CHAPTER I

INTRODUCTION

in this book we assume an elementary knowledge of general topology !, However, in
this chapter we shall give a quick review, without proofs, of some results, especially
from the theory of coverings. In recent years remarkable progress has been made in the
last mentioned field, and the reader might not be so familiar with the terminologies

and the theorems we shall need.

I. 1. Coverings

Let R be a topological space and U a collection of subsets of F . Throughout
this book we shall merely call such a collection of subsets of 2 a collection in
R . 1f U consists of finitely many (countably many. two) members, then U is called
a finite (countable, binary) collection . If every point of R is covered by only
finitely many wembers of U , then U is called a point-jinite collection . 1If every
point 7 of R has a neighbourhood U/(p) which intersecrs only finitely many
(countably many) members of U , then U is called a locally finite (locally count-
able} collection . 1f every member U of U inrersects only finitely many members
of U
of U

, then U is called a star—finite collection . 1f for every subcollection V

Uiv. ve vl = U{jlue v}

As books on general topology we may recommend, for example, P. Alexandroff -
. Hopf [1], ¢. Kuratowski [2], J. W. Tukey [1], J. L. Relley [ 1], H. J. Kowalsky
[2], W. Franz [ 1], D. Bushaw [11, J. Dugundji [ 1], R. Engelking [1]. J. Nagata [8].
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holds, then U is called a closure-preserving collection, where U denotes the
closure of U . It is easy to see that every locally finite collection i{s closure-
preserving., In this connection we often use the fact that if F is a locally finite
collection of closed sets, then U{F|FEF} 1is closed. A closure-preserving collec-
tion U is called discrete if the closures of the members of U are disjoint, i.e.
if any two of them do not intersect. In other words U is discrete if and only if
each point of R has a neighbourhood which intersects at most one member of U .

If U can be decomposed as

©
U= u u,
i=l
for locally finite (star-finite, discrete, etc.) collections Ui , then U 1s called

a 0 - locally finite (o - star—finite, G -discrete, ete.) collection.

U is called an open (closed) collection if every member of U 1is an open (closed)
set. We may use the symbol WU to denote the set U{U|UEU}.

Let U and V be two collections. If for each U € U there exists V € V for
which Uc V , then we denote this relation by U < V and call U a refinement of V.

A collection U is called a covering if U{U|U€EU)}=R. In this book we are
often concerned with open coverings, coverings consisting of open sets. The other
attributes for collections are of course applicable te coverings too.

Frequently a collection will be indexed, e.g. U = { Uul a€A} . As far as possible
it will be tacitly assumed that the indexing is faithful, i.e. that distinct indices
denote distinct members of the collection. In construction starting from a faithfully
indexed collection, however, new collections may arise for which the indexing is
normally not faithful. For an indexed collection it is sometimes useful to look at

the indices instead of considering the members of the collections themselves.

A) Let U = { Uul a € 4} be a point-finite open covering of a normal space R,
Then there exists an open covering V = {V&l @ € A} such that Va c Uu for every
a € A . Generally a covering U = { qll a € A} is said to shrink to (or to be shrunk to)
a covering V = { VQI a €4} if V& c U: for all a € A . We may also say (less
frequently) that V shrinks U .

Definition [. 1. Let R be a topological space. If for each open covering U of
R there exists a locally fintte open (covering) refinement, i.e. a locally finite

open covering V satisfying V < U, then we call R a paracompact space.

! In this book we mean by a normal space a normal 7) -space i.e, a normal space each
of whose points is closed. Similarly every regular space will be a regular T, -
space in this book.
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If each countable open covering of R has a locally finite open refinement, then it
ts called a countably paracompact space.

If each open covering of a topological space R has a star-finite open (covering)
refinenent, then we shall say that R has ithe star-finite property.

If every subspace of R 1is paracompact (normal, etc.), then R 1is called heredi-
tartly paracompact (normal, ete.).

If every closed set of a normal space R is a Gg - set, then R s called
perfectly normal.

B) A Tl—space R is hereditarily normal if and only if every subset of R is
normal. Equivalently, for any subsets A , B of R satisfying 4ANEB=¢ , ANB=¢
there exist open sets U and V such that UD4 , V2B, UNV=0¢ , where we can
select U and V so that UNVcANE .

Now, we shall fix various notations for collections U , V , ch s

G={0'veuy , B = (Bw|veut,

where B(U) denotes the boundary of U,
Uuav={(unyvjveu, vev},
A (Uula €4} ={N {Ua!0.€A}!UG€Ua for each o € A} .

If U, V and LlOl are coverings, then i, uaVv and A{'UQKIQEA} are also

coverings.

