IX

Subobjects, Quotient Objects,
and Factorizations

He thought he saw a Garden-Door
That opened with a key;

He looked again, and found it was
A Double Rule of Three.

*“And all its mystery,” he said,

*Is clear as day to me!”

Lewis CarroLL}

In §17 we have already seen that if a category € has “sufficiently nice’” smallness
and completeness properties (c.g., if it is well-powered, has intersections, and is
finitely complete), then it is (extremal epi, mono)-factorizable. In this chapter
we will show that such a category is actually unmiguely (extremal epi, mono)-
factorizable and, moreover, that it is also uniquely (epi, extremal mono)-
factorizable. Putting these results together will show that each morphism in
such a category has an essentially unique three-fold (extremal epi, bi, extremal
mono)-factorization. It should be noted that the (extremal epi, mono)-factoriza-
tion is the one that is usually considered in algebraic categories, but is considered
to be of only limited interest in categories such as Top or POS. In the latter
categories, the interesting factorizations are the (epi, extremal mono)-factoriza-
tions.

In order to study these two kinds of distinguished factorizations that exist
in each “reasonable” category, we will begin with a study of general (6, .#)-
factorizations.

§33 (¢, .#) CATEGORIES

Throughout this section let & be a class of epimorphisms which is closed
under composition with isomorphisms and let .# be a class of monomorphisms
that is closed under composition with isomorphisms.

t From Alice in Wonderland.

249
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Recall that an (&, .#)-factorization of a morphism fis a factorization
. L) ¢ = L) . l) e

where e e & and m € . Such a factorization is called unique provided that
whenever

J & ]
@ ) 8 T2 G ) 8 ) @

is also an (&, .#)-factorization of f, there is an isomorphism / such that the

diagram
/1%
. B .
A

commutes. Recall also that a category 7 is called (uniquély) (&, M)-factorizable
provided that each of its morphisms has a (unique) (&, .#)-factorization.

33.1 DEFINITION

A category ¥ is called an (&, .#) category provided that it is uniquely
(&, #)-factorizable and both & and .# are closed under composition.

The following property will turn out to be crucial in the study of factor-
izations.

33.2 DEFINITION
A category ¥ is said to have the (&, .#)-diagonalization property provided
that for every commutative square in ¥

e
o ——p e

s g withe€ and me. #,
D —

m

there exists a morphism & that makes the diagram

e
—

. A *
I,II
J ~k g
z/
. x

—_——
m

commute.

333 THEOREM
For any category €, the following are equivalent :

(1) € is an (8, /) category.
(2) € is (&, H)-Sfactorizable and has the (8, .#)-diagonalization property.
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Proof:
(=) Let
[
§ ——
s g
v
P

m

be a commutative square with ¢ee & and me.#/. Let f=m'o¢ and g =
m"oe" be (&, #)factorizations. Then m"<(¢"o¢) and (mom')oe' are
(&, .#)-factorizations of g - e. Thus, by uniqueness, there exists an isomorphism
I such that the diagram

m

commutes.

Hence, m’ o /i o ¢" is the desired diagonal morphism.
Q=W). if f=moe=m ¢ are (6, .#)factorizations of f, then there
exist morphisms & and &’ such that the diagrams

e ¢
o —d » ————
’
/, ’ﬂ
R i e
. ’
e Lk m and ¢ Sk |m
; ,
/ /
4 ’
Y s
» — ¢ ¢e— o
m’ m

commulte.

Thus (k"o k)oe = k' o' = ¢ = | ce, 50 that since e is an cpimorphism,
k'ok =1; i.e., k' is a retraction. However, k' (being the first factor of a
monomorphism) is also a monomorphism. Hence, &’ is an isomorphism. Thus
% is uniquely (&, . #)-factorizable. To show that ./ is closed under compositions,
supposc that m, and m, belong to .#. If moe = myom, is an (&, H)-
factorization of m, o m, then there exists a morphism & such that the diagram

s
m, <k m

commutes.
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Likewise there exists a morphism &’ such that the diagram

nmy

commutes,

Thus k’ce = 1, so that e is a section and an epimorphism, hence an
isomorphism. Consequently, since .# is closed under composition with iso-
morphisms, m, cm; € .#. That & is closed under composition follows
dually,. [

334 PROPOSITION

For any category €, the following are equivalent:
(1) € is a (regular epi, mono) category.
(2) € is (regular epi, mono)-factorizable.

Proof: This follows immediately from the above theorem (33.3) and the
fact that every category has the (regular epi, mono)-diagonalization property

717, 0O

33.5 PROPOSITION
If € is an (&, M) category, then the (&, ./ )-factorizations are functorial in
the following sense:

If
f

 —
g{ lk
 ———
fl

is a commutative square and f = moeandf' = m' o ¢' are (&, M)-factorizations
of fand [, then there exists a unique morphism k such that the diagram

[:4 m

5,

— o
lh
> e
commuites.

Proof: By the above theorem (33.3), € has the (&, .#)-diagonalization
property. [

v

e ——————p

x>

[
4

e n'
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33.6 THEOREM

If € isan (6, .H) category, then & and .# uniguely determine each other ; in
particular,

() # ={feMor€|iff="hocandeeé, then e is an isomorphism),
and

(26 ={feMor€|iff =moeandme . .«, then m is an isomorphism}).

