VIII

Set-Valued Functors

A harmless necessary cat.
————\W, SHAKESPEARE}

Set-valued functors are of special interest for several reasons. First of all, most
of the motivating examples for category theory are actually concrete categories,
i.e., pairs (&, U) where & is a category and U is a faithful set-valued functor
with domain &/. Secondly, due to many of the well-known nice properties of
Set, set-valued functors are usually casier to handle than arbitrary functors. For
example, in this chapter we will see that if G: &/ — Set is a functor, and if
there is a G-universal map for at lecast one non-empty sct, then G preserves
limits, Also if &/ is cocomplete and there is a G-universal map for a singleton
set, then there is a G-universal map for each set—so that G has a left adjoint.
A third reason for the importance of set-valued functors is the fact that together
with any category &, there is associated a whole class of set-valued functors—
namely the from-functors hom(A, .): &/ — Set. We shall see that an arbitrary
functor G: &/ — 4 has a left adjoint provided that for each %-object B, the
set-valued functor hom(B, ) G is naturally isomorphic to some /hom-functor
with domain &. This then provides yet another approach to adjoint situations.

§29 HOM-FUNCTORS

One of the reasons for the usefulness of fom-funciors is that they not only
preserve commutative diagrams (as do all functors) but also, as we shall see in
this section, acting in concert they ““detect’” commutativity of diagrams. Moreover,

¥ From The Merchant of Venice.
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218 Set-Valued Functors Chap, VIlII

they preserve limits (and thus monomorphisms) and—as a whole—*detect”
them as well.

29.1 PROPOSITION
Let C é’, D be a pair of s#-morphisms. Then the following are equivalent :
[

MSf=g
(2) For each s#-object A, hom(A, _)(f) = hom(A, _)(g).
Proof: Clearly (1) implies (2). If (2) holds, then
S =rfelc = hom(C,f)1c) = hom(C,g)lc) = gelc=g. O
The above proposition can be rephrased as follows:

A triangle (or diagram) in s¢ commutes if and only if for each sf-object A, the
image triangle (or diagram) under hom(A, ) commutes.
29.2 COROLLARY
F
Let &/ ? @ be a pair of functors and let n = (n,: F(A) = G(A)) be a
Samily of €-morphisms indexed by Ob(f). Then the following are equivalent :

(1) 4 = (,): F = G is a natural transformation.
(2) For each €-object C,

hom(C, ) » n = (hom(C, n,)): hom(C, ) e F — hom(C, ) o G
is a natural transformation. [

29.3 THEOREM
Let D: ! — € be a functor and let (L, L ', D(A)) be a source in 6. Then
the following are equivalent :

(1) (L, (L)) is a limit of D.
2) (hom(C, L), (hom(C, 1,))) is a limit of hom(C, ) o D, for each C € Ob(%).

Proof:

(1) = (2). Since functors preserve commutative triangles, it is clear that for each
C € 0b(%), (hom(C, L), (hom(C, 1,))) is a natural source for hom(C, )< D. If
(Y, (f) is also a natural source for hom(C, )< D, then for each yeY,
1400 € hom(C, D(A)) and commutativity of the triangle

hom (C, D(A)) A
B
Y D(m)e__ m

I
hom (C,D(4") A’
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guarantees that D(m) o £,(y) = f,(y). Thus (C, (f4(»))) is a natural source for D,
so that there exists a unique morphism g,: C — L such that for each 4 the
triangle

fa

——0

o~
/
€

Q
1]

€=
AA

D(4)

commutes. Now for each ye Y let g(y) = g,. Then g: Y = hom(C, L), and
the triangle

7

Q
€

hom (C, D(A))
hom(C, 1)

0\

hom (C, L)
commutes, since it does for each y € Y. Uniqueness follows from the uniqueness
of each g,. Hence (hom(C, L), (hom(C, 1,))) is a limit of hom(C, ) = D.

