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CHAPTER II

DIMENSION OF METRIC SPACES

Throughout chapter 11 - chapter VI all spaces are metric unless the contrary is

explicitly stated. We shall begin this chapter with the sum theorem and shall deduce
further fundamental theorems from it.

I1. 1. Lemmas to sum theorem

A) Let F be a closed subset of a space R . Then Ind F<Ind R.

Proof. The proof is by induction on the dimension of R . If Ind #F = - | , then
R =0 , which implies F =@ ; hence Ind F = -1 .
Assume A) for R with Ind R<n -1 . 1If Ind < n ., then for given disjoint
closed sets G and H of the subspace 7 there exists an open set U of R such

that
GcUc<R-H , and 1Ind 8(U)<n-1,

because G and H are also closed in R . Then V = UN F is an open set of the

subspace F and satisfies
CcecVeFr-H, and .‘?F(V)CB(U),

where BF(V) denotes the boundary of V ium the subspace F . Hence Ind BF(V) gn-)

follows from Ind B(U} < n -} and the induction hypothesis. Thus we get Ind F < n .

B) Let C and D be subsets of a space R . If (C ND) U(CN D)

n

¢ , then

there exist open sets M and N satisfying CcM, Dc ¥, MNON ® . This
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assertion can be deduced from I.1 B) and the hereditary normality of R , but we

shall directly prove it as follows:

Proof. We assign to each point p € € a positive number e(p) satisfying
Se(p)(p) ND=¢ and to each point ¢ € D a positive number efg} satisfying
Se{q)(q) nc=29.

Putting

M=U{S

EE(p)(p)[pu:} , and H:U{Sﬁl’-{q)(q) |g€D}

we get the desired open sets.

C) Let A and B be subsets of a space A such that
R=4AUB, IndA<n, IndB<LO:

then Ind R <n+ 1.

Proof. Let F and ¢ be given disjoint closed sets of R ; then by virtue of the
normality of R there exist open sets V and ¥ satisfying
FecV, GeW, and VoW=20,
Since Ind B £ 0, we can find an open and closed set U of the subspace B such
that

VnNBecUcB-(ROB).

Since FUU and G U (B - U) satisfy the condition of B) ! we can find open sets
M and N such that

FUUcM, GU(B-U)cHN,and MN W =20.

B(M) c 4 is obvious by the above property of ¥ and by the fact that U 15 open
and closed in B .
Hence Ind B(M) < Ind 4 < n follows from A). Since # 1is an open set satisfying

FPcMcR-G, we have Ind R<n + 1

D) If Ind R < n , then there exists a 0 -locally finire open basis V of R such
that Ind B(V) < n -1 for every VE V.

! We mean by B) Propesirion B) of the same section and chapter, by ! B) Proposition B)
of Secrion 1| of the same chapter and by 1.! B) Proposition B) of Section I of
Chapter T,
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Proof. By Theorem L.l or by Theorem 1.3 there exists a g - locally finite open
a0
basis Ui -1 Ui of A , where we may suppose each Ui to be a locally finite open
covering of R such that hm_‘:_ﬁ_‘a mesh Ui =0 . Let Ui ={ Uql a € A;i 5 then by

1.1 A) there exists an open covering (Ui = {h’ol a € Ai} satisfying Vu c Uo. .

Since Ind F<n , we can construct open sets V_ for QEAi such that
W cVv clU, , and Ind BIV. ) <n- 1.
) « o a’ =

. _ g = ! . .
Putting V = Ui -1 Vi , and Vi { VQ, a € Ai} we get the desired open basis,

E) If a space R has a 0 -locally finite open basis V such that B(V) = @ for
every V€V, then Ind R < 0.

Froof. Let V = U:=l Vi for locally finite open collections Vi . Let F and

G be disjoint closed sets of 2 . Then for every <

(U. - ¥.)
i z

Z
y.=r-U{Vvive V., VN F=29)
z o J
Jg=1
is an open and closed set containing F bacause U}=l V. 1is a locally finite col-
lection of open and closed sets V . Thus we get a sequence {Ui: i=1,2,...} of
open and closed sets such that
o
v osU,2... 7%, and n U, =r.
1 2 . 1
t=1
In a similar way we can construct a sequence {wiﬁ £ =1,2,...} of open and closed
sets such that
o
’r/lDWZD...DGJand n wW.=-¢.
=1
Now
o
v=u

=1

is an open and closed set and satisfies Fc U c R - G . Therefore Ind R<o0.
F) Let Ac R, IndR;O;then IndAéO.

Proof. F) is a direct consequence of D) and E).

I1. 2. Sum theorem

A) Let {.’:'i[ £ =1,2,...} be a closed covering of a space R such that
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Ind Eg 20 for T=1,2,000 .

Then Ind RX O .

Proof. Let G and H be given disjoint closed sets of R . Since 1Ind FI L0,

there exists an open and closed subset Ul of Fl such that

FI nNIc Ul c Fl -G .

Since H U U] and G U (Fl - Ul) are disjoint closed sets, by the normality of R

we can find open sets V1 and W’ such that

(n HUU eV , GU(F -U)cW , and Vln»'/]=¢.
Since Ind F2 < 0, there exists an open and closed subset U2 of F2 such that
F2 ngec F2 n Vl c U2 c F2 - W] = Fz -G.
Since Vl V] U2 and pl V] (F2 - U2) are disjoint closed sets, we can find open sets
V2 and W2 such that
VI U U2 [= V2 ) Wl v (F2 - Uz) c Mé , and V2 n ”2 =0 .

By repeating this process we get sequences

L = | ¢ = I 2 =
{ Uil £=1,2,...Y, | vl 1,2,... b, {wtd=1,2,...1

of sets such that

(2) F.NHcU.cF.-G,
z 1 7

each Ui is an open and closed subset of . ,

(3) Ve VU eV, W U -U) e, D223,
(4) V,NH. =9,

V. and W, are open sets.
T T

Now we put

7

then from (1) it foliows that ¥V and ¥ contain H and G respectively. Furthermore

it follows from (3) and (4) that V and ¥ are disjoint open sets. Since (1) and (3)
imply

V.UW.DU, U (F, -U,)=F
T 7 7 T Z

o,
.

we get
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VuwWo
7

" C B
]
I
=

[
Thus ¥V is an open and closed set satisfying #< V<o R - G, which yields Ind R < 0.
B) Let {F !y €I} %e a locally finite closed covering of a space R such that

2 P

Ind FY;O for every y €T .
Then 1Ind R 5 O .

