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CHAPTER III

MAPPINGS AND DIMERSION

In the preceding chapter our investigations were chiefly conducted on the basis of
the theory of coverings. In this chapter we shall concern ourselves with mappings,
another powerful tool for dimension theory. In Section 7 we shall study the theory of
uniformly O-dimensional mappings which has been recently developed by M. Katdtov while
in the other sections the main object will be the extension of classical theorems to

general metric spaces.

IIT. 1. Stable value

Definition IIl. 1. Let F be a continuous mapping of a space R into a space S .
A point q of 7(R) <s called an unstable value of f <If for every € > 0 there
exists a continuous mapping g of R into S such that opl(f(p),glp}) < e for
every p €R, alR) =8 - 1{q} , where ve dencte by p the metric of S . 4 point q
of f(R) <8 called a stable value if it is not unstable.

Example 1Il.1. We consider a continuous mapping ffxz) = ;nz of the l-dimensional
Euclidean space £ into itsélf. Then all the values y >0 are stable, while 0 is
unstable. On the other hand the mapping F(x/ =(x,f(x)) of E‘l in E“‘1 has only

unstable values,

A) Llet f be a continuous mapping of a (metric) space R into the =n + | -

. . + .
dimensional cube I - { (:rl,...,.rn . ])l |:r1-| 2, 2=, 0..,n 1}, 1f

dim R < n , cthen all values of f are unstable.
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Proof. Llet f(p) have the coordinates f,(p),..., 41 (p) 1in LI begin

+
n l)

with, let us show that every point of B(I is unstable. For any given € > O ,

the mapping

glp) = (g](p),..., (p)), gi(p) = (1 - e)fi(p), 2= l,0ea,n + 1

n+l

. . . . . n+\ . .
is a mapping whose image contains no boundary point of I . Since we can easily

see that p(f(p), g(p})) < e/nm + 1 for every p € R, our assertion is true.

n+

Now, let us prove that any interior point q of T is unstable. To this end

we may assume ¢q to be the origin (0,...,0) . Let € be a given positive number.

We put

F.I;={Plf,,;(P).iE}: Gi—'(plfi(p);-e}, £=1,...,m+ 1,

Since Fi is a closed set contained in the open set R - Gi , by the corollary of

Theorem 1I.8 there exist open sets Vi ,T=1,...,m+ 1 such that
n+1
mn ricVicR-Gi and iQ] B(Vi)=¢.

By repeated application of the corollary to Theorem I.6, we can construct a contin-
uous real valued function ®; such that |(pi| <e, {p]l (.pi(p) =0} = B(Vi) R
{plcpi(p) =el=F,, {p | @;(p) = - el = G, . Defining g. by g.(p) = f.(p) for
pEFiUGi , and gi(p) = (pi(p) for pER—FiUGi , we obtain a continuous function

g;(p) . which, as easily seen, satisfies

(2) Ifi(p)-gi(p) ] <26 for every p€R , and
3) {p| g;(p) = 0} = BV, .

Let g.(p) = (gl(p),...,gn+‘(p)) ; then g 1is a continuous mapping of R in 1n+l
and satisfies p(f(p), g(p)) < 26 /n+1 for every p€R by virtue of (2). From (1)
and (3) we obtain (0,...,0) £g(R} . This means that the origin (0,...,0) is an un-

stable value.

B) If all values of every comtinuous mapping f of a space R into In+l are

unstable, then dim F<n .

Proof. Let {Uil Z=1,...,m+ 1} be an open collection and {Fil Z=1,...,m+ 1}
a closed collection such that Ficui , £=1,...,m+1 , By Theorem 1.6 we construct

continuous functions fi , £=1,...,k defined over R such that

- 1LfE0
m fi(Fi) ==,
fi(R—Ui)zl ,t=1,,..n+1 .
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Since f = (f‘,..., W+ ]) is a continuous mapping of & into n , the origin
+1 . . . .

g =(0,...,0) of r is unstable. This means that there exists a continuous map-

ping g:@l,...,gn+l) of R into I'n+] such that

(2) q€g(R) , and
(3) p(f(pl), g(p)) < % for every pER.

Then we define open sets Vi by Vi = {plgi(p)<0} . From (1) and (3) it follows
_ . . . n+l -
that FicVicUi and B(Vi)c{plgi(p) = 0}. Since (2) implies ﬂizl(plgi(p)—O}

=@ , we get n’?"'

Z=1 B(Vi) = @ . Hence from the corollary to Theorem II.8 we obtain
-

dim R<n .

By combining B) with A) we get

Theorem II1. 1. A space R hag dimension < n if and only if all values of every
eontinuous mapping of R into Jals *1 are unstable.

I11. 2. Extensions of mappings

A) Let f be a continuous mapping of a space R into r 1 such that the center
q of l'n+] is an unstable value of f . Then there exists a continuous mapping g
of R into I'*! such that qf€g(R) and g(p) = f(p) for every point p whose

image is contained in B(In+]) .

Proof. We may assume the boundary B(I** l) of *!Y to be the n - sphere
Sn={(x|,...,r 2

o+ ‘)l xf toeotx =] }. Since the center g 1is an unstable value
of f(R) , there exists a continuous mapping g’ of R into In+| such that, in

vectorial notation,
0 o(f(p), g'(p)) = | flp)-g'(p) | <7 for every DER , and qfg'(R) .

1 2
Then, let F = {p||flp) <35} and G=1{p]||f(p)| 237} to construct by Theorem
1.6 a real valued continuous function @ over R such that ©(F) =0, o(G) =1,

and 0<@<1 . Using this function we define a mapping g of R by

glp) = g'(p) for pEF ,
g{p) = o(p)fip) + (1 -w(pl)lg'(p) for pER-FUG,
g(p) = f(p) for pE€G .

We can easily see that g 1is a continuous mapping of R into 1n+l and that
gtF)ugle) eI 21 q) , and g(p) = fp) if fip) €S (=B(r"*')) . There only
remains to prove

2) glR-Fugie** ' -{q1 .

2
Let p be a given point of R-FUG ; then ;—< | ftp) | <3 , and hence, from (1) and
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| gp) - flp) | =(1~w(p)) | g"(p)-F(p) |,

we obtain

[gtp) | (v -0p)) | g'tp) - f(p)| +| fp) | <1,
| gtp) | 2| fip) | - (1 ~w(p)) | g'(p) - F(p)]| >0,

which proves (2). Thus g 1is the desired mapping.

Theorem I1l. 2. A space R has dimension < n <if and only if for every closed
set C of R and every continuous mapping f of C 1into " there exists a con-

tinuous extenston of f over R .

Proof. To prove the necessity we regard s? as the boundary of In*l . Then we
can regard f as a mapping of € iato IrH‘I . Hence by Theorem I.7 there exists a

continuous mapping f' of R into ! such that
(1) f'(p) =f(p) for pE€EC .

Since dim R<n , by Theorem III.} the center g of In+1 is an unstable value of
f' . Hence in view of A) we can construct a continuous mapping g of R into n

such that
2) qf€g(R) , and g(p) = f'(p) if f'(p)eSTt.

Since p€C implies by (1) f'(p)=75(r) €5", we obtain g(p) =f(p) if pe€ecC.
Let @(p) be the projection of the point g(p} on the boundary st of 1.n+l from
the center. Such a projection is possible by virtue of (2). Now it is clear that ¢
is the desired extension of f| c+5" over R.