(2) = (I). Since hom-functors “detect’” commutative triangles, it is clear that
(L, () is a natural source for D. Now suppose that (B, (b,)) is also a natural
source for D. Then since functors preserve commutativity,

(hom(B, B), (hom(B, b,)))

is a natural source for iom(B, _.) o D, Thus by the definition of limit, there is a
unique function F: hom(B, B) — hom(B, L) such that for each A the triangle

hom (B, B)
! hom(B, b,,)
]
]
ri hom (B, D(A))
v hom(B, 1)
hom (B, L)

commutes. Hence (fom(B, 1,) o F)(15) = hom(B, b,)(1g); i.e., 1,0 F(lg) = b,,
so that /' = F(l) makes the triangle

B
ba

|

[}

|

1

[}

|

|
V%
L

s
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commute. To show uniqueness, suppose that f/’: B — L also makes the triangle
commute. But then for each €-object C, each of hom(C, 1) and hom(C, ') is a
function x such that the triangle

hom (C, B)
! hom(C, b,)
1
x| hom (C, D(A))
1
~lv hom(C, 1)
hom (C, L)

commutes. Thus by the uniqueness condition in the definition of limit,
hom(C, ) = hom(C, f”) for each C ¢ Ob(¥). Consequently f = f* (29.1). [J

29.4 COROLLARY

(1) The following are equivalent :

() f is a C-monomorphism

(i) hom(C, [) is an injective function for each C € Ob(%).
(2) The following are equivalent :

() T is a C-terminal object

(i) hom(C, T) is a singleton set for each C e Ob(%).

Proof:
(1) fis a monomorphism if and only if

1,

| l_f_,lf

is a pullback (21.12) and in Set monomorphisms are precisely the injective
functions.

(2) T is a terminal object if and only if it is a limit of the empty functor, and in
Set terminal objects are the singleton sets. []

At this point the question naturally arises as to when /hom-functors reflect
limits. The next proposition yiclds a partial answer.

29.5 PROPOSITION
If S is a retract-separator in € (19.7), then hon(S, ) reflects sf-limits for
each category /.

Proof: Let D: s/ — € be a functor and let (L, L la, D(A)) be a source in &
such that (hom(S, L), (hom(S, 1,))) is a limit of hom(S, _)e D: of — Set.
Since S is a retract-separator, it is a separator, so that iom(S, ) is faithful. Thus
(L, (1)) is a natural source for D.

Let (B, (g.)) also be a natural source for D. Then (hom(S, B), (hom(S, g4)))
is a natural source for hom(S, ) « D, so that there exists a unique function /r
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such that the triangle

hom (S, B)
i wi:&a)
1
]
h i hom (S, D(A))
|
v % I
hom (S, L)

commutes for each A4; i.e., foreach x: S —» B
gaox = I o h(x).

Now since S is a retract-separator, there is some copower ((¢;), ’S) of S and
morphisms /m and r such that

B2 Iist,p=plz
By the above, for each i € /, and each A & Ob(«)

Gaolrop) = lyohlrop).
Hence by the definition of coproduct there exists a unique morphism ¢: 'S » L
such that for each i, g o gt; = h(r o ;). Since (1), ’S) is an epi-sink, the diagram

B le >
m r
\IS /
T B, F'4 A

q

gem

(r °B,‘)

> D(A)
Ia
commutes for each A € Ob(«?). Since / is unique and hom(S, ) is faithful,

q < m is the unique morphism that makes the outer square commute for each A.
Consequently (L, (/,)) must be a limit of D. [

29.6 COROLLARY

If B is a non-empty set, then hom(B, _): Set — Set preserves and reflects
limits. [

EXERCISE

29A. Prove that if &/ is a complete, co-(well-powered) category and A is an
extremal separator in &/, then hom(A, ). &/ — Set preserves and reflects limits.