Proof, For each positive integer < we take, using the corollary to Theorem I.1I,
2 locally finite open covering U, = {UG | 6 € Ai} such that mesh U. < 1/7 and such

that the closure l-!(S of each element of Ui intersects only finitely many elements

of {Fyl Yy €T} . Then
n Ind Uy < 0
follows from A). On the other hand, by I.1 A) there exists an open covering
Vi-“:V6|6€Ai} with T’6CU6 for every GEAi. B
Hence, by virtue of (1) we can find an open and closed set B’é of Ué such that

VGCWGCUS-(R_UG)'

Since this relation implies W6 c U(S s WG is clearly also open and closed in R .

Thus, putting

we get a 0 - locally finite open basis W consisting of open and closed sets. Hence
by 1 E) Ind RO .

C) Let {Fi l£=1,2,...) be a closed covering of a space R such that Ind F <n,

L8

=1,2,...

Then Ind R & n .

D) Let {FY] Y €T} be a locally finite closed covering of a space R such that
Ind FY <n for every y €T .
Then Ind R < 7.

Proof. The validity of C) and D) is clear for n=-1, To prove C) and D) at the
same time by induction we assume C) and D) for n=m-1(m > 0). First let us show C)
for n=m.

Since Ind Fi <m, by 1 D) there exists a ¢ - locally finite open basis

V. =u v

. P ik of the subspace Fi such that
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) Ind Bpi(V)im-l for VEVi.

Since the 0 - local finiteness of Vi implies the g -1local finiteness of

Vi—'{BF_(V)IV€Vi}:

1
the closed collection Ll;= | Vé is also 0 -locally finite.
Let
#,=U {BF‘(V)I VE vi} :
<
then U:___l Vi is a 0 -locally finite closed covering of U:=l Hi . Hence from (1)

and the induction hypothesis it follows that

x
(2) Ind U H,<m~=-1,
. 1=
=1
On the other hand V. -'-'Um_ V. restricted to F. - H. constitutes an open basis
i k=1 "1,k Z 1

of F’i - Hi satisfying the condition of 1 £). Hence we have 1Ind (F'i - H'L') 0.

Hence, if we define G. by G, = F. —U?_ H, , then by I F) Ind 6, < O . Since
T 1 1 g=1"7 1 -
each G. 1is closed in U. _ G, ,
1 =1 1
o
(3) Ind U G, <0
i=1

follows from A).

Since
< o0
R=( U Gi) url u Hi)’
=1 =1
it follows from 1 C) combined with (2) and (3) that 1Ind R £ (m-1)+ 1 =m. This

proves C) for n =m.

We can prove D) in a similar way by using | C), | D), I E), T F) and B) .

Theorem II. 1 (Sum Theorem) 2 . Let {FY! Yy €T} be a locally countable closed

covering of a space R such that 1Ind F

Y;n for every Yy €T . Then IndR<n.

Proof. Let V be an open covering each of whose elements meets at most countably
many members of [I-"Y l Y € T} . By virtue of the paracompactness and regularity of
R we can find a locally finite open covering U such that U < UV . Suppose

u-= {UGE 8§ € A} . Then each 56 meets at most countably many members of

2 The sum theorem in the present form is due to K, Morita [4] and essentially to
K. Morita [2) and M. Kat¥tov [2].
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{FY l YET} , and 1Ind FY n -06 < n follows from Ind FY < n and ! A). Hence by C)
we have 1Ind Z’G < n . This implies Ind # < n by virtue of D).

Corollary * . Let {F_|y<t1} be a covering of a space R such that Ind FY <n
for every y<1 and such that U{ Fyl Yy < &) s closed for any & < 1. Then
Ind R<n.

Proof. Let

G s = Fs —S]/i(U{Fy|Y<G}) for § <1, Z=1,2,...,

where sl/i{F) for a set F denotes the 1/Z-neighbourhood of F , i,e. the set

{y| olz,y) < 1/ for some x € F} . Then {G6 il 8§ < 1} 1is discrete, and hence
]

{Gﬁ il §<1,7=1,2,...} is a o-discrete closed covering of R . Since by | A)

Ind G; . <n, we have Ind R < n by the sum theorem.

8,7

1I1. 3 Decomposition Theorem

Theorem 1. 2. Ind R<n for n> 0 <if and only if there exists a ¢ - locally
finite open basis V such that 1Ind B(V) < n -1 for every VEV .

Proof. The “only if" part is proved in 1D). The "if"” part for n=0 is proved ianlE)

To prove the "if" part for any integer n20 we put

A-u{BWv)|VveV} 6 and B=FkR-4.

Since {B(V)|V € V} is a g-locally finite closed collection, from the sum theorem
and Ind B(V) < n-1 for ¥V €V it follows that Ind 4 < n-1 . Since U restricted to
B is an open basis of B satisfying the condition of 1 E), we have Tod B < O .

Hence by virtue of 1 C)

IndR=IndAUBi(n—l)+I=n.

Theorem II. 3. (Subspace Theorem). For every subset A of a space R Ind A<Ind R .
Proof. This is an immediate consequence of Theorem I1.2.

Theorem [I, 4. (Decomposition Theorem). Ind R<n for n >0 1if and only if

R:U2;§Ai for some n + 1 subsets A with Ind A, 20, 1=1,i00,m+ 1,

Proof. The "if" part is directly deduced from | C). As for the "only if" part we

saw in the proof of Theorem II.2 that R can be decomposed into two subsets AI and

3’ with IndAI;O,and IndBl;n—l.

3 proved first by K. Nagami [1]. y, T, § denote ordinal numbers.
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We can decompose Bl into two subsets A4, and B2 with Ind 4, < 0, and
Ind B, <n-2.
By repeating this process R can be decomposed into n + 1 O-dimensional subsets

Al,...,A

n+li

Corollary. Ind AU B < Ind A + Ind 8 + 1 for any subsets A, B of a space R .

Proof. We can easily prove this corollary by decomposing A and B into O-dimen-

sional subsets by use of Theorem I[.4,

II. 4. Product theorem

A) If ¥V and W are subsets of spaces R and S respectively. then

w gV X W) = B(V) x WU T xBgW) .

BR
Proof. To prove

BRx S(Vx W) < BH(V) x WU VXBS(V) »
let

X

(p,q) £ BR(W WUV X BS(W) 5

where p € R, q € § . Then the following holds.

() pﬁBR(V) or qE W
) pPEYV or g€ B.W .