To show the sufficiency it is enough, as Theorem III.l asserts, to prove that every
continuous mapping f of R into I’1+1 has unstable values only. As seen in the
proof of | A), any boundary point of In"] is unstable, and hence we shall prove
only the unstability of the center g of "t l. For a given €>0 we consider a
spherical neighbourhood U of ¢ with radius % € and with boundary St . Let
C:f_l(Sn) ; then by the hypothesis there exists a continuous mapping @ of & into
S such that ofp) =f(p) for pE€C .

. - : . +
We define a new continuous mapping g of R into b !

as follows:

g(p) =flp} if f(p) €U ,
gl(p) =wlp) if f(p)€U.

Then we can easily see that g 1is a continuous mapping of R into 1'”” -U such
that p(f(p), g(p)) <€ , for every p€R . This proves the unstability of g . There-

fore from Theorem III.! it follows that dim R<n .

Corollary. Let C be a closed set of a space R . If dim (R-C)<n , then every

continuous mapping f of € 1into 5% can be continuougly extended over R .
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Proof. By the corollary to Theorem T.7 there is an open set U containing € and
a continuous extension g of f over U . We consider an open set V such that
CcVeVcl . Then we denote by 90 the restriction of g to V-C . Since V-C is
a closed subset of R-C with dim (R-C)<n, gy can be continuously extended over
R-C by Theorem III.2. We denote this continuous extemsion by A . Letting w(p) =f(p)

for p€C , and @(p)=h(p} for pER-C , we obtain the desired continuous extension
® of f over R,

ITI. 3. Essential mappings

Definition IIl. 2. A continuous mapping 7 of a space R 1into a space S 1is
called homotopic to a contimuous mapping @ of R into S <if there exists a con-
tinuous mapping f(p,t) of RxI , the topological product of R and the unit seg-
ment I ={xz|0gxz21} , into S such that Flp,0)=f(p) f(p,1)=g(p) .

Roughly speaking, f is homotopic to g if F can be continuously deformed into g.

Definition IIl. 3. A continuous mapping f of a space R into the n-sphere 5"
is called essential if any continuous mapping g of R into §* which is homotopic
to f satisfies g(R)=Sn . If f 1is not essential, then it is called inessential.

Example III. 2. Let f and g be continuous mappings of a space R into s"
with diameter d . If p(f(p), g(p)) <d for every p€R , then f is homotopic to
g . To see this, for each p€&FR we consider the minor arc of the great circle joining
f(p) with g(p) . For pER , 0<t <] ,we denote by f(p,t) the point dividing this
arc in the ratio t:1-t . Then f(p,t) 1is a wapping of R XI into §" and satis-
fies the condition of Definition II1I1.2. Hence f is homotopic to g . It follows

from this assertion that

A) a continuous mapping f from R into 5" is inessential if and only if it is

homotopic to a constant mapping.

B) Let A be a subset of a space R and I the unit segment. If U 1is an open
set of the topological product R XI such that UDAxI , then there exists an open
set V of R such that A<V and VxIclU,

Proof. Let p be a given point of A and Vi(p) , ©=1,2,... an open neighbour-
hood basis of p . If we suppose V_I:(p) xI¢lU , 2=1,2,..., then we get a sequence
{ (pi,xi)| £=1,2,...} of points of RXI such that (p.z ) €(V.Ip)xI)-U,

2=1,2,..., . Since I 1is compact, we can choose a converging subsequence {xi | k =
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=1,2,...) of {xi}. Let :cik-m; then
(RxI)-U3(p. XX )+ (p,z) €EAXT ,
“k “k

which contradicts the fact that U is an open set containing 4 %7 . Hence ¥(p)xIcU
for some open neighbourhood V(p) of p . Now for each point p of A we choose
such an open neighbourhood V(p) , and put V=U{V(p) |p€A} . Then V 1is the desired

open set,

Theorem I1I. 3 '. Let € be a closed subset of a space R and §f and g homo-
topic eontinuous mappings of C into S . If f adnits a continuous extension ©
over R, then g also admits a continuous extension | over R which is hamotopic
to 9.

Proof. Since f and g are homotopic, there exists a mapping f(p,f) of CxI
into §° such that

f(p,0)
flp,1)

fip)

M glp) ,

where we denote by I the unit segment. Let us define a closed set F of RXI by
F={(p,0)|per}u{(pt)jipec, ter} .
We define a continuous mapping ©(p,t} of F into 5" by

liw(p,O) wlp) for p€R

& olp,t) = flp,t) for p€C, t€I.

By the corollary to Theorem 1.7 we can continuously extend @fp,t) over an open
set U containing F in R xI . We deno:te this extension by @, (p,t) . By B) there
exists an open set V of R such that CcV , VxIcl . Using Theorem 1.6 we can
construct a real valued continuous function u(x) over R satisfying
(3) ufC) =1,

(4) w(R-V) =0, and O<ugl.

Now, we set

(5) wip,t) = w](p,tu(p)), pER, tEI.

Then Y 1is a continuous mapping of RX*I into 5" . For, if PER-V , then by (4)
uf{p) = 0, and hence WY(p,t) = 0, (p,0) = ofp,0) 1is defined for every ¢ . If pE€V ,
then (p,tu(p)} €VxI , and hence wl(p,tu(p)) is defined for every t . Thus ¢(p,t)
is defined for every (p,t) €ERxI . We define a continuous mapping ¥ of R into 5"
by Wlp) = Pip,1)..

! This theorem is due to K. Borsuk [1].
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Let p be a given point of C ; then by (3), (3), (2), (1) (p) =U(p, V) =<0l(p,l):
f(p,1) = g(p) . Hence V¥ 1is a continuous extension of g over R . On the other
hand from (5) and (2) it follows that ¢(p,0) = ®, (p,0) = w(p) . Therefore @ and

Y are homotopic.

C) Let f and g be two continuous mappings of a space R into 5" such that
dim {p| fip) # g(p}) } <n -1 . Then f and g are homotopic.

Proof. Let D = (p| flp)#g(p) }; then D 1is obviously an open set of R . We
define a closed set F of the topological product RxI of R with the unit seg-
ment I by

F=Rx{o}luax{1}u(R-D)xI.
Then we define a continuous mapping f(p,z) of F into st by

Flp,t) = f(p) = glp) for p€R-D,
f{p,0) = fip) ,
flp,1) = gtp) .

Now, it suffices to show that ffp,t) can be continuously extended over RXI , It

follows from the product theorem that dim DXI<n , because dim I<1 is clear.
Since (RxI)-FeDxI , we get dim ((RXI)-F)<n.

Hence by the corollary to Theorem III.2 we can continuously extend f(p,t) over
RxI . Thus f and ¢ are homotopic.

The following is a direct consequence of C).

Theorem III. 4. If dim R<n-1, then all contiruous mappings of R into s"
are homotopie, and hence inessential.

D) Let a space R be the sum of two closed subsets F and G . Let f and g be

continuous mappings of F and G respectively into A T
dim {p| f(p) #g(p) ,pEFNG} 2<n-1 ,
then [ can be continuously extended over 7 .

Proof. The restriction fo and 90 of f and g respectively to FNG are
homotopic by virtue of C). Since gy can be continuously extended to the mapping g
over (f, by Theorem ITI.3 there exists a continuous extension f] of fo over G .
Putting @(p) = f(p) for p€F , and o(p) = f (p) for pE€G , we obtain a desired
extension @ of f.

Befinition IIl. 4. ILet f anmd g be continuous mappings of a space R into a
space S . Let A be a subset of R ; then [ and g are called homotopic relative
to A 1if there exists a continuous mapping flp,t) of RxI 1into S such that



111.3 E) - 42 -

5(p,0) = f(p) , fip,1) = g(p} , and fl(p,t} = f(p) = g(p) for p€A, tE€I , where
the unit segment is denoted by I .