§30 REPRESENTABLE FUNCTORS

Since in category theory ainy two isomorphic entities are regarded as
essentially the same, it is only natural o consider, together with the /iom-
functors, those functors that are naturally isomorphic to them. These are called
representable functors. With them we can obtain yet another way of investigating
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adjoint situations. The link between representability and adjoints is through
universal maps and is provided by the seemingly technical, yet nevertheless
extremely useful, Yoneda Lemma.

30.1 DEFINITION

Let G: o/ — Set be a functor.
(1) A representation of G is a pair (4,5) where A is an s/-object and
8: hom(A, __) — G is a natural isomorphism.
(2) G is said to be representable provided that there exists a representation
(A, 6) of G. In this case we also say that A represents G.

30.2 PROPOSITION
Representable functors preserve limits.

Proof: Immediate from the fact that som-functors preserve limits (29.3) and
naturally isomorphic functors have identical limit-preservation properties

24.10). [

30.3 EXAMPLES
The *“usual” forgetful functor
K4 U: of — Set is representable and
is represented by:

Set any singleton set

SGrp (N= {0}, +) _
Mon (N, +) S
Grp @z

Ab Z, +) .

RMed R

Rng 2]

aY

BooAlg
N\
0
'71'61)7 o any sinéleton spz;:e -
POS a}ly singleton pa‘r‘tially-ordered sct_ )
atﬁ - ‘any sing’leton lattice 7
- - | 4 arniee
complete
lattices ' a

*0




Sec. 30 Representable Functors 223

30.4 UNIQUENESS OF REPRESENTATION
If a functor G: & — Set is represented by each of the objects 4 and B,
then 4 and B must be isomorphic. More explicitly, if

(0¢c): hom(A, ) — hom(B, )

is a natural isomorphism, then dJ,(1,) € hom(B, A) is an isomorphism.
Moreover the assignment 6 — J,(1,) provides a bijective function from the
set of all natural isomorphisms from hom(A4, _) to hom(B, ) onto the set of
all isomorphisms from B to A. This will be proved in that which follows.
Nevertheless, it should be instructive for the reader to prove these statements
directly before continuing on.

30.5 NOTATION

Throughout the remainder of this section, whenever F and G are functors
with common domain & and common codomain %, then [F, G] will denote the
conglomerate of natural transformations from F to G; i.e., it will denote
homw_g,](F, G).

30.6 YONEDA LEMMA
If G: of — Set and A is an of-object, then there is a bijective function

Y: [hom(A, ), G] —> G(A)
defined by
6 — 5,(1,)
whose inverse
Y': G(A) - [hom(4, ), G]
is defined by
x= & =(¢p)

¢a(f) = GUN(x)

where

Jor all € hom(A, B).
[Y and Y’ are called the Yoneda functions for G and A.]

Proof: Clearly Y is a function. We first wish to show that Y’ is also a
function; i.e., that Y'(x) = £ is a natural transformation for each x e G(A).
To see this, let /* B — C and let g € hom(A, B). Then

(Sc o hom(A4, NNg) = Ec(f=9) = G(f g)(x)
(G(N) = G(gN(x) = (G(Sf) = a)(9).

Since this is true for each g € hom(A, B), we have commutativity of the diagram

¢
B hom (A, Bl —2—>G(B)
s hamu.f)l lG(I)

C hom (A, C)E—>G(C)
C
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Thus ¢ is a natural transformation from som(A, ) to G. Now by the dcfinition
of Yand Y’, for each x € G(A)

(Yo Y')x) = Y(§) = ¢41,) = GUYx) = lg(x)

chcc Y 4 Y' = lG(A)’
To show that Y’ o Y is the identity, let &: hom(A, ) — G. Then

Y(8) = 84(1,).
Let ¢ be Y'(8,(1,)). Then by definition
Suly) = G(1,)(04(10)) = 64(1,4)
Now let B be any «/-object and let f be any morphism from A to B. Then