Sit_lce q€W or p €V obviously implies (p,q) € BR % S(V x W), suppose g € ¥,
p € V , which implies by (1) and (2) that p € BI-?(V) , q £ BS(W) . Therefore
p € Int, vV, g€ Intg W , where Intp V for a subset V of R denotes the interior
of V in R . This means (p,q) € Inc, o S(V x W) , and hence (p,q) € 8p « S(V x W),
Thus we have

B xs(VX W)CBR(V)XWUVXES(W).

R
Since

Bp o sV X W) 2 By(v) x WUV x 8.0

is clear, we can conclude A).

Theorem II. 5. (Product Theorem)' . Let B and S be spaces at least one of
which s non-empty. Then Ind R x 5 < Ind R + Ind S .

Proved first by M.KatZtov [2] and K.Morita [4]. Recently E.Pol [2] proved the fol-
lowing theorem for infinite products: Let {Eu| a€A} be a collection of complete
metric spaces such that dim Ra]x,..x Rakér‘ for any al,...,akEA ;- then-dim

naEARain *
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Proof, LlLet Ind R =n, 1Ind S =m . We shall prove this theorem by induction on
the number n +m . If n +m = - 1, this inequality clearly holds. Generally the
theorem is obvious if either R or S is empty, so assume 720 and m>0 ,

To complete the induction, note that by Theorem II.2 there exists a o - locally

finite open basis V = U;;:, Ui of R such that

(1) Ind BR(V) gn-1 for every VEU

and a 0 - locally finite open basis W = U;.n:l wj of S such that
(2) Ind BS(V) <m- 1 for every WEW,

where Vi and wj are locally finite open collections of R and S respectively., Put
VoxWe-={Vvxw|Vev,, wew.} ;
2 J z J

-]
i ini i . . . X .
then V'i x wj is a locally finite open collection of R %X § . Hence Ut,a -1 Ut UJJ
is a 0 - locally finite open basis of R X § .

On the other hand, it follows from () and (2) combined with the induction hypo-

thesis, that

IndBR(V)XITI;n-fm-l, and IndI?XBS(W):_nJ'm-l

for every V€V and W € W . Since

B}? X S(V x W) = BR{W x WUVx BS(W)

follows from A), we get, from the sum theorem,

IndBRxs(VXW);n-rm-l
VxWEU, V. x W
for every ti=1 Vg P

Hence by Theorem II.2 we conclude Ind RX S<n+m,

5

As the following examples shows , the equality Ind R x § = Ind R+ Ind § is not

true in general even if R and S are separable.

Example II. 1 (P. Erdds [1]) . Let 2’ be the set of points in Hilbert space all

of whose coordinates are rational. Then Ind ' =1 can be proved as follows. Since

A==
Ind  x 72 < Ind & + Ind & .

S W. Hurewicz [5) proved that the equality holds if K 1is a compact metric space
with Ind R> 0 and S is a separable metric space with Ind S = 1| ., Recently
K. Morita (7], [8] proved the equality dim R x S = dim R + dim S under a much
more general condition, which implies e.g. that Ind R X § = Ind R + Ind S holds
if R and § are nonempty metric spaces such that A 1is a countable sum of
locally compact closed subsets and Ind S = 1| .
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Now, let us show Ind RY = . Since RY is a separable metric space, and, as will
be proved later (Theorem IV.4), ind = Ind = dim holds for every separable metric
space, it suffices to show ind Rm= | . To prove 1ind Rw X 1, we shall show that
ind B(S€ (po)) £ 0 for the point py = (0,0,...) of RY and every positive rational
number € , where Se(po) ={pe€ le P (p,po) < £} . Since each point of 2% can be
mapped to P, by a homeomorphism of RY onto itself, this would be sufficient. Let
p= (p],pzl...) € B(Ss(po)) and & a given positive number such that 8% is

. . o 2§
irrational. Select n such that ): t=n+q Pr € 5 - Put

1 2
n 2
_ w 2 8
U—{(:x:].:cz,...)GR | iZ] xpy € —T} .
Then U 1is an open neighbourhood of p because 2 :=| pi. = 52 and accordingly
n 2, 2_8 - . n =
f=1P;> € — 5 . Llet y={(y,y,...) €BUDO B(Se(po)) ; then ¥ =1 yipiz
2 2
82 - 67 » which cannot happen because ¥ and p_. are all rational, and € - 67

is irrational, Thus BfU) N B(Se(po)) and accordingly the boundary of U N B(SE(po)) .
in B(Se(po)) is empty.
To prove U N B(Se(po)) c Ss(p) , let =z = (x],xz,...,‘ eEuUnN B(Se(po)) . Then

4 2 62 <
leipi>e R wp= 1 pp=e
= =1 1=

Thus we obtain )::= | (xi —p_i)2 <62 , proving our claim. Hence ind B(Ss(po)) L0,
i.e. ind Rw;l

To prove ind o 21, let U be a given open neighborhood of Py such that

. . NN
Uc Sl(po). Select a fixed point qq = ( oo ,...) € U such that 757y, ... are
natural numbers. Then, since (l, ! !

»

,) ¢ Sl(po) > U , we can choose a

ETIMETY
natural number ™y such that
1 1 1 1 1 1
a=(-—‘—-,—....)¢U,andb=( ——)eu
1 m, n, n3 1 m]+ i "2 n3
. 1 | s
—_— o at
Since ( P i ,) 4 Sl(po) U , looking at bl , we can choose a natural
number m, such that
1 1 i | | 1
a=( ,—.—.---)El’jand b=( .—,—,...)EU.
2 m]+l m, nq 2 ml+1 mz*l n3
Repeating the same process we get natural numbers ml,mz,ma,... such that
i 1 1 1 )
a‘( NN , — yeeo) EU, and
k mt+ Me gt 1T m
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1 1 1 1

b= (o oo , , RNE

k m+ 1 Mgt 17 mr] e
Then both {a;} and {b,} converge to the point ¢ = ( - l+| , m21+l ) € RY,

: - L \2
from outside and inside of U , respectively. (Note that Z i=1 ( m) <1 fol-
A

lows from bP € Sl(po) , k=1,2,... .) Thus g € B(U) , proving that B(U) #Z & .

Hence ind R® > 1 .

