g, an'€I7’nUl = PO(R - Uz) . Then FnU] is closed and open in 7 and
accordingly contains K(xz) , because K(x) 1is connected. Hence FﬂUl DK' , which
implies Kan' =@ , and thus Kz = KZOK’ =@ , which is a contradiction. Therefore
K' is connected, and hence X' = K(x) follows because K(x) 1is a component.

Now recall that we have assumed the condition {X(x)|z€T}<U. Because of the
above argument we can select a closed and open set Ffxr) in T and Ufx) €U such
that Kf{x)<F({x)cU(x) for each x €T . Since T is compact we can cover it by
finitely many of the Ffx)'s, say T = U§= l5‘(:r:‘7.) . Put

F;j = F(xJ.) - FlzJu... UF(:cJ._ ) ;
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Fad

then each "j
anFl=¢ if J#1 .

We can find open sets Vj , d=1.....k in & such that FJ.CVJ.CU(:;) . Then
J

is a closed set in R satisfying FJ.CU(:EJ.) , = U§=| FJ. , and

{VJ-I J=1,...,k} 1is an open collection which refines U , covers T and has order
| . Thus &(T)<U .

B) A space R 1is totally disconnected (i.e. each component is a sinmgleton) if and
only if dim R<0 . (This proposition is generally true for every compact Hausdorff

space).

Proof. The proof easily follows from the fact that each component of R 1is an
intersection of closed and open sets, which was proved in the proof of A), but the
detail is left to the reader.

C) Let U be an open covering of a space R and f a continuous mapping from
R into another space S such that E(f-l(y)) <U for % €Y . Then there is an open
neighbourhood ¥ of y in § such that 5(f—l(W))<U .

Proof. Let V be an open collection which satisfies V<U , f-l(y)c UV, and
ord V<1 . Then W =Y - f(X ~UV} satisfies the desired conditionm,

Definition IV. 7. A subset C; of C(R) is called an analytical subring if it

satisfies
iy ¢, ts a subring of C(R),

ii) every constant belongs to €

i) if fecx) ad fec, . then fec._,

iv) ¢, i8 closed in the metric space C(R) with the metrie

pl(f.g) = sup{ |flzx) - g(x)| |x€R}.

A subset D of C(R) 1is called an amalytical base if every analytiical subring
containing D 18 equal to C(R) . Finally, the analytical dimension of C(R) ,
a - dim C(R) , is defined as the least cardimality of analytical bases of C(R) .

Note that a - dim C(R) = O means that @ is an analytical base of C(R) , i.e.

C(R) is the only analytical subring of C(R) .

D) Let €, be an analytical subring of 0(R) . 1f g€C(R) rtakes on only finite-
ly many distinct values, then g€Cl .

Proof., Assume that g takes on { distinct values.
1) 1In case of £€=1 the assertion is obviously true.
2) Let €=2 , and g(R) = {a,b} . Then

a-b

2
(g a*b) 5

- 3 = (

2
)ECI'
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Hence from condition iii) it follows that g - (a+b) /2 ECl - Therefore g€C, by
the condition ii).

3) To prove the general case, assume that the assertion is true for every function
which takes on at most £ -1 distinct values. Let g€C(R) take on £ values
LTERERRLTa Then define hE€C(R) by

h(x) = a, if x€g-l(aiJ for some < satisfying 1<7<f-1

*

h(z)

1]

ap_, it ng-l(at) .

Then hECl follows from the induction hypothesis. Note that g-#% 1is identical

to 0 or ap-a,_, . Thus from the case 2) it follows that g-h€C, . This

i
yields gECI .
E) Let R be a non-empty space; then a-dim C(R)=0 if and only if dim R=0 .,

Proof. Assume dim R=0 . We consider an arbitrary analytical subring C'l of
C(R) , f€C(R) , and €>0 . Since R 1is compact, {f—l(SE(y)) | y€ R} has a finite

2
subcovering, say U= {f l(SE(yi)) | £=1,...,k} . Choose an open covering
5
<
T {WI""’wk} such that W<U and ord W=1 , Select :cJ.EVJ., J=1,...,k to

define g €C(R) by g(z) = f(:rj) if xEWJ. . Then it is easy to see that p(f,g)<¢
in the metric space C(R) . Besides gECl follows from D). Thus _7"€C'l = C 1is ob-
tained by the condition iv). This proves that ¢, = C(R) . Therefore a-dim C(R) =0,

Conversely, let us assume that a-dim C(R) =0, and let X be a component of R .
Now C‘ ={f€C(R)| f is constant on K} is obviously an analytical subring of
C(R) . Since a-dim C(R) =0 implies C()'r')=Cl , K 1is a singleton, Hence £ 1is
totally disconnected. Thus by B) we conclude that dim R=0 ,

F) Let dim R<n (1 <n<®) . Then a-dim C(R)<n .

Proof. By 'Theorem II1.10 there is a uniformly O-dimensional continuous mapping §
from R into I . Put = {fl""’fn) , where j‘i€C(R) s £=1l,...,m . Then we
claim that (fl,...,fn} is an analytical base for C(R) . As will be seen in the
following, we can prove our claim by use of Theorem 1.8, Let ( be an analytical
subring which contains fl""’fn . Suppose p and g are distinct points of R .