Ea(f) = Eplf o 10) = (&g hom(A, S))1,)-
By the naturality of &, this is (G(f) » £,)(1,,); which by the above is
(G(f)=0,0(14).
By the naturality of ¢ this is
(8 hom(A, [))(11) = 8a(f 14) = 5(S)-

Hence § = &,sothat Y’ o ¥ = 1,46y Consequently Y is bijective and Y’
is its inverse. [}

30.7 COROLLARY
Let (A, B) be a pair of s/-objects. Then the Yoneda mapping

Y: hom (B, A) —> [hom(A, —), hom(B, _)]

thar associates with each [ B — A, the natural transformation & = (Cp) defined
by:

Elg) = gof; foreach gehom(A,C),
is a bijective function. []

In order to show that /: B — A is an isomorphism if and only if ¥(f)isa
natural isomorphism, we next prove that the functions

Y: hom (B, Ay — [hom(A, ), hom(B, )]

defined above, are the restrictions

A)E(B
E |L-5 iy

of a functor E: o7 — [&/, Set].

30.8 FULL EMBEDDING THEOREM
If s/ is any category, then E: s#°F — [, Set] defined by :

E(A) = hom(A, )  for each sf-object A
EN)Ag) = gof  Jor of-morphisms B ANy and A C,
is a full embedding.
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Proof: By the way E is defined, it is clear that it preserves identities and
compositions. Hence it is a functor. Since in any category, morphism sets are
pairwise disjoint, E must be injective on objects. By the above corollary (30.7)
E must be full and faithful. Thus E is a full embedding. [

30.9 COROLLARY
Every category (resp. small category) can be fully embedded in a complete
and cocomplete quasicategory (resp. category).

Proof: Since Set is complete and cocomplete, so is [/, Set], for any
category & (25.7). [J

30.10 COROLLARY

Let Y: hom (B, A) — [hom(A, ), hom(B, _)] be the Yoneda function
defined in 30.7. Then an sf-morphism f is an < -isomorphism if and only if Y(f)
is a natural isomorphism.

Proof: Every functor preserves isomorphisms, and full embeddings reflect
them (12.9). [

30.11 COROLLARY (UNIQUENESS OF REPRESENTATIONS)
If each of (A, ) and (B, &) is a representation of the functor G: of — Set,
then there exists an isomorphism f A - Bwithd o Y(f) = (. [

If G: o — Set, A is an /-object, and Y': G(A) = [hom(A4, ), G] is
the Yoneda function, then by 30.10 in the case that G = hom(B, __), an
element of G(A4) = hom(B, A) is mapped by Y’ onto a natural isomorphism if
and only if it is an &/-isomorphism. The question naturally arises as to what
happens in the case of other functors G; i.e., can we characterize those elements of
G(A4) whose values under Y’ are natural isomorphisms? The reader who is
interested in a general answer should see Exercise 30D (Universal Points). We
now focus our attention on the case where G = hom(B, ) o F, for some
F: of - # and some #-object, B. (Actually this can be considered as either a
generalization or as a specialization depending upon one’s point of view.) The
solution of this problem will yield a fundamental relationship between repre-
sentable functors and universal maps; and consequently between representable
functors and adjoint situations.

30.12 THEOREM
Let G: of — B, B be a #-object, §: hom(A, ) —> hom(B, _ ) G be a
natural transformation, and

Y: [hom(A, ), hom(B, ) > G] — hom(B, G(A))
be the corresponding Yoneda function. Then the following are equivalent :

(1) 6 is a natural isomorphism.
(2) (A, ) is a representation of hom(B, _) - G.
(3) (Y(), A) is a G-universal map for B.
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Proof: Clearly, by the definition of representation, (1) implies (2). To show
that (2) implies (3), suppose that (4, d) is a representation of hom(B, ) o G.
Clearly Y(d) = 8,(1,): B — G(A). If f: B — G(A’), then since 8. is a bijective
function, there exists a unique morphism f: 4 — A’ such that §,.(f) = f. Also
since & is a natural transformation, the square
hom (A, A)—2—s hom (B, G(A))

hom(A, ) hom(B, G(f))
hom (A, A') 8—>hom (B,G(4"))
A'

commutes. Applying this commutativity to the clement 1, € iom(A4, A), we have
(G()ed)(1) = 84(]) = f-
Hence [ is the unique morphism from A4 to A’ for which the triangle