Proof: By duality we need only to prove (1). Suppose that fe.# and
S =hoe where ecé. Since ¢ is an (&, .#) category, it has the (&, .#)-
diagonalization property (33.3). Thus, there exists a morphism k such that the
diagram

commutes.

Consequently, e is a section and an epimorphism; hence an isomorphism.
On the other hand, suppose that f has the property that whenever f = h- e,
with e € &, then e must be an isomorphism. Then for the (&, .#)-factorization
S = moeoff, eis an isomorphism. Thus, since .# is closed under composition
with isomorphisms, fis in .#. []

33.7 COROLLARY
Let € be an (&, .#) category.

(1) If & is the class of all epimorphisms in €, then M is the class of all extremal
monomorphisms in €, and

(2) If M is the class of all monomorphismsin €, then & is the class of all extremal
epimorphisms in €. [

In this section we have studied (&, .#) categories in general. In the next
section (§34), we will show that each ‘‘reasonable” category is simultaneously
an (extremal epi, mono) category and an (epi, extremal mono) category. In the
last chapter (§39) we will show that a pointed category is a (normal epi, normal
mono) category if and only if it is “exact”. In exact categories the techniques
involving exact sequences that are available in categories such as R-Mod will
be at our disposal.

EXERCISES

33A. Show that each of Set, Grp, and Top is an (epi, extremal mono) category,
an (epi, regular mono) category, an (extremal epi, mono) category, and a (regular epi,
mono) category.
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33B. Show that none of the categories SGrp, Rng, POS, Top, or Top, is an
(epi, mono) category.

33C. In the definition of ( &, .#/)-diagonalization property (33.2), prove that the
morphism & in the diagram

¢ ———
m

must be unique, and also that commutativity of the upper triangle is sufficient to
guaranice commutativity of the lower triangle, and vice versa.

33D. Prove that if € has the unique (epi. .#)-factorization property, then.# is
precisely the class of extremal monomorphisms in €.

33E. Show that the fact that for an ( &, .#) category, €, the ( &, .4 )-factorizations
are funciorial means that the factorizations may be interpreted as a functor F: €2 —+ 43,

33F. Let % be an (&, ./) category.
(a) Prove that &~ .# is precisely the class of all isomorphisms in €.
(b) Prove thatif foge #, thenge /.
D
(¢) Let & _.}“:;'6 be functors with limits (D, d,) and (£, e,) respectively, let y =

(17,,): D = E be a natural transformation, and let /' be the unique morphism that makes
the diagram

b---L--sE
da €a
M v
D(A) —,,—->E(A)
A

commulte.

Prove that if each », is in .#, then fis also in./#.
(d) Prove that ./ is closed under the formation of products, pullbacks, and inter-
sections of . #/-subobjects [see 34.2].
(¢) Prove that ./ contains the class of all extremal monomorphisms in 6.
(f) Provide the statements corresponding to (b), (¢), (d), and (c) for the class &.

33G. Among the morphisms in the catcgory Top, of Hausdorfl spaces and
continuous maps, let

&, = {f]fis dense} [= {f] fis an epimorphism} (6.10(4))].
My = 1f] fis a closed embedding} [= {f| fis an extremal monomorphism |
(17.103n ).
&y = { | fis surjective).
., = {f|fis an embedding;.
&y = {f ] fis a quotient map} [= {f] fis an extremal epimorphism} (17.10(3))].
My = {f]| fis injective} [= {f] fis a monomorphism} (6.3(2))].
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Show that for i = 1, 2, 3, Top, is an (&}, ;) category.

33H. In CRegT, let é be the class of all dense, compact-extendable functions
(see Definition 37.8) and let .# be the class of all perfect maps. Show that CRegT,
satisfies all of the conditions for being an (&, .f) category except that ./ does not
consist of monomorphisms alone.

331. Determine which of the results of this section (§33) remain valid if onc
drops the condition that & (resp. /) consists only of cpimorphisms (resp. mono-
morphisms).

33]. Prove that any category that has pushouts has the (epi, extremal mono)-
diagonalization property.

33K. Show that each algebraic category is a (regular cpi, mono) category.

33L. Let € be a category that has pulibacks and coequalizers. Prove that the
following are equivalent:

(a) The class of regular epimorphisms in € is closed under composition.
(b) € is a (regular epi, mono) category {see Exercise 210].

§34 (EPI, EXTREMAL MONQO) AND
(EXTREMAL EPI, MONO) CATEGORIES

In §17 we have shown that a well-powered category ¢ that has intersections
and cqualizers is (extremal cpi, mono)-factorizable. Next we will show that if
% also has pullbacks, it is even an (extremal epi, mono) category.

341 THEOREM

If € is well-powered, finitely complete, and has intersections, then € is an
(extremal epi, mono) category.

Proof: Using earlier results (17.16 and 33.3), we need only show that %
has the (extremal epi, mono)-diagonalization property. Let

e

L —— ]

S/ g

 —
m

be a commutative square, where e is an extremal epimorphism and m is a
monomorphism.