We need further notations to be used in the theory of coverings. Let p, P and

U be a point, a set and a collection respectively, then

Stp,u) = s'(p,u) = U(U'p eveulu{p),

strw) = s'pu) = ulu|veu, unpEolup,

s'p,w = (5" Yp,w), w, sp,w = v Stpu)
n=1

she,u = 557 Yer,w, W), sTpuy = v Stew
n=1i

ul < {stp,wlper), ud® o (udyd

"

ux = {Su,Wlueu), U=x (U )*,

If U is a covering, then UA and U* are also coverings. It is clear that
U< UA< U=*< UAA

C) A T]—space R is normal if and only if for every finite open covering U

there exists a finite open covering V such that V¥ < U,
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Definition 1. 2. Let R be a TI—space.If for every oper covering U of R there

exists an open covering V such that V*<lU | then we call R a fully normal space,

Now we can formulate

Theorem I. 1 (A. H. Stone's Theorem) *. 4 Té—space R is fully normal if and
only i¥ it g paracompact.

Corollary. Every metric space is paracompact.

Practically, the following theorem is proved in A. H. Stone [tl.

Theorem 1.1'. Let U , UZ » Uy s... Dbe a sequence of open coverings such that

* * . ind ;
u >U1 >U_7 >U2 >...0 then U has a locally finite open refinement. If U isea
toeally firite open covering of a normal space, then there is a locally finite open

eovering V such that V*<U .

I. 2. Metrization

Since one of the main purposes of this book is to study the recent development in
dimension theory for general metric spaces, in this section we shall give a brief
account of the theory of metric spaces and of metrization. In its methods the latter
has a close connection with modern dimension theory.

As is well-known a topological space R is called metrizable if one can introduce
a topology-preserving metric in A . As for necessary and sufficient conditions for
a topological space to be metrizable the following classical theorem is still funda-

mental.

Theorem I. 2 (Alexandroff-Urysohn's Metrization Theorem). A T,-space R is
metrizable if and only if there exists a sequence Ul > U; > U2 > Ug > ... oOf open
eoverings Ui such that { S(p)Ui)! i=12,...1 <is a neighbourhood basis for each

point p of R .

It is generally agreed that an open collection U in a topological space R is
called an open basiz if for every neighbourhood V(p) of every point p of R
there exists an element U of U such that p € Uc¥(p) .

In metric spaces O - locally finite open bases play a major role as indicated by the

following theorem.

® Concerning the proof see A. H. Stone [1], or J. Nagata [8].
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Theorem 1. 3 (Nagata-Smirnov's Metrization Theorem) “. A regular space R 1s

metrizable if and only if there exists a O - locally finite open basis of R .

Corollary (Urysohn's Metrization Theorem). A second ccuntable space ‘s metrizable
if and only if 1t is regular, where we mean by a second countable space a topological
space which has a countable open basis.

Theorem 1. 4 (Bing's Metrization Theorem) °. A regular space R <s metrizable
if and only if there exists a 0 -diserete basis of R .

From now on throughout this section let us denote by X a metric space with the met-
ric pfz,y). (Later we may use a symbol like <R,p> to emphasize that we consider
the metric space F together with the fixed metric p , especially when more than one
metric compatible with the topology of R are involved in the discussion.) An open

covering U of R 1is called a uniform covering if there exists € >0 such that
(Sc(p)lpER teu,
where Se(p) denotes the spherical neighbourhood of p with radius ¢ , i.e.

S.(p) ={g|oflp,g)<clt .

A) Every open covering of a compact metric space is a uniform covering.
We denote by &8(U) the diameter of a subset U of R and by mesh U the number
sup { 8(U) | UEU} for a collection U .'Let F' be a filter of R, i.e. F 1is a

nonvacuous collection which satisfies
()YQE€F, (2) F,GEF implies FNGEF, (3) GoF €F implies G € F .

If for every € > 0 there exists an element F of F with &(F) < ¢ , then we
call F a Cauchy filter, Let F and G be two Cauchy filters of R . If for every
€ >0 cthere exist F € F and G € G such that 8§(FUG) < ¢
G equivalent,

, then we call F and

We can classify all Cauchy filters of R by this equivalence relation. Then we
denote by R* the set of all classes. Let a and b be two points of F* and let

F€a, GE€Db. Then one can easily see that
p*(a,b) = sup {p(F,G)|FEF , GEG}

is uniquely determined by a and b , where
o(F,G) = inf {plr,y) |x € F, y € 3}

One can also easily see that p*(a,b) gives a metric of A* . If we identify each

point p of R with the class containing the Cauchy filter P = {F|p € F} ,

“ Concerning the proof see J. Nagata [1], Yu. Smirnov [1] or J. Nagata [8].
® See R. H. Bing {1] or J. Nagata [8].
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then R can be considered as a sub-metric space of the metric space A* .
It is easy to see that R* satisfies
i) R is dense in RA* ,
ii) R* is a complete metric space i.e. every Cauchy filter of R* converges,
iii) every uniformly continuous mapping f of R into a complete metric space §

can be extended to a uniformly continuous mapping f* of A* into S, i.e.
ffx}) = f*(xj for = € R .