Y(3)=5,(1,)

>G(A) rll
l :
7 G(F) 7
v A 4
G(A" A

commutes. Thus (Y(8), A) is a G-universal map for B. To show that (3) implies
(1), we must show that for each &/-object 4’,

0,42 hom(A, A') = hom(B, G(A"))
is a bijective function. This is casily established since if f € lom(B, G(A')), then

because (Y(J), 4) is a G-universal map for B, there exists one and only one
J e hom(A, A’) such that the above triangle commutes; i.e., such that

G(J)od,(1) = /.
But, again, since 4 is a natural transformation,

G(f) 0 (1) = 6,1'(])- O

30.13 THEOREM
Let G: & — B be a functor. Then

(1) a B-object B has a G-universal map if and only if hom(B, )« G is repre-
sentable.

() G has aleft adjoint if and only if for each %B-object B, the functor hom(B, ) « G
is representable.

Proof: Immediate from the preceding theorem and the connection between
adjoint situations and universal maps (27.3). [
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30.14 THEOREM

If G: o = Set is a functor, then an sf-object A represents G if and only if A
is a G-universal object for a singleton set P; i.e., provided that there is a singleton
set P and a morphism u: P — G(A) such that (u, A) is a G-universal map for P.

Proof: It is easily seen that there exists a natural isomorphism between the
functors hom(P, _): Set — Set, and lg,: Set — Set, and that this induces a
bijective function

B: [hom(A, ), G] — [hom(A, ), hom(P, _) » G]
that preserves and reflects isomorphisms. Let
Y: [hom(A, ), hom(P, _) - G] —> hom(P, G(A4))

be the corresponding Yoneda bijection. Then (4, ) is a representation of G if
and only if (4, B(d)) is a representation of hom(P, _) - G, and this is the case if
and only if (Y(B(5)), A) is a G-universal map for P (30.12). [J

30.15 COROLLARY
A set-valued functor G is representable if and only if the singleton sets have
G-universal maps. []

30.16 COROLLARY
If a set-valued functor G has a G-universal map for a singleton set, then G
preserves limits. []

This corollary can be considerably strengthened, as the following theorem
shows.

30.17 THEOREM
If a set-valued functor G: sf — Set has a G-universal map for at least one
non-empty set, B, then G preserves limits.

Proof: By Theorem 30.13, hom(B, _) - G is representable. Hence it pre-
serves limits. Since B is non-empty, iom(B, __) reflects limits (29.6). Hence G
must preserve limits. []

30.18 COROLLARY
Let of be a full subcategory of Set, containing at least one non-empty set.
Then the embedding functor E: s — Set preserves limits. []

Note that an analogue of Theorem 30.17 is not valid for functors that are
not set-valued. In particular, if G: Set — Top is the functor that sends each set
to the discrete space on that set, then each discrete space has a G-universal
map, but G does not preserve limits.

30.19 PROPOSITION
A functor G: s/ — Set has a left adjoint if and only if it is represented by an
sf-object A for which there exist arbitrary copowers 'A.
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Proof: G has a left adjoint if and only if each set 7 has a G-universal map
(27.3). Since each set I is isomorphic to the copower P of the singleton set P, it
follows from Lemma 26.9 that each set / has a G-universal map if and only if
P has a G-universal map (u, A) and A has arbitrary copowers ‘4. The character-
ization thus follows from Theorem 30.14. []

3020 COROLLARY
If o is cocomplete, then G: o/ — Set has a left adjoint if and only if G is
representable. )

The above corollary has a partial converse (see Exercise 31A).
The following theorem ties together several of the results of this section
and of the previous sections (for the case of set-valued functors).