1I. 5. Strong inductive dimension and covering dimension

To prove the equivalence of the strong inductive dimension and the covering dimen-
sion, we shall prove the following theorem which was first proved by C. H. Dowker [1]
for normal spaces and plays an important role in dimension theory for gemeral metric

spaces.
A) If F is a closed set of a space R , then dim Fi dim R ,

Theorem 1II. 6 . Let R be a space; then dim R<n if and only if for any
locally finite open covering U of R there exists a locally finite open covering
V with ord V<n+ 1, V<clU,

Proof. Since the "if" part is obvious, we shall prove the 'only if" part. Let
u-= {UY [ y €T}. since U is locally finite, there exists an open covering A each
of whose elements meets at most finitely many elements of U .

By choosing a locally finite open covering B with B < A we get a locally finite
closed covering F = B = {F\) [v<t}l such that
(1) each F\) meets at most finitely many elements of U .

Then in view of A) we have
(2) dim F < n .

We assume that Fo = ¢ and l"'u # Fv whenever | # v

Now let us construct a transfinite sequence of open coverings {U\) Y 'l YerT},

v < T such that UO,Y = UY and UU,Y:’UV,Y for p<v , and such that

(3) each point of F\) is contained in at most n + | members of {U\’ Y ] YyerTl,
and

%) n{Uu,Ylu<v]ﬂ(R—Fv):U\),Yn(}?-Fv).

® This theorem was originally proved for every normal space by C, H, Dowker [1]; we

owe the present version of the proof to H. de Vries.
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The construction can be carried out by use of the induction on Vv . Let UL| y be
determined for all Y < v . Put
vt = N{y lu<vl,
v, Y { wy ' ¥
Then we claim that {U\:Yl Yy €T} is an open covering of R . First to prove that
3
uU* is open, let x € U* . Assume that
v, Y v,
(5) x € E‘u s MgV, Z=1,...,k, and 'xEFu for all u such that uk<u <v .,
i
Put ¥=(R- U{F |y <pcv))yny . Then N is anbd of x . Let y be
H k Uk,Y

an arbitrary point of N : then yEUu Y for all u;uk . On the other hand
yEUu v for all u >uk with P<v can be proved by induction on u as follows.
Assume y € Uu. Y for all u' < )y ., Then

ye€( n U,

JAN(R-F)=U
uv<uu)Y u u

n -
Y (R Fu)

>

follows from the definition of N and the induction hypothesis (4). Hence y € ULI
>

< i.e. =U* , whi i
for all yu v, i.e 1VCI'!U<\J Uu,v UV,Y which proves that U’\.),Y is an open

set. To prove that { U* Y} covers R, let x € R . Assume (5) again. Then

v,

x € Ul-l Y for some Yy . Then in view of the above argument on y we know =z € U’\‘, v

K’ .

Now, restrict { UC Y IYET} to F\) and choose an open covering {VYI YE€ET}
3

of F\J with order < n + 1 such that WY < U: v Y € T . (This is possible because
of (1) and (2). Generally note that for a given finite open covering fUi|i= 1,eee,k}
of a space with dim < n , there is a finite open covering {Wi! £=1,...,k} of

< , ., T b,.0k . =(U*_ - U .
order < n + 1 such that ”1, c UL , 1 1, k .) Put UV,Y (U\’-Y F\)) WY
At last UV = {Vy! Y € T} meets our requirements if we put V_Y =N {Uv Yl vertl}.

(The last claim is easy to check by use of an argument quite similar to the one used
for {U; Y] . Note that at any stage Vv in the subsequent induction step, only
2

pieces of F\) were cut away from the elements of the preceding coverings.)

Corollary. Let R be a space; then dim F<r if and only if for any open cover—
ing U of R there exists a locally finite open refinement V of U with ord Vin+1.

Proof. Use the corollary to Theorem 1.1 and Theorem 11.6.

B) Let {U |y €T} be a locally finite open collection in a space R with
dim R < n and {FYI Y €T} a closed collecrion such that FYC UY . Then there
exist open collections { VY} Yy €T} and fh'y| Y € T} such that
FcVeVcWclU d ord {W_-V.!y€TY<n.
YT YT YT NT Ty me eri iy T iy 20 2
Proof. We denote the binary covering {Uy‘ R - FY) by ,UY . Then, since
{iny € T} is locally finite, A {UY Iy €I} is a locally finite open covering.
Hence we can find, by Theorem II.6, a locally finite open covering N = {Nﬁ! § €4l
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such that
N</\fUY§Yel"},andordN;n+l,

and such that every N(S intersects at most finitely many members of {F |y €T}
(actually N < A {UYI Yy €T} and the local finiteness of {U_} assures the proper-
ty of NG ). By I.1 A) we construct a closed covering {KG [6€ A} with Kﬁc III‘S .

To each IV(fs and every FY intersecting NG , we assign an open set NS(FY) such

that

n Kc‘SC Ns(Fy)C "iGiFy)c Né
and such that

(2) ”G(Fy) < NS{FY) < NG{FY')

or the inverse inclusion relation holds for Yy # y'. This is possible because there

are at most finitely many FY's intersecting IV6 . Now, let

V.= U {N(F )| 6€ED]}
Y ﬂvl
then from N < UY it follows that

Fcyvcv<cy ,
Y Y Y ¥

because for every NG(FY) constituting VY’ I‘IGIIFY#G which implies

”6iFY) c HSC UY , and thus f’Y < UY follow since VY is a locally finite sum of
N.(F )'s . On the other hand F_C V_ easily follows from K, N F_ S N (F_ ) . To show
§y YOy s By T MstEy

d {7 -v €ET} < n
or . YI Y <
we assume the contrary, i.e.

n+l
n v -v. J)#+0
=1 Yy Vg
for distinct Yo t=1,...,m+ 1 . Then since each VY is a locally finite sum of

”G(FY)'S , there must be some NG:(FYi) s T=1,...,m+1 such that

v

n+l
6 N W TP ) - N, (F ))#0.
i=1 Sg Yy 8y

1f 61: = (SJ. and 7 # J , then from (2) we obtain

(N(S-ZFY_-) - N(S.(Fy.)) n (NG -EFY-) - N6 -(FY ')) =9
i i 14 g g J 'J
contradicting (3).
Therefore (3) implies that 67: , 2 =1,...,m+ 1 are distinct from each other. Let
n+l
%) peE N (NG (F_) - NG (F_));
i=1 %2 Yg i Vi

then from (1) it follows that



- 23 - I11.5 C)

n+|
(5) PE U Ky .
=1 1
Since {KGI § €A} covers R, there exists K; containing p . Then (5) implies
§ ¢ (Si . Z=1,...,m+ 1 . 0On the other hand, by (1) and (4) we have p € nz::ﬁ's .
Hence %
n+l n+l
n
p € K { N Ng 1 = wg N0 N W),
=1 i =1 1
which contradicts that ord N < n + | . Thus we can conclude
6 d{V -v {yeTY<n.
6 ot Y iy s

Since {UYI vy €T} 1is locally finite, A {U;! vy €T} is a locally finite open
covering, where U' ={U , R - B(Vy)] . Hence there is an open covering M such
that M < A{U'Yly €r} .