Let a
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be the pullback of m and g. Now a is a monomorphism since m is (21.13).
Since the square is a pullback, there exists a unique morphism / such that the
diagram

e

—
’;“a. AV
4
m

.
f g

¢ —
commutes.

Since e is an extremal epimorphism, a must be an isomorphism. Thus
boa~! is the desired diagonal morphism. [

Our attention now focuses on showing that each category satisfying the
hypotheses of the above theorem is also an (epi, extremal mono) category. The
next proposition indicates the crucial role of the (epi, extremal mono)-diagonal-
ization property. The conclusions of the proposition should be compared with
the analogous results for monomorphisms—6.4, 17.3, 21.13, and 18.16.

34.2 PROPOSITION
If € has the (epi, extremal mono)-diagonalization property, then in € :

(1) The composition of extremal monomorphisms is an extremal monomorphism.
(2) The intersection of extremal subobjects is an extremal subobject.

(3) The inverse image (pullback) of an extremal monomorphism is an extremal
monomorphism.

(4) The product of extremal monomorphisms is an extremal monomorphism.

Proof: Since monomorphisms are closed under composition, intersections,
inverse images, and products, in cach case we need only verify that the extremal
condition (17.9(1)(ii) dual) is satisfied.

(). If fand f’ are extremal monomorphisms and fo f* = ko g where g is an
epimorphism, then by the (epi, extremal mono)-diagonalization property, there
exists a morphism & such that the diagram

.;’.

commutes.

Thus f* = k < g, where g is an epimorphism, so that g is an isomorphism.
(2). Let (A, f); be a family of extremal subobjects of B and let (D, d) be
their intersection, where for cach i, d = fied,. If d = hog, where g is an
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epimorphism, then for each /, the diagram

p—2 sc

d,

h

A—8
commutes.

By the diagonalization property, for each / there exists a morphism
kit C = A; such that d; = k, o g. Hence since g is an epimorphism and since
the intersection, being a limit, is an (extremal mono)-source (20.4), g must be
an isomorphism,

(3). Let

5
C———— e

/ m

¢ ———p e
s
be a pullback square, where 1 is an extremal monomorphism. We wish to show
that f is also an extremal monomorphism. If /= hog, where g is an epi-

morphism, then by the diagonalization property, there exists a morphism k such
that the diagram

 —

commutes.

Thus, since pullbacks, being limits, are (extremal mono)-sources, ¢ must be an
isomorphism,

«@). If (A, 4, By is a family of extremal monomorphisms, T4, a5 IB; is
their product, and [1f; = /i o g where g is an epimorphism, then by the diagonal-
ization property, for cach i there is a morphism &; such that the diagram

1y,
HA" L)HB‘

3 ks
A,' —— B‘-

commutes.
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Since products, being limits, are (extremal mono)-sources, ¢ must be an
isomorphism. [
34.3 FACTORIZATION LEMMA

Let € be a well-powered category that has intersections and equalizers. Let

XL Ybea @-morphism, and let 4 be a class of €-monomorphisms with the
Jollowing properties :

(1) .« is closed under intersections; i.e., if (D, d) is the intersection of a non-empty
Jamily (A;, m), of .#-subobjects, thend € 4.

QI f=moqgoh, where me .« and q is a regular monomorphism, then
moge ..

3) lye

Then there exist morphisms m and e such that m € .4, e is an epimorphism, and

(f=moe
(i) if f = m' o h, where m' € M, then there exists a morphism k such that the
diagram

commutes.
(iii) if e = m o g, where m o m € M, then m is an isomorphism.
Proof: Since € is well-powered, there exists a set-indexed family
P S NRLIS g%

of factorizations of f, where each m; € .# and (A;, m;)); is a representative
class of all .#-subobjects of Y through which f factors. Let (D, m) be the inter-
section of (4;, m,); (which by (3) is non-empty). By (1), m € .#. By the definition
of intersection, there exists a unique morphism e such that f = mo e,

If f = m’' o h, where m’ e .#, then without loss of generality we can assume
that there is some je I with m" = m; and h = h;. Since (D, m) is the inter-
section of (A;, m;);, there exists a morphism & such that m = m; - k. Hence the
diagram

x—>p

III
h=h;\ % |m
v

Aj— >

! =
m-=m;

commutes, so that (ii) holds.
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If ¢ = Aiog where mom e ., then by (ii) there exists a morphism ¢
such that

l,,.

commutes.

Hence moiieot = m = m-o1, so that since m is a monomorphism,
m <t = 1. Thus i is a retraction, and since it is the first factor of a monomor-
phism, it is a monomorphism. Consequently 7 is an isomorphism, so that (jii)
is established.

To complete the proof, we need only show that e is an epimorphism.
Suppose that r o ¢ = s e. Let (Q, q) be the equalizer of r and s. By the definition

of equalizer, there exists a morphism /i such thate = g o . Hence f = mogoh.
By (2) m o g € .#, so that by (iii) ¢ is an isomorphism. Thus r = 5. [

e
—_—

L]
g !,
,I
.

L4
4
/
’
s
-,

«—)

m

3 ILK\

344 PROPOSITION

Every well-powered category € that has intersections and equalizers also has
the (epi, extremal mono)-diagonalization property.