Definition [Il. 5. Let f be a continuous mapping of a space R <into the
n-dimensional simplex T' or equivalently into the n-dimensional cube ".r £ any
continuous mapping g of R into 7 uvhich is homotopic to f relative to
FUs" 1) satisfies g(R) = I, then f 1is called essential, where §*" 1 denotes
the n - l-sphere which is regarded as the boundary of 7" in the n-dimensional

Euclidean space g, If f g not essential, then it is called inessential.

E) A continuous mapping f of R into " is essential if and only if every
continuous mapping g of & into I vhich coincides with f on f_‘(Sn_l)

satisfies g(R) = I , where we regard Sn‘] as the boundary of .

Proof. Suppose f 1is a continuous mapping of R into I . If a continuous
mapping g of R into I" satisfies f(p) = g(p) for every pEf—l(Sn-l) , then
for each point p of R we consider the segment joining ffp) and g(p) which
lies in I" . For PER , 0<t<l we denote by ffp,t) the point dividing this
segmeat in the ratio t; ! - ¢ . Then f{p,t) 1is a continuous mapping of RxI
into " satisfying the condition of Definition III.4 for § = e s A= f-l(Sn- I) .

Hence g 1is homotopic to f relative to f_](Sn-l} . Therefore E) is proved,

Theorem II1I. 5. A space R has dim < n if and only if every continuous
mapping of R 1into r *1 e inessential.

Proof. Let dim R>n+1 ; then by Theorem ITII.1 there exists a continuous mapping
f of R into In+] with a stable value ffp) = p' . Let us suppose that € is a

positive number for which
)] p(flx), glx)) <e for every x€R
implies p'€gfR) . If p'€B(f(R)} , then we can choose a point

g€s, (pyn " - 2r))
2

and consider the projection ©f(y) of S £(p') Nf(R) on the boundary B(S, e (p'))
2 h
from ¢ . We define a continuous mapping g of R into .I"“’l by
alx) = of(x) 1if flzx) €35, c fp') NF(R) ,

2

flx) if f(x)€f(R)—Sl€(p’) .
2

gfx)

Then one can easily see that p' €g(R) , and p(ffx), g(x)) <€ for every Z€R ,

!

which contradicts the fact that p' 1is a stable value, Hence p'

must be an in-

terior point of ff?) . Thus we can choose a positive number & such that § <% ,
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Sé(p') cf(R) . Ve denote by Yf{y) the projection of f(R) -Sd(p') on 8(56({)'))

from p’ and define a continuous mapping % of R onto SG(p’) by

h(z) = Yflx) it f(x)Ef(R)-SCS(p’) 5
h(x) = flx) if f(z) ESG(p’) .
It easily follows from (1) that h is an essential mapping from R into Ss(p')

which is homeomorphic to In+I .
Conversely, supposc f 1is an essential mapping of R onto I"H’I . Then, by E)
and 2 A). the center of .7"“'l is a stable value of f . Hence from Theorem III.1 it

follows that dim R2n+1 , which proves this theorem.

Remark. It is easy to see that the converse of Theorem III.4 is also true if
n>0 , Because if all continuous mappings from R to §* are inessential, then for
every continuous mapping f: R+I" the composite mapping gf: R+5" of f with
the quotient mapping g: 7*+5" {s inessential. Thus f is inessential.

It is easy to construct examples of inessential mappings while the identity mapping

from I (S") onto itself is essential as proved later on (IV. 3 A)).

III. 4. Some Temmas

In the present section we are going to prove some propositions which will be used

in the next section and also later in the book.

A) Let {U(x | a<t} be an open collection in a space R such that (UB| B<ul
is locally finite for every a<T ., Let {Fa|a<1'} be a closed collection in R
such that FaCUa for all a . If An , n=1,2,... are subsets of R with
dim An;O , then there exists for every @<71 an open set I/Ol such that I-‘“C Vacurx

and ordp{B(Va)|u<T);n—l for every point p€An .

Proof. We shall define, by induction on the ordinal a , ch satisfying

a)a FucVGCUu .

b), ordp{B(VB)|B;u};n—l for every p€A .

First, by virtue of the normality of R there exist open sets P and @ such
that PDFO , Q:R—UO and PNQ = @ . Since dim Aléo , there exists an open and
closed set N of 4, satisfying I_’nA]c Kc(z-Q) NA, . If we let

(1) E=HUFO, = (A‘-N)U(R-Uo) s
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then (BNC)U(BNC) = @ . Hence by | B) there exists an open sat VO such that

AN
(2) BCVOCVOC.. c.

Then from (1) and (2) it follows that B(VO) ﬂAI = @, because N is open and closed
in Al .

Thus V0 satisfies a)CI and b)a for a = 0 . Suppose that VB has been con-

structed for every B <o (<T) . Then we let Hl = Al R
(3 Hn—-U{B(Vsl)n...ns(vsn_l)nAnl8]....,Bn_l<a.

B, #8; if 14}, n=2.3..,.
(4) t’(u=nl=Jl :':'n.

Since ilnt:A)7 , it follows from dim An;O and Theorem I1.3 that

(5) dim Hn;O .

We can easily see that for every r U?_l H. is open in Ku . For let
.= L
pEUZ= | Hi ; then pEUz= lAi . Hence from the induction hypothesis b)ﬁ for
8<a we obtain ordv{ B(VB) | B<o.};n-| . Therefore we can choose, from every

collection {B(VBI),:..,B{VBJ.) } which satisfies Bl,...,6j<cx , d2n and Bi;'-‘BJ.
it 7724, B(Vﬂi) such that pEB(VBi) .
Hence, if we let U(p) =N {R—B(VB)| B<a , pEB(VB)} , then from (3) it follows

that
o

up)n¢ U Hi) =¢.
t=n+1
Since {B(VB)[ B<a} is locally finite by virtue of the local finiteness of

{UBI 8 <al} and a)B for B<a , Ufp}) is an open neighbourhood of p . Hence

n . .
1 . 1s open in X_ , Thus, for ever n
U1.=l H'L P o ’ 4
-1 v =1
I =4 - U &.= U .- U X
n »” . < i {
i=1 2=l f=
is an F -set in X _, Hence I _ = U I for certain closed sets T of
a a ”n m=1"nm nm

- . . . . . <o. s
e Since InmcIncB'rz , by (5) and Theorem II.3 we obtain dim Inm-’: Since

L)

ow
K,= VU 'rn: u Inm ?
= ny,m=1

we have dim KQ;O by the sum theorem. Therefore we can define, in the same way as

for the case a=0 , an open set Va such that

(6) FuCVaCUa R
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(7) B(Va)ﬂxa:(b .

The condition (6) is equal to a)a . In view of (3) and (4) we easily see that (7)

implies b)a . Thus the proof of this proposition is complete.

In view of the nature of the proof of this proposition we can modify it as follows.

B) Let {UQIO<T], {Fa|u<‘!} and {Anln=l,2,...] satisfy the szame
conditions as in A). Let Ul be a locally finite open collection such that
ord B(U])én-] for every pGAn . Then there exists an open collection U2 =

! ' -
{Ua|c1<'r] such that F <l clU , and orde(UlUUZ);n I for every p€A .

C) Let {UYI YET} be an open collection and F = {15‘Y | YET} a locally finite
closed collection such that FYCU for all Y€T and ord F<n . Then there
exists a locally finite open collection V = {VYI YET} such that FYCVYCUY for
all Y€T and ord V<n . Thus dim R<» holds if every finite open covering of R

has a locally finite closed refinement of order < n+1l .