Since, by virtue of the local finiteness of {UY} . (T/Y— VY ! Y€ I} is a locally
finite collection satisfying (6). we can construct M so that for each point p of
R, S(p,M) intersects at most n members of {VY - Vyl vy €T}, Now, it is easy

to see that putting
W = V. US(B(V.), M)
Y Y Y

we get the desired open sets WY . because WY - VYC S{B(VY) , M)

C) Let (UY! Y € Fi} s T 1.2,... be locally finite open collections in a space

R with dimR<n, and (FY{ Y€ I’i) , t=1,2,... closed collections such that
o
. - . .
FYC UY . Then there exist open sets VY for y €U i=1 "'z satisfying
- -]
FeVcVclU , and ord {V -V € u T.}l <n.
YE YT YT Ty 00 v T Y iay i

Procf. By use of B) we define open sets

Vv W for every Y € l"l .

Y
3,”3 for every YEFIUI’
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It can be seen without difficulty that VY = U V‘z for YEl"i are the

desired open sets, because V -V. c N {wYJ - J=1,Z+1,...}.
Y Y Y
D) If there exists a 0 -locally finite open basis U of a space R such that
ord B{V) ¢ n (n>0), then Ind R < n .

Proof. The proof will be carried out by use of the induction on # . In case
n =0 this proposicion is implied by 1 E).
In case n >0 let V={Vle€T}.Then

= n ' e
VY {B(Vy) VY,ly rl

is a 0 - locally finite open basis of B(VY) such that

ord {BB(VY)(WI V€ VY} <n-

Hence by use of the induction hypothesis we have 1Ind B(Vy) En-1.

Now Theorem II.2 implies the assertion.

Theorem II. 7 (Coincidence Theorem) 7. For every space R, dim R=1Ind R .

Proof. Let 1Ind R < n ; then by the decomposition theorem we can decompose A as
n+ |

F= Ul T Y 4, Ind4.<o0.
=1 7% i=

Let U - fUJ.l d=1,...,k} be a given open covering of X . We consider Ai for

a fixed 7 . Then one can easily see that there exists an open covering

{vi|j= 1,...,k} of A, such that

( d{v.!li=1,...,kY <1, V.cu..
) ere i = i~

For rhat purpose we select a covering {Wj] J=1,...,k} of Ai by open and

closed sets of Ai such that WJ.C Uj . Putting

we get the desired covering {Vj! J=1,...,k} of Ai . For every point =z € Vj we

determine &(®) > 0 such that

“’r:(.r)(x) n ./Iic Vj , and Sg(m)(:r.') c Uj .

Let .= U{S%E{x)(x) |z € VJ.} - Then W, = {w'.} d=1,...,k} is an open collec-

tion which covers Ai .

7 This important theorem was first proved for general metric spaces by M. Kat¥tov [ 2]
and K. Morita [4] independently. C. H. Dowker and W. Hurewicz [1] gave another
proof.
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We can easily see that WJ. c Uj and from (1) it follows that ord wi <.
Hence W = U ::1 wi is an open refinement of U and has order < n + | . Therefore
dimR zn .

Conversely if dim R < n , then we choose, by use of the corollary to Theorem I.1,

a sequence Ui = (UY[ y € I’i} .1 =1,2,..., of locally finite open coverings such
that limi_’m mesh Ui = 0 . Then by I.! A) we construct closed coverings
F.={F €r.}, Z=1,2,..., satisfying F_cU_ .
g = Rl ery YIE T Yy
Now, by virtue of C) we obtain open sets
= -]
Vv for vy € U l"i
Y =1
such that
-3
c c 7V ey vV - 'v € U . .
FY vY vY JY, andord{VY Vy,y Tz};n

i=1
o0
=1
can conclude Ind R<n . Thus the theorem is established. In view of this theorem we

Since V={ VY| YEU Fi} is clearly a 0 - locally finite open basis, by D) we

are entitled to use notations Ind R and dim F indiscriminately for every (metric)
space R .
11. 6. Some theorems characterizing dimension

We can intuitively see that the dimensions of Euclidean spaces g , m=1,2,3, are

characterized by the following property:

Let {Uil f=1,...,k} and (Fil Z=1,...,k} be an open collection and a closed
collection in E° respectively such that Fi c Ui ; then there exists an open collec-
tion {Vil £ =1,...,k} such that

I3 =
F_I:CV_I:CU?:J and ord{B(Vi),‘L l,...,k)f:n.

The possibility of such a characterization for general metric spaces is intimated
by 5 B), C) too. The purpose of this section is to carry out an investigation along

this idea.

Theorem II. 8. 4 space R has dimension < n if and only if for every open
collection {U,{< =1,....k} and closed collection {FP 1% =1,..,k} with

Ficui , there exists an open collection {Vil 2= 1,...,k} such that
Foe Voe Uy i3 1,00k, and ord {B(V) 142 1,..,k} gn.

Proof. The "only if" part is implied by 5 B). To show the "if" part we consider a
given finite open covering {Uil £ = 1,...,k} . Then by 1.l A) there exists a closed

covering (Fili= l,e.o,k} with F‘ic Ui'
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Let {Vi! £=1,...,k} be an open covering such that

) F,ev.€cV,SU,, and ord {BVJ|Z=1,....k} <n.
1 kA (2 2 z =

(Because of the normality of R? we can choose v, satisfying V_L.CUi besides the

condition of this theorem.)
-1

Let 7, =V.~- US" V.; then ord {G,}Z=1,...,k} <n+ 1, For, if p
1 T J=1 g z =

were a point such that

where 1, < iz < ... <1 then we had

1 n+2 "’
pe(Vi—v.)n(T/.—v.)ﬂ...ﬂ(’i -v. )
T 2 02 n+tl  tn+d
contradicting (1). Hence {Gi: £ =1,...,k} is a closed covering with order < n+l

and G.c U/, .,
T 1

Therefore we can choose an open covering U such that for every point p of R,

S5(p,U) intersects at most n + | members of [Gi! £=1,...,k} and such that
k
(2) u-« A Ui N
=1
where U_L. = {Ui , R - Gi} . We let
(3) r/i = S(Gi,U) .
Then, from (2) it follows that W, U,, ¢ = 1,...,k. Let = {wif £=1,...,k}

then from (3) it follows that W is an open covering with ord W < n + I . Since

(Uf', i=1,...,k} is a given finite open covering of R , this proves dim R<n.,

Corollary ® . A space R has dimension < n if and only if for every open collec-
tion (!/i! £ 1,....m+ 1} and closed collection (Fi! £=1,...,n+ 1} with
Foe ", there erists an open collection { Vil £ =1,...,mn+ 1} such that

n+1
2l 4 =
*iclicui, and igz B(Vi) 2.