This metric space R* 1is called the completion of the metric space R .

B) Let A be a subset of a metric space R .
we denote by A* the closure of A4 in the complerion A* . Then A* consists of

all the classes which contain a filter F such that A€ F .

C) In connection with B), let U = { UY Y €ET} be a uniform covering of R ;

then U' = { R*- R-UY; 1Y €T} is a uniform covering of K* .

D) The completion of a totally bounded metric space is compact.

A metric space A is called totally bounded if for every E >0 the covering
{SE(I)|a:ER } has a finite subcovering. It is well known that a metric space is
compact if and only if it is complete and totally bounded, which implies the above
proposition. It is .also well known that a metric space A 1is separable (i.e. it has
a countable dense set) if and only if it is second countable if and only if one can.
introduce a totally bounded metric onto & . As for complete metric spaces the

following well-known theorem is also applicable in dimension theory.

Theorem 1. 5 (Baire's Theorem). Llet Uy m=1L2,... be open dense subsets of
a complete metric space R . Then n:: 19, is also dense tn R .
The Hilbert cube

Pz, zy. )z | 21/, ©=1,2,...)

is an important example of a compact metric space and accordingly of a separable

metric space.

E) A metric space R is separable if and only if R 1is homeomorphic to a sub-
w
space of [ .
Let us give another important example of 2 metric space. We denote by 9 a given

set and let N(Q) = {(al,az,...) lak €N, k=1,2,...1, p((al’a2"")'(81’82“")) =
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= /min { k| "k"‘sk} for (0, ay,...) EN@ , (B,,B,,...) EN(D) . We can easily
see that p 1is a metric of N(Q) . This metric space N() 1is called a:
generalized Baire zero-dimensional space. We shall deal with this space again in
Chapter III,

¥) A metric space R has a 0 ~-star-finite open basis if and only if R 1is homeo-
morphic to a subspace of a topological product WN(R) X IY for a suitable © , where
an open basis is called a ¢ - star—finite open basis if it is the union of countably

many star-finite open coverings (due to K. Morita).

G) Every locally compact metric space has the star-finite property, and accordingly

a O-star—-finite open basis.

I. 3. Mappings

The theory of mappings is also a powerful tool for dimension theory. Let g be a
continuous mapping of a topological space & into a topological space § . Let 7#
be a continuous mapping of a subset A of R# into S such that f(z)=g(x) for
every T€A . Then g is called a continuous extenston of f over R, and f is
called the restriction of g to A , being denoted as f = g| A . We denote by
f: A~S a mapping f of A into S.

Theorem 1. 6 (Urysohn's Lemma). Let F and G be disjoint closed sets of a
normal space R ; then there exists a real-valued continuous funcition f such that
f(r) =0, fIG) =1, 0 f<1.

Throughout this book we shall mean by f(F)=a that f(p)=a for every point p€F .

Corollary. Let F and G be disjoint closed sets of a metric space R; then thera
exists a real-valued continuous function f such that j‘-l(o) =F, f_Z(Z):G, o<rfsl.

Theorem 1. 7 (Tietze's Extension Theorem). Let f be a continuous mapping of a
closed subset F of a normal space R <into the n-dimensional Euclidean cube .

Then there exrigts a continuous extension g of f over R .

Corollary. Let f be a continuous mapping of a closed subset F of a normal space
R into the n-sphere S” . Then there exists a continuous extension of f over an

open set U containing F .

Theorem I. 8 (M. H. Stone-Gelfand-Silov's Approximation Theorem)®. Let € be a

ring of real-valued continuous functions of a compact T,-space R . Let C satizfy



1.4 -8 -

%) every constant function belongs to C ,
it} for any distinet pointe p, q of R there exists ge€C such that g(p) # g(q).
Then for any real-valued continuous function f of R and for any € > 0 there

erists fC € ¢ whieh satisfies | Flp) - fe(p) i <€ forevery pe R .