Proof. We, of course, restrict ourselves to a (metric) space R . Since F is a
locally finite closed collection of order < n , there exists an open covering P
such that each element of P intersects at most n elements of F . Since R is
fully normal, we can choose an open covering @ such that Q¥ < P . Let VY =
S(FY,Q) nUY . Then as is easily scen, V = {VYl YET} is the desired open collec-

tion.

D) Let F be a closed set of R with dim F<n . Let Fu and Ua’ a<t , be
closed and open sets, respectively such that E'acll(1 , and {Ual a<t} is locally

finite. Then there exist open sets Vu satisfying FGCVQCT’GCU‘] , dim Ek;n-k ,

k=1,...,n+1, where Bk={p|p€F, orde(V);k}, and V = {Va| a<t}.
Proof. By the decomposition theorem we can decompose F into the sum of n+|

subsets A‘k , k=1,...,m+1 with dim Akéo . Hence by II.7 A) we can construct

open sets Vu for a<T such that FQCVQCVC‘CUQ , and orde(V) k-1 for

pEA, , where we put V = {V_ ja<t}.
k - o

Hence BkcAk+ 1 U... UAn , which implies dim Bk;n-k by virtue of the de-

+1
composition theorem.

E) Let F, Fa and Uu satisfy the same condition as in D). Then there exist

- . . = =1,
<7 - Ty £
open sets Va R Wa , a<7t satisfying FQCVD.:VCICWGCUQ , and ordp{ Wu l&] V< T_
a<tT}<n for every pE€F .

Proof. By 11.5 B) there exist open sets Vc'x and W& of the subspace F such that
1 -7t ’ r_pr
P NFeV. V! cW cU NF and ord{W -Vi|a<t}gn.
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ynFr=y' , #NP=W , FcV cV cWwcU_ . Then (W -V I)NF=w =-¥V',
' v a _ [¢3 o3 a a P a a a a [¢3
Hence ordp{W]—VGIOMT};n for every pE€F .

We can easily construct open sets Vu and Wu of R such that Van[«‘ =V,

F) Let Gk , k=0,,..,n be closed sets with dim Gk;n-k of a space R . Let

{F;‘I 2<T} be a closed collection and {UQI a< T} a locally finite open collec—

tion such that F cU . Then there exists an open collection V = {Va |[a<t} such

that ’GCVQCVQCUQ and orde(V) <n-% for every pEGk .

Proof. We can easily prove this proposition by using E). In fact, by E) we can
construct open sets VO R Wo such that F CVOCVOCWOCU and

- o @ o a o a a
ordp{ Wg— Vg | =< T}én for every pEG_Q . Now, again by use of E), we can comstruct
‘ 1o by 1.0 1 _

open sets Va’ ”].1 such that Vgcvacvac.»acwa , and ordp{h’a Val u<T};n 1
for every pEG, .

By repeating this process we get open se&ts lé s W{: , k=0,...,m, such that
V:—ICV";CZC‘}écW]g—I , and ordp{&r};-?ulu<1};n-k for every pﬁGk.

Letting V, =u? VK we obtain the desired open sets V_ for a<T.
a k=0 'O a

I111. 5. Continuous mappings which lower dimension

The projection of E’2 on El lowers the dimension of E’z by one, the dimension
of the inverse image of each point of E] . (Precisely speaking, dim E’z =2 1is not
yet proved while dim El = 1 1is easy to see.) Generally we can prove the following

Theorem I111.6 as a result of investigations in this direction.

Definition 1IIl. 6. A mapping f of a space R <into a space § 18 called a
2losed (open) mapping if the image of every closed (open) set of R tis closed (open)

in 5. A closed continuous mapping f <is called a perfzet mapping if f-l {q) s
compact for every q€S .

Theorem III. 6 . Let f be a closed continuous mapping of a space R onto a

space S such that dim 7 1(q) <k for every q€S . Then dim R<dim S+k .

Proof. Since the validity of this proposition is clear if dim §=-1 , we shall
assume this theorem for every § with dim S<n (22>0) to prove it by induction

for 5 with dim S=n . Lert U = {Uilﬂ.':l.....s} be a given open covering of R .

2 This theorem was first proved for separable metric spaces by W. Hurewicz and ex-
tended by K. Morita [6] and K. Nagami [1] to general types of spaces which include
metric spaces as a special case. See Theorem VII. 7.
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Since dim f‘_](q);k for each point g €S , by I.1 A) and II1.4 C) there exist open

. —1 8 .
sets Vi’ 2 =1,...,8 such that f (g)c Ui=l Vi’ VicUi, i=1,,..,8, and
m ord{Vi|i=1,...,s};k+l .
Let
(2) Vifq) = U Vi;
i=1

then {V'(q)|q€S} 1is an open covering of R satisfying V'(g) Dfnl(q). We choose

for each ¢ an open set V(g) satisfying
3 v iq) STI@T ovig) oF '(q) .

It follows from q€8 - f(R ~ V(g)) and the closedness of f . that V=
{5-f(R-V{q)) | g€S} 1is an open covering of S . Since dim S<n , by use of
III. 4 D) combined with the paracompactness of S we can construct a locally finite

open covering W of § such that W<V and

(4) dimBm;n—m,m:l,...Jn+l .
where B = {p|ordp B(W)>m}. Let W,€W, £=1,....m ; then since

L I —
PGB0 0B )) = BN NBK )

f is clearly a closed continuous mapping of f_I(B(W]) n... ﬂB(Wm)) onto

B(Wl) N... ﬂB(Wm) . Since B(W]) N... ﬂB(Wm)CBm , it follows from (%4) that
dim (B(Wi) No.. ﬂB(Wm))__in-m .

Hence we obtain from the induction hypothesis

dim £ BV )0 NBOW ) sn-mek ,m= 1 nel .
Hence, in view of
I R L 1 Y PSS I CICO NI N T-TC U
we conclude that
aim B0 W) 0. 0B W ) <n-mak

Thus, by virtue of the sum theorem, f-] vy = {f—](w) | WEWY is a locally finite
open covering of R such that
(%) £ <{vig|qest, and
") dimAm;n—m+k,m=l,...)n+l ,

for Am={pl ord , B(f_]{W));m} . because 4~ is a locally finite sum of closed
sets like B(f (W ))0...0B(F (W )) .
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We well-order the elements of f.‘ W) as F Yy - {M Ja<t} to define a new

locally finite open collection N = {Na | a<T} by

= M = - M .
Ny =My, N =M U{MBIB<(X},0<(1<T
Then Cm={p| ordp h—l;m}CAm_l ,m=2,...,n+1 , and hence, from (5)', it follows
that
(6) dim Cm;n-m+k+l, m=2,...,n+1 .

Since by (3) and (5) ¥ CV'(q) for every a and for some ¢q , from (1), (2) and
I.1 A) it follows that there exists a closed covet1ng {Ku| i=1,...,8} of N
satisfying KucU., 2=1,...,8 , and ord {K |7,-1,...,s}<k+l

By use of 4 C) we construct open sets Pia such that KicPicP_icUi , and
(N ord {P[d=1,...,8}ck+1.

Note that we choose Pia such that {P_:.! Ja<t, £=1,...,8} is locally finite,
because {Kg’|0<1, £=1,...,3} is locally finite.