Proof, Since the "only if" part is a direct consequence of the theorem, we shall

prove only the "if" part. Let {Ui! i =1,...,k} be a given finite open collection
and {Ff: £=1,...,k)} a given finite closed collection such that F_I:C U‘L’ . Then
we number all the combinations C = {i,,...,in+ ‘] of n + 1 numbers from

" This theorem was first proved for separable metric spaces by S, Eilenberg and
E. Otto [!]) and extended by E. Hemmingsen [ 1] and K. Morita [1] to normal spaces.
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- k . !
{ I,...l,k} as Cl, CZ""'Cm , where m = (7:+l ] . We can define open sets Vi
and . for € C‘l such that
1 =1 1 I =1 .
F.cv.<cV.cwWw,cU., and N[W.-V.|7€C ) =20.
z 7 7 7 T z z 1
Since C’l consists of just =z + | numbers, we can choose V,:: to satisfy

1 =1 1,0 .
.CV.< V., . n L) € =
F, € V.S V.S U, and fB(V‘L i cl} g .

Then we obtain W:: by use of the method in the proof of 5 B) or more precisely by

the process which was applied there to construct W from V_ .

Suppose that open sets ViJ and h’J 2 €€, have been defined for every J<t.

9. 3
Then we define open sets Viz and W_L.Z for 7€ Cl’. so that
£-1
if £ U C,, then F.c vk T/.zcw.ecu.,
. 1 i 7 7 7
J=1
N e S S SN SR
if 1€ U C,, then F.CcV:icVYcV oV, c W.c WicU,
.o J 7 7 < z 7 1 i Z
Jg=1
for every J for which 1 <j<l -1, % €Cj , and so that
VAR S
n c -V, € = ¢ .
N {w; V_LI‘L Cz} o

We can construct Vf and Wia by a similar application of the proof in 5 B) as
. . 1 .
in the comstruction of Vi and Wil . Now, let V1': = u{ Vf‘ 1z € CZ} . (Note that
£ denotes a variable in the above formula.) Select open sets Vi such that

Vicey.cn {h’?’li €C,}. Then one can easily see that F.c V.c U, ,
7 Z 7 4 Z 7 7

7 =1,...,k, and B(V_’:)c Weo- Vi for every £ satisfying ‘{lEC‘z . Hence for any
combination Cz of n + 1| numbers from t!,...,k}
- , YA S
n . € [ . - . =
{n(V1)|'L ol n{w, "J”’ecz] ¢
follows from (1). This means ord {B(Vi): L= 1,...,k} < n . Therefore by the

theorem we conclude dim R < n .

Theorem II. 9. A space R has dimension < n <if and only if there exists a’
o - lecally finite open basts V such that ord B(V) < n .

Prooj. The "if" part follows from 5 D) combined with Theorem II.7. To prove the

"only if" part, we construct a O - locally finite open basis U = Uic:l Ui of F
using Theorem I.3. We can suppose without loss of generality that each

Ui = {UY | v € l"i} is a locally finite open covering of & such that

limi_’m mesh U£=O . Then by I.! A) there exists a locally finite open covering

.
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wi:iWY | Y€ I"i} such that P’YCU‘Y . By 5 C) we can construct open sets VY for
' " . .
Y €Ui -1 T satisfying

=3
"]YCVYCUY" and ord{B(VY)ly € 1;21 T'i};n.
Thus we get a 0 - locally finite open basis V = {VYI y €U i: | I‘i} with

ord B(V}) < n .

Theorem Il. 10 °. let B be a subset of a space R ard let dim B=n ., Then
there exists a Gs—set A of R such that BcA , dim A=n .

Proc:. In case n =0, as in the proof of Theorem 11.9, we choose a 0 - locally
finite open basis U ={U |y € U @ I‘i} and a g - locally finite open collec-

=1
: t = G = 1 : - %
tion W = { hlyl y € uU._ I’i > such that lim,  _  mesh Ui 0 and WYC UY .

I
Since h’Y and R - UY are disjoint closed sets of R , in the same way as we

constructed ¥ for F and G 1in the proof of | C), we can construct an open set
V. for W, and R - U,  such that W <V < U , and B(V_JN B =9 . Let
f Y Y Y Y Y

AcE- U{BV )|y € Ui:l Fi}; then 4 is a Gg-set containing B because

each U{B(V )|y €T,} for a fixed ¢ is a closed set by virtue of the local
finiteness of {U_ | Y€ T.} . Since for zny Y B”(VY n4)=9,

1=1 "2
fies the condition of Theorem I1.9 for 7n =0 . Hence dim 4 ¢ O , which combined

V= {VY naly € u O T.) is a 0 - locally finite open basis of A4 which satis-

with Theorem II.3 implies dim A4 = 0 .

In case n > O , by use of the decomposition theorem we can decompose B into

n + | O-dimensional subsets Bi , = 1l,ieen + 1 , By virtue of the preceding result
we can find G.-sets 4., T = l,...,m + 1 such that B.< A. , and dim 4. < O .
[3 z 1 [ 1=
+
Let A= U Z=: A£ v then again by the decomposition theorem and Theorem II.3 4 is

the desired Ga-set.

[I. 7. The rank of a covering

As implied by Theorem 1.3, the o-local finiteness of open bases of a metric space
is important. In fact we cannot delete the ¢ - local finiteness from Theorem I1.2 or
Theorem II1.9.

We can, however, establish a simple characterization theorem of dimension in terms
of open bases without ¢ - local finiteness or any similar property. To this purpose we

shall introduce a new notion "rank of a collection". Let us begin with some lemmas.