Proof: Let

h I'd

be a commutative diagram, where ¢ is an epimorphism and f is an extremal
monomorphism. Let .# be the class of all ¥-monomorphisms n with the
property that there exist morphisms f, and g, such that the diagram

commutes.

It is a straightforward exercise to show that .# satisfies conditions (1),
(2), and (3) of the Factorization Lemma (34.3), so that there exists an (epi, .#)-
factorization /' = mo e of f. Since m is 2 monomorphism, f,, = e. Hence the
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diagram
o2 5.
gy
h L g
N
m
* ——P
f
commutes.

Now fis an extremal monomorphism, so that since e is an epimorphism,
e must be an isomorphism. Thus e~ ! ¢ g,, is the desired diagonal morphism. []

345 THEOREM
Every well-powered category € that has intersections and equalizers is an
(epi, extremal mono) category.

Proof: By the above proposition (34.4) ¥ has the (epi, extremal mono)-
diagonalization property. Thus by parts (1) and (2) of Proposition 34.2 and the
fact that each regular monomorphism is an extremal monomorphism (17.11
dual), it follows that the class of all extremal monomorphisms of ¥ satisfies
the three hypotheses of the Factorization Lemma (34.3). Hence, by that lemma,
% is (epi, extremal mono)-factorizable; and so it is an (epi, extremal mono)
category (33.3). [

34.6 PROPOSITION
If € is a well-powered, finitely complete category that has intersections, then

each €-morphism f has a factorization (which is unique up to isomorphisms) of
the form f = m o b o e, where e is an extremal epimorphism, b is a bimorphism,
and m is an extremal monomorphism. Furthermore, this three-fold factorization
is functorial in the sense that if

»—_—p e

* —
fl

is @ commutative square and f = moboeandf’ = nt' o b’ o ¢ are the three-fold
Sfactorizations of f and f”, then there exist unique morphisms k, and k, such that
the diagram

f

~
o

m

L]
v

v

k-1
ke
b=

G m =t

b
-
=~

.
Y
v

"Q
=
s‘

conunutes.
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Proof: The existence of the factorization follows immediately from the
two theorems of this section (34.1 and 34.5). (First take the (epi, extremal
mono)-factorization of f, f = moe; and then take the (extremal epi, mono)-
factorization of e.) The functoriality is immediate from Proposition 33.5. []

34.7 PROPOSITION

If € is a well-powered category that has intersections and equalizers, then the
class M of all extremal monomorphisms of € is the smallest class of €-mono-
morphisms that contains all the regular monomorphisms of € and is closed under
composition and the formation of intersections.

Proof: We already know that .# contains the class of regular monomor-
phisms of € (17.11 dual) and that it is closed under composition and the forma-
tion of intersections (34.2). Let .#' be another class of monomorphisms with
these properties. Then .#’ satisfies the conditions (1), (2), and (3) of the Factor-
ization Lemma (34.3) so that every ¥-morphism f has an (epi, .#)-factorization.
Let fe .# and let f = m o e be an (epi, .#')-factorization of f. Since f is an
extremal monomorphism and e is an epimorphism, e must be an isomorphism,
sothat moee #' . Thus # < M'. []

The above proposition indicates that for “sufficiently nice” categories,
the class of extremal monomorphisms is the smatlest sensible class of morphisms
that could be called “embeddings of substructures”. The largest such class is
obviously the class of all monomorphisms. Consequently, in those categories in
which all monomorphisms are extremal (i.e., in all balanced categories), one
immediately has natural categorical concepts corresponding to “embeddings of
substructures” and “images”.

348 DEFINITION

If € is an (8, &) category and X L5 ¥ = X 25 Z ™, Y is the (&, .#)-
factorization of a morphism f; then (Z, m) [or sometimes just m] is called the
-image of /. In the case where .# is the class of all ¥-monomorphisms, we say
image rather than .#-image and write (Z, m) = Im(f) [or (loosely) m ~
Im(f)]. Dually, (e, Z) (or sometimes just e) is called the &-coimage of f;
abbreviated to coimage of fif & is the class of all €-epimorphisms, in which case
we write (e, Z) =~ Coim(f).

EXERCISES

34A. Let € be a well-powered, complete category. Prove that:

(a) The class of all extremal monomorphisms of € is the only class .# for which % is an
(epi, ) category.

{b) The class of all extremal epimorphisms of % is the only class & for which % is an
( &, mono) category.
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34B. Show that in an arbitrary category the composition of extremal mono-
morphisms is not necessarily extremal. [To do this, consider the following diagram:

AN

._.--—-—""""""_)\

(a) Prove that this umquely depicts a category 4.
(b) Prove that, in &, fand ¢ are extremal monomorphisms.
(c) Prove that g o fis not an extremal monomorphism. ]
34C. By constructions similar to those described in 34B above, prove that in
general categories:

(a) The intersection of extremal subobjects is not necessarily extremal.
(b) The inverse image of an extremal monomorphism is not necessarily extremal.
(c) The product of extremal monomorphisms is not necessarily extremal.