Then we can find hGCI satisfying A(p) #h(q) , as follows. Let
) plp,q) >€>0 .

Then we choose N >0 such that for every subset T of I with §(T) £n , the
following holds:
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(2) S(f_](T)) <UE = {U|U is an open set of R with &(U)<el.

Now we choose & >0 such that

n

(3) S N (r.-E,r.+£)]1<n for every (r,...,r)EIn,
=1 1 1 = 1 n

where (ri -£, r.+ £) denotes the open segment { | ri—£<x<ri+5} . Put

_ . _ . _an _
f(p) :l(r'l,...,rn) , il.e, fi(p) sr.,i=lon, = ni=1 (ri £, ri+E) , and
Us=f (J) . Then U 1is an open neighbourhood of p .

Now we define gi€C(R) , t=1,...,m by

i
g;(x) = ¢ (E-lfi(x)-ril Yy, z€R .

Since ]fi—rilz = ('fi - riJZECl , it follows from iii) of Definition IV.7 that
. __n
lfi-ril EC’l . Therefore giGCl . Define g€&€C(R) by g = Tia19; ¢ Then gECl .

It follows from the definitions of g and g; that

%) glp)

(5) glx) = 0 for every x€B(U) .

Note that §&(J) <n is implied by (3). Hence we can choose, in view of (2), an open
covering V of U =f—|(J) with mesh V<€ and ord V<1 . Put V = S(p,V) ; then

V is an open neighbourhood of p satisfying
(6) PEV and qEV (see (1)).

Note that B(V)cB(U) . Finally, we define hEC(R) by
7 h(x) = g(x) for x€V , and h(zx) =0 for z€V.

(Recall (5) to verify AhEC(R) .) Now it is obvious that (I't--(g/Z))2 = (g/2)2€C'l .
vhich implies h-(g/2) €C‘l and hence K €C . By (4), (6) and (7) we obtain
h(p) = g(p) = 1, and by (6) and (7) H(q) = 0 . Thus we can apply Theorem 1.8 to
conclude that Z‘I = C(R} , which implies C'] = C(R) because of iv) of Definition
1IV.7. This proves that {fl,...,fn} is an analytical base for CfR) . Therefore
a-dim C(R) <n .

G) Let (fl .....fn} be an analytical base for C(R) . Then the mapping
f= (fl,...,fn): R+ENn satisfies: For every binary open covering U of R and for
every y€f(R) , S(f—'(y)) <u,

Proof. Note that €, ={ g€C(R)| g is constant on each component of f-l(y) }
l g

is an analytical subring of C(R) such that fl""‘frxecl . Hence CI = C(R) .
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Let U = (Ul,Uz} and put F’ =R - Ul and F2 =R - UZ . Then there is a con-
tinuous function hA: R-[0,1] such that h{F]) =0 and h(Fz) = | . Since h€C]
follows from the above note, each component of f—l(y) cannot hit both l-"l and Fz
at the same time, i.e. it is contained either in U] or in U2 . Hence by A) we ob-
cain 80 '(y)) <U .

H) If a-dim C(R)<n , then dimR<n. (1gng=) ,

Proof. Assume that {f'l,...,fn} is an analytical base for C(R) . Then
f= {fl,...,fn) is a function satisfying the condition of G). Since f(R) is a
compact subset of Fd , we may assume f(R) e, Decompose r by use of the de-
composition theorem as I = Yyu... U7 with dim 7,=0 . Put X, = f-l(l’i) B
2=0,...,%n : then R=U:=0Xi.

Consider :r:EXi and an open neighbourhood U of &z in X_,: . Find an open set V
in R such that vnxi = UN. Then put U= {R-{zx}, V}. By the above mentioned
property of f we obtain G(f-l(y)) <U | where y = f(x) . By C) there is an open

neighbourhood # of y in " such that
() SeF ) <u

Since dim Yi = 0, we may assume that WﬂYi is closed and open in Yi . Hence
f-l(w)ﬂli is closed and open in ).fi . By (1) there is an open covering P of
J"-I(W) such that

(2) P<U and ord P<1 .

Let P be the element of P which contains 2 . Then P 1is a closed and open
neighbourhood of x in Xi such that PcVnXi = U because of (2). This proves
ind X1:§O , and accordingly dim Xi;O follows. Hence again by use of the decompo-
sition theorem we conclude that dim R<n .

Theorem V. 13. If R <s a non-empty compact metric space, them either dim R
and a-dim C(R) are both finite and equal, or they are both infinite ‘2.

Proz;. Combine E), F) and H).

12 Extensions to more general spaces of this theorem of Katdtov were proposed in a
number of articles. We just mention J. Hejeman [1] who extended it to uniform
spaces., We shall discuss later (Chapter VI) a completely different definition of
dim ('(R) to characterize the dimension of non-metrizable spaces. N. T. Peck [1]
found a partial but interesting characterization of dim R of a compact metric
space  in terms of .a Banach space property of C(R,E™) .