Now, in view of (6), we apply F) to K_L.a, S o get open sets Qf, a<T,

i

. . a0 =a .«

2=1,...,8 such that KichchCPi , and

(8) orde(Q)in—nHkH for pECm,

where 0 = {Qf|a<T s £=1,...,8}. Let

a_ 3 a_ a0 a
(9 Si-HaﬂQi (Qlu"'UQi-I) .
We shall show that S = {S?I a<T, £=1,...,8} 1is a closed covering of order

Sn+k+1 and a refinement of U , Suppose

5y a (xm s
f=ll s Si(m,v) ¢ 0 .

8
S
(10) pE r_ll sz(l "

2
2(2,v)" "

[] Dsm

v

If m=1, then from the definition of siGL it follows that

8y
=
n qQ.l 4o,
V=1 2(1,V)
which combined with the relation 'i“c-i"‘ implies
8 a,
n p. $0,
v=l (l,v)

3 For brevity we abridge some symbols N in this formula, but the reader will easily
understand the real meaning.
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and hence by (7) slék+l;n+k+l . If m>2 ., then by assuming Z(%,1) <Z(1,2) <...
< i(Z,sZ) , L= 1,...,m, we get from (9) and (10) that

5y al sm um
PE N SN NS w
=1 vl
8 -1 a, 8, =1 @ m o
c N B(@g. YN ... N B@. y NN,
v= | 2(1,v) v=l (m, V) i=1 9%
. m = .
Since p€f1?:=l Naich » it follows from (8) that (s, —I)+(32-1)+... #(sm-llé
n=m+k+1 , and hence S+, ... +sm;n+k+l . Thus in any case we get

ordpS;n+k+l .
Now we note that {Ma| @<1} covers R, and hence by the definition of N , N
also covers R . On the other hand, since {-’fl 2=1,...,8} and accordingly
{Qf! Z=1,...,8} covers }Tla , we have I_Vo.= U 3-1 Sia. Therefore S covers R .
Since by (9) and the definitions of Q;.J and PO we have Siac@?cﬁfcui , S is

a locally finite closed refinement of U . Thus by 4 C) dim R<n+k .

IIT. 6. Continuous mappings which raise dimension

As shown by Peano, a closed segment can be continuously mapped on a closed square.
This example shows that a closed continuous mapping can raise dimension. As for the

raising of dimension by a closed continuous mapping we have the following theorem.

Theorem 111. 7 * . Let f be a closed continuous mapping o~ a epace R onto a
space S such that for each point q of 35, B(j'-z(q)) containg at mogt m+1

potnts (m20); then dim S<dim R+m .

. -1 .
Proof. We shall begin the proof with the special case that every f (g} contains

at most m+1 points, Let dim R<n ; then we shall carry out the proof of

dim S<n+m by induction on the numbers n>-1 and m>0 .

i) This assertion is clearly true for every m>0 if n=-1.

ii) Let us show this theorem for every 7n>-1 in case m=0 . To use induction
on n , assume that the theorem is true if dim R<n-1 . Assume GI and 02 are

* W. Hurewicz [3) first proved this theorem for separable metric spaces considering
FYq) in place of B(f-1(q)) . With respect to this theorem K. Nagami [2] solved
a problem posed by W. Hurewicz as follows: Let S be an n-dimensional space and
0<m<n ; then there exists an m-dimensional space R and a closed continuous
mapping f of R onto S such that f-l(gq) contains at most n-m+1 points
for each g€S§ .
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given closed sets of S5 such that G NG, =@ . Then F = f—l(GI)

are disjoint closed sets of R® . Since
fying F‘ c¥ = R_FZ , and

(m dim B(U)S -1

Since j is aclosed mapping, V=S5-jF(R-U)

2) Glch:S—G2 .
Then
(3) B(V) e f(B(U)) .
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Pl
and F, = j (62)

dim R<n , there exists an open set U satis-

is an openset of S. It isobvious that

Because for each point ¢ €B(VJ , f-‘(q) ={p} . If p€U , then g€V . 1f pfU,

then qEV . Since both are impossible,

p €B(Y) , and hence

g = f(p) € f(B(Y))

proving the assertion. Since f is 2 one-to-one closed continuous mapping even if

restricted to B(V) , by the induction hypothesis and (1) we obtain dim f(B(UN<n -1

Thus dim B(V) <n-1 follows from (3). Hence dim S<n is proved,

iii) Now we assume the proposition for the case in which dim R<n-1 , and every

~1 . . . . .
f (q) contains at most m+1 points, and for the case in which dim R<n , and

~1 . .
every  {q) contains at most m points.

Then we shall prove it for the case in which dim R<n , and every f'-](q) con-

tains at most m+1 points. Let Gl

S . Then we can define Fl . F2 , U and ¥V

and G

2

Let H=jF(B(U)) . The restriction of f to B(UJ
of B(U) onto H . Therefore it follows from dim BfU)<m~1| and the

hypothesis that

(%) dim F<n+m~-1

B(V) -H 1is a Gé—set of & . Therefore, let

(3) 3(v)-u= U

k=1

Hk for closed sets Hk , k

=1,2,... .

Note that for each g€B(V)-H , f-lfq) NB(U) =¢ holds. Then put

f_l(q) ny = f—l(q)l . and f‘—l(q) N(R-T) =f

Further put

- ~1 ~1 = -1 .
By = f (HJN(R-U) = £ (H)0(R-U) =u{r (q)2|q€!1

]
(c;r)2 .

2t

be given disjoint closed sets of
in the same way as in the proof ii).

is a closed continuous mapping

induction

Then E, is a closed set of R . Note that for each q€H, , f.](q)z#ﬁ holds,

because otherwise g€V -would follow, contradicting g €B(V) . Thus f(Ek) = H
Namely £ | Ek = fk is a closed continuous mapping from Ek onto #
On the other hand f_’(q)‘ # ¢ for each g€¥H

ko

P

because otherwise

k

GEV would

~1 - . :
follow. Hence fk (qg) = fF l(q}2 consists of at most m points for each qEHR .
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Since dim Ek.f." is obvious we obtain from the induction hypothesis dim Iik;n +m=-1.
Thus by (4) and the sum theorem we can conclude that

-]

dim (HU( U H)) <nem=1
k=1

because H and Hk , k=1,2,... are closed sets.
=
Note that (5) implies B(V/cHU( Uk= |Hk" . Therefore dim B(V)<n+m-1 , which
proves dim S<n+m .,
Now, let us turn to the most general case n which each B(f-l(q)) contains at most
m+1 points. To each point ¢ €S with B(f_l(q)) = ¢ we assign a point p(q) Ef_l(q)
and put C = {plq) | q€5 , BIf '(q)) =) . Let

B=ulB( (g |qgestuc.

Then B is a closed set of R with dim 3<n , and f | B is a closed continuous
mapping from B onto 5 such that each inverse image of a point of S contains at
most m+1 points. Hence from the above argument of the special case it follows

that dim S<n+m 5.
-~

II1I. 7. Baire's zero-dimensional spaces

Definition IIl. 7. Let Q be a given set. We denote by N(Q) the set of all
sequences of elements of Q. Defining the distance of two points a= fa;,0,,. ol
and B=(Bl,82,...) of N(Q) by

1
p(a,B) = — ;

mw{klak # Bk}
we get a O-dimensional metric space N(Q) . We call this space a generalized Baire's
O-dimengional space.

As easily seen, WNfQ) 1is topologically the countable product of discrete spaces
€ . We characterize n - dimensional metric space in terms of N(R) , that is to say
we can get every n -dimensional metric space as the image of a subset of N(Q) by

a closed continuous mapping which satisfies the condition of Theorem II1.7 for m=n.