34D. For any well-powered complete category, prove that the following are
equivalent:
(a) Every extremal monomorphism in € is regular.
(b) In € the composition of regular monomorphisms is regular.
(¢) % is (epi, regular mono)-factorizable.
(d) € is an (epi, regular mono) category.

34E. Let € be an (extremal epi, mono) category, let X be a €-object, let (4;, my),
be a family of subobjects of X, and let d: D - X be a ¥-monomorphism. Prove that
(D, d) is an intersection of the family (A4;, m,), of subobjects of X if and only if (D, d)
is the greatest lower bound of the family (A4;. m)),; i.e.. if and only if
(a) for each i, (D, d) < (A;, m), and
(b) if (G, g) is a subobject of X such that for each /, (G, g) < (A;, m;), then (G, g) <
(D, d). (Cf. 17A))

34F. Factorizations in Special Categories
(@) Let X Z.¥Ybea morphism in one of the categories Set, Grp. R-Mod, SGrp,
Rng, Top, or POS. Let £ [X ] denote the set-theoretic image of X under £, let f [X ]Li—» Y
denote the inclusion function, and let X 2 f[X] denote the function defined by

S(x) = f(x)for all x € X. Assuming now that in each instance the set / [X} is equipped
with the appropriate substructure inherited from Y, prove that the factorization

Ly =x2arx1 Sy

(i) the (epi, extremal mono)-factorization in Set, Grp, R-Med, Top, and POS.

(ii) the (extremal cpi, mono)-factorization in Set, Grp, R-Mod, SGrp, and Rng.
(b) Describe the three-fold (extremal epi, bi, extremal mono)-factorizations in POS,
Top, Top,, and Cat.

34G. Embeddings

A morphism X Z. ¥ in a concrete category (6, U) will be called an embedding
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provided that for each ¥-morphism g: Z - ¥ and each function 4: U(Z) » U(X)
such that U(g) = U(f)e k there exists a unique morphism /&: Z -+ X such that the
triangle

><<--=-l-N

1

commutes.
Prove that:

(a) Every embedding is a monomorphism.

(b) For algebraic categories the embeddings are precisely the monomorphisms.

(c) InTop (considered as a concrete category) the embeddings are precisely the extremal
monomorphisms (= topological embeddings).

(d) In the concrete category Top,, the embeddings are precisely the topological em-
beddings. (These lie properly between the monomorphisms and the extremal mono-
morphisms.) .

(¢) Every regular monomorphism is an embedding.

(f) The class of embeddings is closed under the formation of intersections, pullbacks
(= inverse images), and products,

(g) If € is complete and well-powered, then every extremal monomorphism in % is an
embedding.

(h) If the square

A—L p

P q

C—D

commutes, where U(g) is surjective and /'is an embedding, then there exists a unique
morphism &: B =+ C such that the diagram

commutes.
Prove the following assuming that U preserves monomorphisms:

(i) f: X - Y is an embedding if and only if
(i) fis a monomorphism, and
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(ii) for each ¥-morphism g: Z - Y and each function h: U(Z) - U(X) such that
the triangle

VA
Ulg)
v
U(xX)——U(Y)
utn

commutes, there exists a -morphism &: Z - X such that U(h) = h.
(j) The composition of embeddings is an embedding.
(k) If g - fis an embedding, then fis an embedding.

34H. Dominions
Throughout this exercise, € will denote a well-powered complete category, and

x L, v will denote a %-morphism. Prove that:

(@) X 2, ¥ has a factorization X 25 D —d—, Y, where d is a regular monomorphism
that is characterized uniquely by any of the following equivalent conditions:
(i) for all morphisms rand s, rof = so fimplies that rod = sod.
(ii) (D, d) is the smallest regular subobject of Y through which fcan be factored;
i.e., if
xLy=xXESy

where e is a regular monomorphism, then (D, d) < (E, e).

(iii) dis the intersection of all regular monomorphisms with codomain Y through

which f can be factored.

(D, d) is called the dominion of f (denoted by Dom(f)) and f = d o g is called the
dominion factorization of f.

DUAL NOTION: codominien.
Prove that:
(b) In € the extremal monomorphisms are precisely the regular monomorphisms if
and only if the (epi, extremal mono)-factorization of any morphism is the same as its
dominion factorization.
(c) f: X = Y is an epimorphism if and only if Dom(f) = (Y, 1y).
(d) fis a regular monomorphism if and only if Dom(f) = (X, f).
(e) If f = r <5, where s is an epimorphism, then Dom(f) = Dom(r).
(f) The dominion factorization is functorial; i.e., it can be interpreted as a functor
F: 6% » 63,
(g) Consider the pushout square

¢ — e

t——————>
q

Then (D, d) is the dominion of fif and only if it is the equalizer of p and q.
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341. Five-Fold Factorizations
Throughout this exercise, € will denote a well-powered, co-(well-powered), complete,
cocomplete category, and X 2, v will denote a %-morphism.

(a) Prove that f has a unique five-fold factorization: f = aobocodoe where
(e, cod(e)) is the codominion of /, d is an extremal epimorphism, ¢ is a bimorphism,
b is an extremal monomorphism and (dom(a), a) is the dominion of f.