Theorem I. 9 (A. H. Stone-Morita-Hanai's Theorem)®. Let f be a closed con-
tinuous mapping of a metric space R onto a topological space S (namely f maps
every clnged set of R to a cloged set of S ). Then S ig metrizable if and only
if B(f _I(y)) i8 compact for every y € S .

I. 4. Dimension .

In their book published in 1941 Hurewicz and Wallman had to limit themselves to
separable metric spaces because it seemed impossible at that time to establish a
theory of dimension for more general spaces. However, such a more general theory has
been made possible by the developments in general topology which took place since 1948,
In 1948, A. H. Stone proved Theorem I.1 which was a considerable step forward in the
theory of open coverings especially of locally finite coverings in metric spaces.
Furthermore Theorem I.3, which was developed from Theorem I.!|, determined the impor-
tance of locally finite open coverings in general metric spaces. Thus Theorem I.1 made
an epoch not only for modern general tapology but for modern dimension theory. On the
foundation of the developed covering theory for metric spaces, M. Kat¥tov [2] in
1952 and K. Morita [4] in 1954 independently succeeded in extending the principal
results of the classical dimension theory to general metric spaces and in proving
Tnd # = dim R for every metric space R ° . It is an interesting fact that some of
the results which have been established in dimension theory for general metric spaces
since Kat&tov-Morita's work are quite new even for separable metric spaces. We are
now inclined to think that we have obtained the final answers to the major problems
in dimension theory for general metric spaces, though a few questions remain, and
dimension theory for non-metrizable spaces has also greatly developed in these years.
The most important dimension functions for general metric spaces are covering (or Lebesgue)

dimenzion dimP and strong tnductive (or large tnductive or Cech) dimension IndR.

Definition I. 3. Llet U be a colleection in a topological space R and p a

point of
which rontain p , and we denote it by ordp U . If there exist infinitely many such

I

% . Then we mean by the order of U at p the number of members of U

members, then ordp Usz+o,

For a proof see J. Nagata [8].

As for historical review on concepts of dimension as well as the earlier developments

of dimension theory see W. Hurewicz and H. Wallman [1], P. Alexandroff (6], and

also S. P. Zervos [1]. For modern developments, see J. Nagata [9], [10], [11].

* The definitions of dim # and Ind R will be found in Definitions 1.4 and I.5,
respectively,

7
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The order of U will be the supremum of ordp U and be denoted by ord U ,

ord U = sup(orde]pER} .

Definition 1. 4. If for any finite open covering U of a topological space 3
there exists an open covering V such thax V< U, ord V< n+ 1, then R has
covering dimension < n , dim R £ n . R has covering dimension n , dim R = n 1if it
is true that dim R < n and it 18 false that dimR<n - 1. If dimR<n is

false for each integer n , then dim R = + = , We define that dim 4 = - 1.

Definition 1. 4'. If we replace 'cpen covering' in Definttion I.4 with 'finite
functionally open covering', then we obtain the definition of Katétov-Smirnov covering
dimension (an open cet U of R is called functionallu cpen or a cozero set if for
some real-valued continuous function f defined on R U={z€ R| f(x) ¥ 0}). The
complement of a functionally open set is called functionally closed or a zero set.

It is easy to see that Katdtov-Smirmov dimension coincides with Lebesgue dimension if
the space is normal. In this book, dim R means Lebesgue dimension unless otherwise
specified. In a Tychonoff space X the Katdtov-Smirmov dimension of X <8 dim BX
where BX denotes the Stone-Cech compactification of X .

Definition I. 5. 1) A topological space R has strong inductive dimension - 1
Ind R=-1,1%f R=9.

it) If for any disjoint closed sets F and G of a topological space FR there
exists an open get U such that FSUSR- G, Ind B(U) ¢n-1, then R has
strong tnductive dimension < n, Ind R<n.

’

If it ts true that Ind R< n and it is false that Ind R < n -1, then Ind R= n .
If 1Ind R < n is false for each n , then Ind R = + =,

The following notion of weak inductive (or small <nductive or Urysohn-Menger) di-
mension is no longer so important as the preceding two notions, because as proved by
P. Roy, it is not equivalent to the preceding dimensions for general metric spaces
(though it is for separable metric spaces), and because some basic properties

required for dimension are not possessed by this dimension function.

Definition [I. 6. <Z) A topological space R has weak inductive dimension - 1
indR=-1,14if R=¢0.

i1) If for every neighbourhood U(p) of every point p of R there exists an
open neighbourhood V such that p € V< U(p), ind B(V)< n-1, ithen R has weak
inductive dimension <n,ind R<n.
If it 7s true that ind R < n and <t ta false that ind R<n -1, then ind R=n.

If ind R< n 1is false for each n , then ind R = + ® .