5 In relation to this theorem J. Suzuki [1] proved that if f is a closed continuous
mapping of a space R onto a space S such that each f-1(g) consists of exactly
k points, then dim R=dim S . As for open mappings K. Nagami [2) proved that if
f 1is an open continuous mapping of K onto S such that each f-1(q) consists of
finitely many points, then dim R=dim § . R. Hodel [1] proved the same for a
countable-to-one open mapping but assuming that R is locally compact.

Yu. A. Rozanskaya [1] proved that if m<»n , then there exists no open continuous
mapping which maps I™ onte I” ., See also J. Keesling [1] for results in this
aspect.
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A) Let A" », n=1,2,... be a sequence of O-dimensional sets of a space R . Let
u- {Ual a<T} be a locally finite open covering. Then there exists a closed

covering F = {F“ | @<t} such that Facua and ordpF;n for every pEAn .

Proof. By 4-A) combined with I.1 A) there exists a locally finite open covering
v = {Val a< T} such that V,cl, and orde(V);n—l for p€A4, . Let

Fo=Vy , and Fa=Vu—U{V8|8<a} for a<Tt .

Then it is easy to see that F = {chl @<t} is the desired covering. For, let p
be a given point of An . We suppose pEVa and pEV8 for every B<a . Then from
the definition of Fo. we have pEFY for every y>a . If pEFs for some B<a ,
then from pEV8 it follows that péVs—VB = B(VB) . Hence from ordpE(V}:n—l

we obtain ordpFérz .

B) Let An > m=1,2,... be a countable number of O-dimensional sets of a space R.
Then there exists a sequence {Fi | Z =1,2,...} of locally finite closed coverings
of A satisfying ’

i)  for every neighbourhood Ufp) of every point p of R there exists some <
with S{p, Fi)r:U(p) s

ii) Fi:{ P(ul,...,ui) | ak€Q, k=1,2,...,2} , where F(al,....ai) may be empty,

i) Flo|, ..oy ) =UlFa ... 0. | ,B)|BERY),

iv) ordpFi;n for each point pEAn and for each 7€{1,2,,..} .

Proof. First we define Si = (SI/i(p) [pER}‘ > ©=1,2,... . Then we shall define
Fi satisfying ii), iii), iv) and Fi<S1: . For =1 we can define, by use of A)
and the corollary to Theorem 1.1, a locally finite closed covering FI such that
FI <Sl and ordpFl;n for every pEAn . We shall use induction and accordingly
assume that Fk has been defined for every k<7 . Now we shall define Fi .

Let us well-order the elements of F. | as F,_, ={F°[ «a<T} . To obtain Fi

I 1

we shall define closed sets F for 4<T and BEQN such that

aB

a), F,rUlFl8eQ)} . (F lB€Q) <S, |

b), Gy ={F gla ca, BeEQIU{Z ,la">a)

is locally finite for every o« < - |

C)u ordpGu;n for every a<1t and for every point pEAn .

First we define FOB for BEQ as follows. We let
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Ho = {p|pEFOﬂAI , ord {Fa|0<a<t} 0},
gy ={plp€Fyna,, ordp{pu!omq} =1},
Hy, = {plp€F00A3, ordp(Fa|0<0<T} =2},

R R I R R R R R R T S

KI = HIOUHZI UH32U...

and

Hyo = {p]peFonAz, ord {F |0<a<t} =0},

Hy ={p|p€Fyna,, ord {F lo<act} =11},
Hy, = {p|p€FonAA, ordp{Fal 0<a<t} =2},
KZ =H20UE3]UHA2U...
and generally
() Hr+88-{p|p€FonAP+s .ordp{Fa|0<a<T}=s).
oo
(2) K, = U & .
T og-qg Tr*es
if peHr*ss , then pEFaln... |'1l=‘0,.8 for some different o.l,...,cxs>0 , and
pEFm n... nFas .l for any different ul""’“s*-l >0 . Hence the open neighbour-
hood U(p) = N{R-F |pgF,_, 0<G<T8}' of p satisfies U(p/NH, . =@ for
r . . - - -
every t>s , Hence for every s’ , U 8=0 Hr+ss is open in Kr . Since (1) implies
Hr+escAz'+8 , from dim Ar+s;0 it follows that dim b:ﬂ+sséo for every §2>0.
. . "~ . P . "
Since any open set is an Fo set, each Hr*-aa is an F_-set in X . Hence from

the sum theorem we obtain dim KP;O . Therefore by A) we can define a locally finite

: 1 = 1
closed covering G {FOBI BEQ} of Fy such that Gj<S. and

]
(3) ordpGO;n for every pGKn .
We put GO=GC')U{F(1| a>0} . To show ordpGo;n for every pEAn we suppose
ord F. =g8+1| and
p i-1

(4) pEFOﬂzQ n... nFa

1 8
for some different al,...,as>0 . Then O0<egn-1 because by the induction hypo-

thesis ordpFi_lén . Thus from (1) and (2) we deduce that ps”nscKr.—s . Hence
by (3) ordpG('):n-s , which combined with (4) proves c)o ordpGO;n .

Furthermore a)o and b)o are clearly satisfied by FOB and GO .

Suppose we have defined Fa'B for every a'<a ; then we can define FotB for
every B€Q satisfying a)a s b)o. , C)a . The definition of FaB is quite analogous
to that of FOB except that we adopt F_ and {FO.'B| a'<a, SEQ}U{FG, jn'>al

in place of F, and {Fu] a>0} respectively, so the proof is left to the reader.
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Thus we can define the desired covering Fi = {Faﬁl a<tT,BEN}, It easily follows
from a)a and c)a that Fq_ satisfies ii), iii), iv) and Fz. S_L From b)a combined
with the local finiteness of Fi-l it follows that F‘i is locally finite. (To
assure that ':i is subindexed as in ii), we select a sufficiently large § at the
beginning of the induction and at the end of each stage of the induction we put

l"(cv.I ,...,ai) =¢ for those (al,...,ai) for which F has not been defined.)

C) If a space R has dimension < n , then there exists a sequence
{Fi | £=1,2,...} of locally finite closed coverings of R which satisfies

i) for every neighbourhood U(p) of every point p of R there exists some <
for which S(p, Fi)CU(p) R

ii) F‘i:{ F(Ql,...,ai)luk€f2 , k=1,...,7}, where F(al....,ai) may be empty,

iii) Fla,....a;, ) =U{Fla;,....a; | ,B) igeql} ,

iv) ord Fi;n-rl .

Proof. We can easily prove this proposition by applying to R the decomposition
theorem and B), putting Ai=¢ for 2>n+1 . (Note that the condition iv) should
be understood in the strong sense that each point of R is contained in F(ol,...,ui)

for at most n+1 distinct subindices (al""’ai)')

Theorem I11. § ® . A space R has dimension < n <f and only if there exists a
subspace P of N(Q) for suitable Q and a closed continuous mapping f of P
onto R such that for each point q of R, f_l (q) consists of at most n+1
points.

Proof. Since dim N(Q) =0 , the "if" part follows from Theorem 11I,7.
To show the "only if'" part we construct closed coverings Fi , £=1,2,.., satis-

fying the conditions of C). Then we define a subset P of N(Q) by

-]
p= {ala-(al,az,...)eﬂ(n), n

; F(al,...,ai)#ﬁ} .

1

Furthermore, we define a mapping f of P onto R by

©

fla) = N F(a',...,a.) for a=(a1,a
=1 v

2,...)EP .