(b) Express the unique (epi, extremal mono), (extremal epi, mono), and (extremal
epi, bi, extremal mono)-factorizations in terms of the five-fold factorization.

(c) Prove that the five-fold factorization is functorial.

(d) Prove that if € has the properties that every monomorphism is regular and every
epimorphism is regular, then the middle three terms in the five-fold factorization of a
%-morphism are isomorphisms; so that every morphism in € has a natural unique
(epi, mono)-factorization.

34). Strict Monomorphisms
A morphism f is called a strict monomorphism provided that: whenever 4 is a mor-
phism with the property that for all morphisms r and s, rof = s f implies that
ro h = so h; then there exists a unique morphism k& such that the diagram

commutes.

(a) Prove that every regular monomorphism is a strict monomorphism and that every
strict monomorphism is an extremal monomorphism.

(b) Construct categories to show that not every extremal monomorphism is strict and
not every strict monomorphism is regular.

(c) Prove that the intersection of strict subobjects is a strict subobject and that the
inverse image of a strict monomorphism is strict.

(d) Prove that the product of strict monomorphisms is a strict monomorphism.

(e) Construct a category to show that the composition of strict monomorphisms is
not necessarily a strict monomorphism.

(f) Prove that in well-powered categories that have equalizers, a morphism is a strict
monomorphism if and only if it is the intersection of regular monomorphisms.

() Prove that in well-powered complete categories 2 morphism is a strict mono-
morphism if and only if it is regular.

(h) Prove that in a category with pushouts, a monomorphism is strict if and only if it is
regular.

(i) Prove that every category has the (epi, strict mono)-diagonalization property and
use this to show that for any category the composition of strict monomorphisms is an
extremal monomorphism.

34K. Strong Monomorphisms
A morphism m is called a strong monomorphism provided that it is a monomorphism
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and whenever mo f = g o e with ¢ an epimorphism, there exists a morphism A such
that the diagram

'Y -———),o
I,’
rl B |
I,,
/4
» —
m
commutes.
Prove that:

(a) cach strict monomorphism is strong, and each strong monomorphism is extremal.
(b) extremal monomorphisms need not be strong, and strong monomorphisms need
not be strict.

(c) the class of strong monomorphisms is closed under composition, intersection,
inverse images, products, and left-cancellation.

(d) in any category that has pushouts, a monomorphism is strong if and only if it is
extremal.

34L. Regular Monomorphisms in the Category of Semigroups
Let C = {0, a, b, c, d, e} and consider the following multiplication table:

O|laib|cid]|e

(a) Prove that C with the above multiplication is a semigroup.

(b) A = {0, a, b} and B = {0, a, b, ¢} are subsemigroups of ¥. Let f: A& B and
g: BS C be the inclusion homomorphisms. Prove that f and g are regular mono-
morphisms in SGrp.

&
(c) Prove that if C k:‘:‘; D are morphisms in SGrp that coincide on A4, then & and &

coincide on B. [Hint: Use the equalities b = da and ¢ = bd.] Conclude that g o fis
not a regular monomorphism in SGrp.

(d) Let B be the free semigroup on three generators {d, b, é}; let A be the subsemigroup
of B generated by {4, bd, éd}; let C be the quotient semigroup obtained by identifying
the words 4 and 54¢; and let i: A Band X: 8 — € be the inclusion map and natural

map, respectively.
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(i) Construct a semigroup D and homomorphisms r, s: C =+ D such that
(A,8) x Equr, s).
(ii) Show that i is not a regular monomorphism in SGrp.
(e) Conclude that for the complete, well-powered category SGrp, the following hold:
(i) The class of regular monomorphisms coincides with the class of strict
monomorphisms (34J).
(ii) There exist extremal monomorphisms that are not regular.
(iii) The class of regular monomorphisms is not closed under composition.
(iv) SGrp is not (epi, regular mono)-factorizable.
(v) The first factor of a regular monomorphism is not necessarily regular.

§35 (GENERATING, EXTREMAL MONO) AND
(EXTREMAL GENERATING, MONO)-FACTORIZATIONS

In this section we broaden our outlook by considering factorizations of

pairs (f, A) where A4 is an &/-object, G: &/ — # is a functor, and f: B - G(A)

is a #-morphism. In doing so we will generalize several earlier factorization

resuits. ’
Recall that

BL Ga) = B-Ls G(A) & G(a)
is called

(1) An (extremal G-generating, mono)-factorization of (f, A) provided that g
extremally G-generates 4 and m: A — A is a monomorphism.

(2) A (G-generating, extremal mono)-factorization of (f, 4) provided that
g G-generates 4 and m: A - A is an extremal monomorphism.

In either case, the factorization is said to be unique if whenever
BL G4) = B 6(A) 2 G(a)

is another such factorization, there exists a unique s/-isomorphism k: A — 4
such that the diagram

commutes.