® This theorem was first proved for separable metric spaces by L. Tumarkin [21 .
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A) Let S5 be a space of dim S<0. Then there are locally finite open coverings

g At ;S
Ui = fU(al,...,ai)|al,...,ai€ A}, £ =1,2,... of § such that
2 Yy = : P
U(a],...,ai) U{al,...,ai, ai+]) R U(o.l,...,o.i)nu(al,...,ai) ¢ if oy FoL
and llmi_m3 mesh Ui =0 .

Prooy. Let Vi be a locally finite open covering of S such that mesh Vi < 1/Z.
Find, by use of Theorem I1.6, a locally finite open refinement U_;: of Vi satis-
fying ord V; <1 . Put Ui = V'l ALl A U_'L. . Then Ui is a locally finite open
covering of order < | and with mesh < 1/Z . Note that each (non-empty) element of
F is contained in ore and only one elemeat of Ui , and each element of Ui is

a sum of elements of Ui . Thus by choosing appropriate subindices and adding as

+ 1
many empty sets as necessary, we can let {U_,-} satisfy the desired conditioms.

B) Let S be a subspace of # with dim § < O . Assume that Ui s, T= 1,2, ..
are open coverings of S satisfying the conditions of A). Then we can extend U_L. to
a collection wz. of open sets in R which satisfies the same conditions as Ui 5
except that wi covers only 5 (but not necessarily & ) and wi is not necessari-
ly locally finite on & .

Proof., Let % be fixed. Then to each x € Ufa .,&.) we assign Ei(:r) > 0 such
L

1
that ei(x) < 1/Z and S, (l_)(m) ns CU{cl,...,ai) . Now put

Wley,ooo,a) = U{Sei(x)/z“” Lz evlo,...,a0)) .

Then wi = {Wu,,...,ui) | a .,aie A) satisfies the desired conditions if we

(x) .

poee
choose {Ei{I)} satisfying C_L.(:c) 2e;

+ 1

Definition II. 1. Two subsets C and D of a space R are called independent
if CE D and D & C . A finite number of subsets C
if any two of them are independent.

porees Ck are called independent

Definition I1. 2. Let U be a collection in a space R and p a point of R .
Ther we mean by the rank of U at p the largest integer n such that there are
independent n membere of U containing p , and denote it by rankp U. If there
exist arbitrarily many independent members of U contatning p , then rank U=+,

We mean by the rank of U the supremum of rank_U jor p ranging through R and
denote it by rank U , Z.e. rank U = sup{ rankp Ulperl.

In view of this definition we clearly see rank U< ordD U for any point p and

collection U, and accordingly rank U < ord U .
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Theorem I1. 11 '°. A space R has dimension n, if and only if it has an

open basts U with rank U<n+1 ,

Proof. To begin with let us prove the "if" part by induction. Let #n =0 , i.e. we
suppose U is an open basis with rank U< 1 . Let 7 and § be given disjoint

closed sets of R . Then we put
y=zu{y v eu,uv'nrEg,U'nGc=29} .

Since U is an open basis of R, U is an open set satisfying PclUc R -G .
1If p £ U, then there exists U' € U such that p € U'c R - F . If we assume
U'nU+#0 , then U'NU''=@ for some U’''EU such that U''NF#¢ and U''clU .
Since V' and U'' are clearly independent, we reach a contradiction to rank U<,
Hence U' N U = @ , which means that the open set U is closed in R . Thus we
conclude dim R < 0 .

Suppose we have proved that the existence of an open basis with rank n implies
dim R < n - 1 , Now we let U be an open basis with rank <n+1 . let F and G

be given disjoint closed sets of A . Then we define an open set U by
suflw U eu, v nrFée .0 nG=290}.

U clearly satisfies Foc U< R~ G . We assert that U' = (Ul U’ €U, v'rnr=9}
restricted to 3(U) 1is an open basis of B(U) satisfying rank U’ sn.

It is evident that U' 1is an open basis of BfU) 1if restricted to B(U) . Hence
all we have to show is that rankaV < n for a given point p € B(U) .

Assume the contrary, i.e., we suppose U LU

(A
which contain p . Since p € BfU) , we gat

are independent sets of U’

qEU, N...NU NU+6¢.

n + 1
Then

g€y, n...ny . nv

for some U' € U such that U' A F# ¢ U U . Since p € Ui nN(RrR-U'J 4@, and
by the definition of U' Ui nrF=90, UI""’Un ., and U' are independent. Hence
rank U > n + 2 , which contradicts rank U< n + 1.

Th:i ;: conclude that rank U' < % for any point p € B(U) , and hence from the
induction hypothesis it follows that dim B(U) < n - 1 . Therefore dim R < n is
proved,

To prove the "only if” part we suppose R is a space with dim R < n . Note that
if n =0, then the assertion follows directly from A). because lli:l Ui in A) is
an open basis of rank < 1 . In the general case, decompose R , by use of Theorem

11.4, as R = UZ :: Ak , where dim Ak < 0. Then by B), there is a sequence W§ R

'° proved first by J. Nagata [5].
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2 =1,2,..., of open collections which cover Ak and satisfy rank Um_| Wk <1
. 3 L. T n+ ok
and lxmi_,w mesh wi =0 . Now it is easy to see that U = k=1 wf is an open

basis for R with rank Ugn+1 ‘!,

II. 8. Normal families

The theory of normal families was first established by W. Hurewicz (1] to deduce
systematically fundamental theorems of dimension theory for separable metric spaces
and was extended by K. Morita [4] to nonseparable metric spaces. The purpose of this
section is to give a short skétch of this theory to re-establish the principal results

of dimension theory.

Definition Il. 3. 4 family N of (metric) spaces is ecalled a normal family if it
satisfies.

1) if ScR and REN, then SEN,

i) if {Fy{ Yy €T} 1is a locally countable closed covering of a space R such
that Fy€N for every y €T , thenm RE N.

A) A family N of spaces is a normal family if and only if it satisfies i),
iii) if (Fil £=1,2,...} 1is a closed covering of a space R such that F'iEN ,
£=1,2,..., then R €N, and iv) if {Fle €T} is a locally finite closed
covering of a space R such that FY € N for every YET , then REN.

Proof. The "only if" part is evident. Conversely, let N be a family satisfying
i), iii) and iv). If {F 'Y €r} is a locally countable closed covering of R
such that F_€ N, then we can construct a locally finite closed covering
{G I 8 € A) such that each G‘,5 intersects at most countably many elements of
{F Y €r}. It follows from i) and iii) that 06 € N, and hence from iv) we obtain

R € N . This means that {FY! Y €T} satisfies ii), i.e. N is a normal family.