First proved by W. Hurewicz [2] and C. Kuratowski [1] in the separable case. This
theorem for general metric space and Theorem III.9 are due to K. Morita [5].

Yu. Smirnov [4], V. Ponomarev [1] and K. Nagami [3] obtained a wider category of
topological spaces as images of zero-dimensional metric spaces by continuous
mappings satisfying some conditions. For example, the last author showed that every
non-empty metric space S 1is the image of a metric space R with dim R=0 by an
open continuous mapping f such that F-!(q) 1is compact for every point q of S.
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By virtue of the condition i) of C) f is continuous. From iv) it follows that
for every gE€F , f‘-l(q) consists of at most n+1| points. (Recall the note in the
proof of C).)

To show that f is a closed mapping, for each collection (o <‘xi) of elements

of § we define an open set l‘lfal,...,ui) of P by
» - . ' H (- P =, = s 3
.n(u]....,ai) {(ul_,a ceedd (ol ay L JEP: ol =y, k=T
and an open covering Ni of P by
Ni:{”(al""‘ai) | o €0, k= 1,...,1}.

Let K be a closed subset of P and choose g€ f(K) in A . Then it follows from
the finiteness of f_l(q) that S(X, N'i) ﬂf_l(q) =@ for some < . Hence

BE=u lfm)|ne N, . NNK#@} satisfies g€£H>F(X) . Since by iii)
f‘(N(a',...,az.)) = F(on‘,....ai) , the local finiteness of Fi implies that 7 1is a
closed set of R . Hence putting U(g) =R-F we obtain a neighbourhood of ¢ satis-
fying Ufq) N f(X) =@ . which shows that f(¥) 1is a closed set of 7 . Therefore
is a closed mapping.

Thus the proof of this theorem is complete.

Theorem III. 9. A space R has dimension < n <if and only if there exists a
sequence { Fs |2=12,2,...} of locally finite closed coverings of R which satis-
files the conditions £} - iv) of C) 7.

Proof. The "only if' part is proved by C). Converselv, if there exists such a
sequence { Fil £=1,2,...} , then by use of the proof of Theorem 111.8 we can con-
struct a subspace P of N(R) and a closed continuous mapping 7 of P onto F~

I . . c
such that f (g) consists of at most n+1 points for each g€F

is deduced from Theorem I11.8.

. Hence dim#fx<=

I1I. 8. Uniformly zero-dimensional mappinas

Closely related to the diameter &(S) of a subset § of a space F is the fol-

lowing notion,

Definition 1II1.38. Let U and S be an open covering and a subset respeciively
of @ space R . ke denote bu 6(S) <U the faect that there exists an open collection
V saitisfying V<U , U{V]|VEV]I>S, and ord V<17 .

7 Here iv) should be understood in the strong sense as noted in the proof of C).
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definition I11. 9. Let f be a mapping of a space R <into a space S . Suppose
for every ©>0 there exists n>0 such that &8(T)<n for TcS <implies

:S(f_](T))<UE=(U,U is an open set of R with 6&(U)<e}.

Ther we call f a uniformly O-dimensional mapping.

A) If there is a uniformly O-dimensional continuous mapping f of a space R

onto § , then dim R<dim S .

Proof. Suppose dim S<n . By use of the decomposition theorem we decompose S
into n+1 O-dimensional spaces Si , t=1,...,n+1 ., The mapping f 1is clearly a
uniformly O-dimensional continuous mapping of Ri:f-l(si) onto Si if it is
restricted to Ri . Hence, again in view of the decomposition theorem it suffices to
prove dim Ri;O . Namely, all we have to do is to prove this proposition in case
dim S=0 .

We define Si:{ Sl/i(p)} p€ER } . Since f is uniformly O-dimer:sigx;al, there
exists N>0 such that if &(T)<n for a set T of §, then &(f (T))<S..

Since 5 has dimension < O , there exists an open covering Vi of S such that
mesh Viin , i.e. §fV)<n for every VE€ Vi , and ord Vi;l . Then every element
V of Vi satisfies :S(f-I(V)) <SL" Hence for every VGVi there exists an open
covering Ui('/) of f-l(V) with ord U‘I:(V);l and U‘L'(V) <S7: . Thus
w, = U(Ui(V) jve Vi} is an open covering of R such that ord ¥ <1 and wi<si .

o

Therefore we can easily see that Ui=l

R consisting of sets which are both open and closed. Hence by Theorem II1.2 we

conclude dim R<O0 .

wi is a 0-locally finite open basis of

B) We denote by C(R,In) the ser of all continuous mappings of a space R into
a Euclidean n-cube I' . We regard C(R:In) as a metric space by assigning a metric

f# to it by
6lf,g) = sup {d(f(x), glx)) |[z€R} for f,g€crR I ,

where dfa,b) denotes the metric of I . toreover, for €>0 we put DE(R,In) =
{r|re C‘(.?,In), there exists n>0 such that for every T’ with &(T)<n ,
5(}‘-1('1')) <U€ holds } , where Ue denotes the same covering as in Definition IIIL.9.
Then J_(Z,I") is an open subset of C(, .

Proof. Let f be a poiut of DE(RJIn) and n a positive number such that
< . . ryrall
() 8(T) <n implies &(f (T))<U_ for all rcr’ .

)
Suppose @ to be a point of C(rR,I") satisfying off,g) <3n . Consider
: 1 -
Ter” with &(T)<:n . Then a' , b'Ef ](’I’) implies a' = f(a) and b' = f(b)
=3 g
for some a, bER for which gfa)€T and g(b)ET .
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Therefore

dta',b’') = d(fle), f(b))
dffla), gla)) +di(gla), a(b)) +d(g(b), F(b)}<n .

A

Hence S(fg_](T));n . Thus it follows from (1) that &(f 7o (7)) <U_ . which
combined with f 'fg~'(T)>g (1) implies &g (T)) <U_ . This means g€D_(R,T") .
In consequence the neighbourhood S%n(j") of f is contained in DE(R,In) , which

proves that DE(R,InJ is an open set of C(,?,In) .

C) Using the same notation as in B), for any €>0 and any O-dimensional space

R, DE(R,IO) is dense in C(R,Io)‘ , where Io is the space of just one point Pg -

Prooy. As a matter of fact, DC(R,IO) coincides with C(R,IO) itself which con-

sists of just one point f: f(R) = Py -

D) Let F be a closed set of a space A . If h'EDe(F,Ik) and h 1is a con-

tinuous extension of A’ over R , then there exists an open set U containing =

such that the restriction of # to U belongs to Ds(U,Ik) , i.e., for some n'>0 ,

8(T)<n’ and TcIk imply 6(h_l(T) Ny} <l_ , where Ue is the same covering as

in Definition I1I1.9.

Proof. Suppose 6(T)<n and TcF imply :S(h’_l(T)) <UE . Since Ik is com-
pact, we can cover it with finitely many open balls with radius 151’\ , which we dencte

by Vi:S,l;n(qi) , 2=1,...,8 . Define
) Sizsén(qi)’ t=1,...,8 .

Then there exists an open covering Ni of h’-I(Si) with ord Ni;I and N?:<UE .

Let Ni = {NY | vye€ l‘i} ; then we can assign to every a an element AYEUE such

that ”YCAY .
il . .
For each pe€h (Si) there_Tmsts a unique Ny(p) EN?I such that pEﬁ/Y{p) .
Hence to each point p of k&' (Si) we can assign a positive number Ei(p) satis-

fying
i) Fnsci(p)(p)c”Y(p)ENi ,
ii) SEi(p)(p) CAYl'p) €U€ .

iii) d(h(q), hi(p)) <£n for every gE€S5 () .