35.1 DIAGONALIZATION THEOREM 1
Suppose that </ has pullbacks, G:sf — 3B preserves pullbacks, and for
i=12,fi:A; = Aare sf-morphisms and g;: B — G(A,) are B-morphisms such
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that G(f,) o g, = G(f2) © g2- If 9, extremally G-generates A, and f, is a mono-
morphism, then there exists a unique f-morphism k: A, — A, such that the
diagram

g
B——'>/G(A.)

gzl /”’&(k) G(l;)
z’

Gl(A))—————> G(A
(A2) () (4)
commules.
Proof: Let
P
P——4,
p,l ll;
Ar— A
A

be a pullback square. Since f; is a monomorphism, so is p, (21.13). Since G
preserves pullbacks, there exists a #-morphism g: B — G(P) such that the
diagram

g,
B———> G(A)
g> )
6Py 5" Gy

commutes.

Since g, extremally G-generates 4,, the monomorphism p;, must be an
isomorphism. Thus k = p, o p; ! is the desired diagonal morphism. Uniqueness
is immediate since g, G-generates 4,. [

352 COROLLARY
Let of be a category that has pullbacks, let ((g));, A) and ()1, D) be sinks
in o, and let m and h be s#-morphisms such that for each i € I the square

9;
BI' ———>A

"l l,.
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commutes. If (g;, A) is an (extremal epi)-sink and m is a monomorphism, then
there exists a unique morphism k: A — D such that for each i € I the diagram

commutes.

Proof: Let G: of — &' be the *‘constant functor” functor (15.8), where /
is the discrete category determined by the index set for the sinks. Apply the
theorem. [

353 COROLLARY

Let o/ be a category that has pushouts, let (A, (g,);) and (D, (f});) be sources
in o, and let e and h be sf-morphisms such that for each i€ I, fice = g;o h. If
(A, (9))) is an (extremal mono)-source and e is an epimorphism, then there is a
unigue morphism k: D — A such that for each i € I the diagram

e
C——D

//
Rl e |
//
K

A——B,

commutes.
Proof: Dualize the above corollary (35.2). []

354 COROLLARY

Each category that has pullbacks has the (extremal epi, mono)-diagonalization
property and each category that has pushouts has the (epi, extremal mono)-
diagonalization property (33)). (]

355 THEOREM

If o is well-powered, finitely complete and has intersections and if G: 4 — B
is a functor that preserves limits, then for any sf-object A and any %-morphism
f: B = G(A) there exists a unique (extremal G-generating, mono)-factorization
of (f, A).

Proof: We have already established the existence of such a factorization
(28.6). To show the uniqueness, apply the above diagonalization theorem

G3s.). O

35.6 COROLLARY
If of is well-powered, finitely complete, and has intersections, then every sink
in € has a unique [(extremal epi)-sink, mono]-factorization. (cf. 19.14) []
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35.7 COROLLARY
Every well-powered, finitely complete category which has intersections is an
(extremal epi, mono) category. (cf. 34.1) []

358 PROPOSITION

Let G:of - B be a functor and [: B —» G(A) be a B-morphism that
extremally G-generates A. Then the follo: ing hold :

(1) If o has pullbacks, G preserves pullbacks, and h: A — A’ is an extremal
epimorphism, then G(h) o f extremally G-generates A’

(2) If B has pullbacks, G preserves monomorphisms,and g: B' — B isanextremal
epimorphism, then f o g extremally G-generates A.

Proof:
(/). Since / is an epimorphism, it is clear that G(h) o f G-generates A'. To
verify the extremal. condition let G(h) o f = G(m) - g, where m: A-> Adis an

/-monomorphism. According to the preceding diagonalization theorem (35.1),
there is an &/-morphism k: A — A such that the diagram

;
B—————>G(A)

k
G(A) ——> G(4")
G(m)

commutes.

Since f G-generates A, i = m o k. Hence since / is an extremal epimorphism,
m must be an isomorphism.
(2). Since g is an epimorphism, it is clear that fo g G-generates A. To verify
the extremal condition, let fog = G(m) - g be a factorization of fo g, where
m: A = A is an &/-monomorphism. Let

be a pullback square. Then there exists a morphism 4: B° —» P such that the
diagram

commutes.
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Since G preserves monomorphisms, G(/n) is a monomorphism, so that p,
is a monomorphism (21.13). Thus since g is extremal, p, is an isomorphism.
Since f extremally G-generates A4, f = G(m) o (p, - p7"') implies that m is an
isomorphism. []

We now turn our attention to the consideration of (generating, extremal
mono)-factorizations.

359 DIAGONALIZATION THEOREM 11

Suppose that o is well-powered, has intersections and equalizers, G: ¥ - %
preserves monomorphisms, and for i = 1, 2, f;: A, = A are sf-morphisms and
gi: B - G(A)) are B-morphisms such that G(f})-g, = G(f3)°g,. If g, G-
generates A, and f, is an extremal monomorphism, then there exists a unique
o -morphism k: A, — A, such that the diagram

g, .
B——G(4)

g;l ,//’a(k) la(ﬂ)
o

G(Az)—WG(A)

commutes.