Definition 11. 4. For any normal fomily N we define a family N' of spaces by
= {R| for any disjoint closed sets F and G there exists an open set U of
R such that PcUc R-G ., B(U) EN}.

'! Bases with finite rank were extensively studied not only in dimension theory but

also in metrization theory by A. V. Arhangelskii [!], A. V. Arhangelskii -

V. V. Filippov [!], G. Gruenhage-P. Nyikcs [!] and others. For example, it was
proved in the last paper that every compact Hausdorff space with an open basis of
finite rank is metrizable. It should also be noted that A. V. Arhangelskii [1] proved
that a normal space has dim < n if and only if for every finite open covering U
there is an open refinement V of rank sn+ 1.,
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To re-establish the principal results of dimension theory by use of normal families
we need the following four propositions B) - E) on O-dimensional spaces which have
been proved once in Sections | and 2 and are easily deduced by some elementary know-

ledge of general topology.

B) Ind R<0 if and only if there exists 2 0 -locally finite open basis V of R

consisting of open and closed sets.

C) If ScR and Ind R0, them Ind S<O.

7
£=1,2,...; then Ind R <0 .

D) Let {F.]7Z=1,2,...1 be a closed covering of R such that Ind F, 20,

E) Let nyl Yy €T} be a locally finite closed covering of R such that
Ind Fyi 0 for every Y €T ; then Ind <0,

By A), C), D) and E) we conclude that
F) All the (metric) spaces with Ind < 0 form a normal family.

Theorem 11, 12, Let N be a normal family and R a space. Then R € N' <f and
only if there exist two subspaces A and B such that R=AUB, A€N, and
IndBZO0.

Proof. To see the "only if" part let % € N', By I.1 A) and the Corollary to
Theorem I.| we can construct O - locally finite open bases U = {UYI YET)} and
W - {Wyl YET)} of R such that F_IY < !IY . Since R € N' | there exist open sets
v, for y €T satisfying PY c VY <U , and s(vy) EN.Put 4=-U{ B(VY): y €T}
and 8 = R - A . It follows from the conditions iii) and iv) in A) that A € N because
{B(VY)I Yy €T} is a 0-locally finite closed collection. Since {VY{ YyET} re-
stricted to B is a 0 -locally finite open basis consisting of open and closed sub-
sets of B, using B) we get Ind 5< 0.

The proof of the "if" part is as follows. Let F and G be disjoint closed sets
of R . Since 1Ind B < O, we can construct an open set M with FcMc R -G,
B(M) € A in the.same way as in the proof of 1 C). Since 4 € N, from the condition
i) for N it follows that B(Y) € N . This proves R € N' .

Theorem 11. 13. If N <s a normal family, then N' g also a normal family.

Proof. We assert that N' satisfies i), iii) and iv). Let S < R € N' . Then by
Theorem 11.12 R=AUB, A€N, and Ind 3 < 0 . This implies S§=(ANS)U(BNS).

Since N 1is normal, from i) we obtain A N S € N . Moreover, from C) we obtain
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Ind (BN S) <0 . Thus, using Theorem I1.12 once more, we conclude that S € N’

Therefore N' satisfies 1i).

Let { Fv |v < T} be a locally finite closed covering of a space R such that

(1) F, € N' .
Then
= T - !
) G, =7, U{Fu,u<v]

is an Fb-set, because {EL| p<v}l isa locally finite closed collection, and in
consequence its sum is a closed set, Since (I) implies G\J € N' , by Theorem II.I2
we can decompose G, as G, = AU u Bv » A€ N, with Ind B, <0 . By (2) G, and

v v
G are disjoint if Vv # p , and hence 4, is an F -set in A = U {Avl v<rtl, and

B: is also an F_-set in B:U{B\)l\mr} . Thus fAv]v<r} is a locally
finite covering of A consisting of F0~sets Av with Av €N,

Since N is a normal family, it follows from i), ii) that A4 € N . Moreover, from
C). D) and E) it follows that Ind B < O . Since R =4 U B , by Theorem I1.12 we
can conclude that R € N' |, Therefore N' satisfies iv). In a similar way we can al-
so show that N' satisfies iii). Thus N' is a normal family by A).

Denote by N(-l) the normal family consisting of the empty set alone. Then, let

NEED 6wy e o

Then N(n) is the family consisting of all the spaces with Ind < n . On the other

hand, by Theorem II,13, N(n) is a normal family, Hence we can again deduce Theorem

11.3, the sum theorem and the decomposition theorem from i), ii) and Theorem II.12

respectively.

We can apply the theory of normal families to dimension theory in other ways. For

example we may let N(o) = { R] R is a countable sum of closed subspaces Ri .

1 = 1,2,... such that any point p of R has a neighbourhood containing at most
countably many points of Ri} . One can easily see that N(O) is a normal family;
hence for every positive integer n N(n) is also a normal family, A space R is
said to have rational dimensiton < n if and only if R € N(n).

Thus we can apply the theory of normal families to establish another dimension
theory on this new concept of dimension, but the details are left to the reader.

More generally}k}et P be a (not necessarily normal) family of metric spaces. Then
P

we can define , k=-1,0,1,2,..., in the same way as we did for a normal fa-

mily. We can also modify Definition 11.4 as follows: 'P = { R| for any point p € R
and any neighbourhood U of p there is an open neighbourhood ¥ of p such that
Ve U and B(V) € P} . Then (k)P can be defined in a similar way as P(‘) .

J. de Groot defined compactness degree of a separable metric space R (notation:

comp R) by comp R < m if and only if R € (n)P , where P 1is the family of all
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compact (metric) spaces. He also defined deficiency of a separable metric space R
(notation: def R) by def R = the least n such that there is a compact (metric)
space R' which contains R as a (topological) subspace satisfying dim (R' ~R) = n
and asked the question 'comp R < n if and only if def R < n 7' This question is
still unsolved though it is partially answered im the positive by J. de Groot -

T. Nishiura [1]. (The answer is positive e.g. in case of n = 0. It is generally true
that comp R < def R < dim R .) J. M. Aarts [1] defined completeness degree and
complete deficiency in a similar way, but by use of 'completely metrizable spaces’

(n) (n)P .

in place of 'compact spaces' and P in place of Thus he proved that the

completeness degree coincides with the complete deficiency for every metric space 12

12 15 5 similar aspect of dimension theory Yu. Smirnov [9] studied dim (BX - X) for
a normal space X .