Ei(p)
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We let
£(p) = min {%e (p) | h' -l(Sq.)Bp .
2’.,=U{5 (0) (p)!p€l' } for every YGFi,
!
(2) u.:u{uher} i=1,.... e,
g= U Ui.
=1

Then ! is an open set containing F .

Now, to show

- e
3) CNELTELS

we assume the contrary, i.e. x€h"(y;) nU—U_I: # 6 . Then by (2) :CESE(p)(D) for
every p€U({ .*'.",Y | v € I'i} . On the other hand, since x €U, then necessarily, by (2)

o kol o £ 3
"EUE(p,f' fp) for some p€F . Hence we know that xGQE(p)(p) for some p with

I

. - o ~l, - pob
vEF u{fiyheri} SF-h" S =F-h (S.).

This implies, by virtue of (1) and 111) dfhipl, 9; )>— and then d(h(x), q; )>
On the other hand, it follows from x €% (V) that h(x) €V, . i.e. dfhiz), a; el =n.

This contradiction proves (3).

By (2) U. = {UY | ye I’i} is an open covering of U. . ii) and (2) imply that

- 3
r':‘_fc/;_{ for every ‘(Gl"i and accordingly (17':<U€ . Since Ni has order < | , i)
and (2) imply that ord Ué;l . Hence 6(U7.) <UE . By virtue of (3) this proves
eV anmeu .
PN £

Since I is compact, by 1.2 A) we can find n' >0 such that if a subset T of

has diameter < n’' , then TCV‘L. for some % . Then G&(T)<n' implies
Ty <

€

ity

Thus the proof of this assertion is complete.

E) For any €>0 and any space R with dim R<n , DE(R,In) is dense in C(F,IY.

!rooy. Since for w=0 this assertion is proved in C), to use induction on n we
assume the assertion valid for #=n-1 .

Let D be a given point of C{R,Ix) and €' a given positive number. Suppose
) = Ry |
ot = (glpl),ofpl), zE€CIE,I ), 0EC(R,I) .

Then, since dim R<n . in view of the proof of 7 A).we can easily construct an

.

open collection M = ¢ #, | + €'} in £ such that
i) M is a locally finite open collection with ord M<1 |

i) U{w ye 1=
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iii) M<UE for the covering Ue in Definition III.9,

iv) dimU{B(My)]YeI‘}_gn-l .

v lela-ob) | <je' if abel .

(Choose a sufficiently small U in the said proof and V satisfying dim B(Vu);
n-1 for every a; then put M =V -U {'-Bi B<a}.) By applying the induction
hypothesis to F = U { {B(HY) | YET} we get a mapping 7’ EDE(F,In— '} such that
d{h'(p). g(p))§5<§ €' for every p€F . By Theorem 1.7 we can continuously extend
n- . Then, for each p€F we choose a neigh-
bourhood N(p) such that g €WN(p) implies d(ho(p), holq)) <A and dfglp), gfa)<é.

Define ¥ = U {N(p) | p€EF} . Then we construct a real valued continuous function

h' to a mapping hO of R into T

a on A satisfying afF) =0 , alR-N) =1, and 0fLacl

Putting % = ag + (] —u)ho in vectorial nmotation, we have a continuous extension
h of h' over R.

Since d(ho(p), al(p)) <§ for every p€F , it follows from the definition of

that d(hiq), g(g)) <3¢ for every g€X , and hence
M olh.g) <38<3e’

where p denotes the metric in C(R. I° l) . Then, by use of D) we can construct an

open set U such that UDF | and
(2) for some n' >0, §(F)<n' and 7er! imply S(Uﬂh_l(TJ)<UC .

Now, we consider a real valued continuous function ¢ on R such that of/R-U)=0,
o(F)=1 and 0<£0<1 , and put \b=w*§ £'c . Then Y(p)=(h(p), ¢(p)) is a mapping
which satisfies Y €C(R, %) and p(¥Y, @) <" .

We can easily prove this assertion by use of (1) and the definition of I . Thus
to complete this proof it remains only to prove that “r’€L‘€(R, 7.

For this purpose we shall show that if
1
(&) 8(T) <min (n',;€")

for a closed set 7 of In , then
(%) either B NY ' (T)cR-F or ooy ey

for each YET .

Let us assume the contrary: then for some Y we get two points a and &  such
that c€F nz':’_'ﬂ‘?-l(T) #¢ , which implies wfa)=wl(a) *%E’o(a)mo(a) + %c' and
bE(R-U)AE NY ' (T)#0 , uhich implies 13 =0fb) +; c'o(b) = wlb) .

Since @fa) and ¢(bJ) €T , in view of (3) we know that

[ -

| @fa) - @b+ € j=|ufa) - w(b) | <*
2 =

v 1 s . .
Hence | @fa)-w@(b)j>3¢'. This, however. contradicts v) and accordingly proves 4).
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We let
P={y|yer, ;?an"m')ca—;} ,and T''={y]|yeET, A_lyn\l’-l(T)cU}:

then by (4) T=7'Ul'' , Suppose T 1is a given closed set of I which satisfies

(3). 1If y€T' , thea by the definition of F

nv"rT)cszan“rT) N(R-F

Y
e v N TIn(R-88 ), | i.e.
Y S Y
(3) L-I’Yn‘{‘_l(T)Cz‘r!Y for every YET' .
If Y€T'', then note that "r’_l(T)Ch-I{‘I') , where T' denotes the projection of

T om In—l . Therefore
ﬁyﬂ‘!‘_l(T)CUﬂﬁyﬂ‘}‘-l(T)CUﬂh_l(T) for every YET'' .

Hence

1

(6) A {T') .

U (E [ yer in v r)cuan

On the other hand, we can deduce from (2), (3) and &(T') <&8(7) that

é(i’ﬂh_l(T'))< Ua . In consequence, (6) implies
(7) 6(a) <U_ .

From the closedness of T and i) it follows that A 1is closed. Therefore

K - {A,;:‘Yn‘{‘-l(T)IyE L

is a discrete closed collection by virtue of (5) and i).

Now we choose an open set K of R such that W24 and Wﬂﬁyﬁ‘f‘(?’) =@ for
all yep' -T'' .,

Because of (7) there is an open collection { of order < I which covers A4 and
refines UE . We may assume that each member of W 1is contaired in ¥ . Then
(L’U{A"!Yﬂ (B-W J|YEDT' -T''} is an open collection of order < | which refines
U_ and covers U{x|xek}=y (1) . (Recall 1), ii), iii) and (5).)

This implies 3(‘?-1(’1’)) <UE , and thus ?EDE(R,In) is proved, and hence DE(R,In)
is dense in C(R,In) .

Theorem III. 10 ® . 4 space R has dim <n (n>0) if and only if <t satisfies
1) For any metrization of R there exists a uniformly O-dimensional continuous

mapping o R into It or

® Proved first by M. Kat&tov [2].
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2) for a suitable metrization of R there exists a uniformiy O-dimensional eon-
tinuous mapping of R into .

Proof. Llet dim R<n ; then from B) and E) it follows that D]/i(R,In) ,E5 1,2,

are open and dense in C(R,In) , for any metric of R . Since C’(R,In) is a complete
metric space, by Theorem I.5 we know that ﬂ:_ | Dl/i(R,In) 0 . Thus
fe “2:: Dl/i(R,In) is the desired mapping in 1).

1) obviously implies 2). Finally, by A) we can deduce dim R<n from 2) because

dimlnf‘n.