Proof: Let (X;, m;); be the class of all subobjects of A for which there exist
s/-morphisms A}, h} with f; = m,;oh} and f; = m; o h}. Let (D, d) be the
intersection of (X}, m;); (17.7). Then there exist o/-morphisms d,, d, with f, =
deod, and f; = d-d,. Since G preserves monomorphisms, G(d) is a mono-
morphism, so that the diagram

9,
B—————— G(A))
G,

g G(f)
6wy $P 6@ |

G(4:) ———>G(4)
G(f,)
commutes.
We wish to show that d, is an o/-epimorphism. Assume that r and s are
morphisms such that red, = sod, and let (E, ¢) ~ Equ(r, s). Then there
exists an &/-morphism e, such that d;, = e o e,. On the other hand

Girod))og, = Grody)eog, = G(sody)og, = G(sody)og,

and the fact that g, G-generates A,, implies that r o d; = 5o d,. Hence, there
is an &/-morphism e, with d, = ece,. Consequently, f; = (do€)oe, and
J2 = (d o €) - e, implies that (E, d < e) belongs to (X, m;);. It follows that e is a
retraction. Thus since it is also a monomorphism, it must be an isomorphism.
Hence r = 5 (16.7); so that 4, is an epimorphism. But since f; is extremal, this
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implies that d, is an isomorphism. Thus k = d5' < d, is the desired diagonal
morphism. Uniqueness follows from the fact that g, G-generates A,. []

35.10 COROLLARY

Let of be a well-powered category that has intersections and equalizers, let
(g1, A) and (([f));, D) be sinks in o, and let m and h be of -morphisms such that
Jor each i € I the square

commutes.
If ((g,);» A) is an epi-sink and m is an extremal monomorphism, then there
exists a unique morphism k: 4 — D such that for each i € I, the diagram

—_—

B, - A
g
D C

—_—

9.
/.

m
commutes. [
35.11 COROLLARY

Let sf be a co-(well-powered) category that has cointersections and co-
equalizers, let (A, (g,);) and (D, (f});) be sources in of, and let e and h be -
morphisms such tha, for each i€ I, fice = g, h. If (4, (g}),) is a mono-source

and e is an extremal epimorphism, then there is a unique morphism k: D — A
such that for each i € I the diagram

commutes. [ ]

35.12 THEOREM
If of is well-powered, has intersections and equalizers, and if G: of — B is a
Junctor that preserves intersections and equalizers, then for any of-object A and



Sec. 35 (Generating, Extremal Mono)-Factorizations 273

any B-morphism f: B — G(A), there exists a unique (G-generating, extremal
mono)-factorization of (f, A).

Proof: Let (X;, m;); be the family of all extremal subobjects of 4 for which
there is some #-morphism g, such that f = G(m;) - g;. Let (D, d) be the inter-
section of (X;, m;); (17.7). Since & has the (epi, extremal mono)-diagonalization
property (34.4), (D, d) must be an extremal subobject of A4 (34.2(2)). Since G
preserves intersections, (G(D), G(d)) is the intersection of the family
(G(X)), G(m,));. Hence there exists a #-morphism g: B — G(D) such that

BL G4y = B G(D) 24 Gia).

To show that g G-generates D, let D ': A be a pair of &/-morphisms where

s
G(r)og = G(s) o g. Let (E, ¢) = Equ(r, 5). Since G preserves equalizers, there is
a #-morphism g such thatg = G(e) » g. Since d - e is an extremal monomorphism
in (34.2(1)) withf = G(d < e) = g, (E, d - €) must belong to (X;, m,),. It follows
that e is a retraction, so that since it is also a monomorphism, it must be an
isomorphism. Thus r = 5. Consequently, g generates D. Uniqueness follows
immediately from the above diagonalization theorem (35.9). {J

35.13 COROLLARY
If o is well-powered and has intersections and equalizers, then each sink in
& has a unique (epi-sink, extremal mono)-factorization. [ ]

35.14 COROLLARY
If o is co-(well-powered) and has cointersections and coequalizers, then each
source in sf has a unique (extremal epi, mono-source)-factorization. ]

35.15 COROLLARY
Each category that is well-powered and has intersections and equalizers is
an (epi, extremal mono) category (34.5). ]

EXERCISES

35A. Let G: o/ = 28 be a functor, let h: A - A’ be an &/-morphism, and let
g: B" » Band f: B+ G(A) be Z-morphisms. Prove the following:

(a) If G(h) - f G-generates A’, then A is an epimorphism.

(b) If G(h) = f extremally G-generates A’, then 4 is an extremal epimorphism.

(c) If f- g G-generates A, then f G-generates A.

(d) If f- g extremally G-generates A, then fextremally G-generates A.

(e) If g is an epimorphism and f G-generates A, then f- g G-generates A.

(f) If & is an epimorphism and f G-generates A, then G(&) - f G-generates A’. (cf. 35.8)

35B. Prove Theorem 35.12 after replacing the hypothesis that & is well-powered
by the hypothesis that it is extremally well-powered.
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35C. Prove that if & is well-powered and complete, and G: &f - & is a limit-
preserving functor, then for any &/-object 4 and any #-morphism f: B = G(A) there
exists a unique factorization

BL5 6(4) = B2 Ga') T8, 6iamy S Ga)

where g extremally G-generates A, k: A’ - A" is a bimorphism, and m: 4 -+ A isan
extremal monomorphism.

35D. Prove that if € is co-(well-powered) and cocomplete and S is an extremal
separator for €, then som(S, ) reflects limits.
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