30.21 THEOREM
Let G: & — Set be a functor. If of satisfies either of the following conditions
(i) or (ii), then the conditions (1) through (6) are equivalent:

(i) s is complete, well-powered, and has a coseparator.
(if) &7 is complete, well-powered, extremally co-(well-powered), and each set
extremally G-generates at most a set of pairwise non-isomorphic sf-objects.

(1) G preserces limits.

(2) G has a left adjoint.

(3) There is a G-universal map for each set.

(4) There is a G-universal map for at least one non-empty set.
(5) There is a G-universal map for the singleton set.

(6) G is representable. (]

30.22 EXAMPLES

(1) The category &’ of complete lattices is complete and well-powered, and the
obvious forgetful functor U: &f — Set is representable. However, no set having
more than two elements has a U-universal map.

(2) The category &/ of complete boolean algebras is complete, well-powered and
extremally co-(well-powered), and the obvious forgetful functor U: & — Set is
representable. However, no infinite set has a U-universal map (cf. Exercise 30G).
(3) There is a concrete category (&, U) that is complete, cocomplete, well-
powered, and co-(well-powered) such that U: of — Set preserves limits, but is
not representable. (See Exercise 28D.)

EXERCISES

30A. For each of the examples in 30.3, find a natural isomorphism
8: hom(A, _) = U (where in each case A is the object specified).
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30B. Show that for each category &/, the Yoneda lemma (30.6) actually estab-
lishes a natural isomorphism between the evaluation functor (15.7)

E: Set? x of —» Set
and the functor
N: Set” x of - Set
defined by:
N(G, A) = [hom(A, ), G]

NG, YONANg) = n(8(g ° ).

30C. Consider the full embedding E: &7°? —» [/, Set] of Theorem 30.8.

(a) Show that if 2 is the full subcategory of [/, Set] consisting of all representable
functors from &7 to Set, then [&, Set] is the *“colimit hull” of 4 in the sensc that for
each functor Fe Ob[s/, Set] there exists some functor D: € — [, Set] and some
sink ((k¢), F) such that for each C € Ob(%), D(C) € OKR) and ((k¢), F) = Colim D.
(b) Prove that E is a limit preserving functor, but in general is not colimit preserving.
(¢) Show that the full subcategory ¢ of [/, Set] consisting of all limit preserving
functors, is both complete and cocomplete.

(d) Show that the embedding E:.o/°" - € is both limit and colimit preserving and
that the *“‘colimit hull” of its image is all of €.

30D. Unicersal Points
Let G: o = Set be a functor. A pair (a, 4) is called a universal point of G provided
that A is an &/-object, a € G(A), and for any such pair (x, X) there is a unique /-
morphism f: A - X such that G(f)(a) = x.

(a) Show that if G: s/ —» Set, 4 € Ob(f), and Y’: G(A) - [hom(A, ), G ] is the
Yoneda function, then the following are equivalent:

(«) (a, A) is a universal point of G.

(B) (A, Y'(a)) is a representation of G.
(b) Show that if G: ¥ -+ B, A€ Ob(sf), Be Ob(#B), and u: B - G(A), then the
following are equivalent:

(a) (u, A) is a G-universal map for B.

(B) (u, A) is a universal point of hom(B, _) - G.
(c) Let G: o/ -+ Setand let F: 1 » Set be a functor whose value at the single object «
is the singleton set {p}. Show that the following are equivalent:

(x) (a, A) is a universal point of G.

(B) (s, /, A) is an initial object of the comma category (F, G), where

J:(p) = G(A)

is the function defined by f(p) = a (see 20D and 26H).

30E. Let (&, U) be a complete, well-powered, concrete category with the
property that U preserves limits. Show that if (#, A) is a U-universal map for X and
Y < X, then there exists a U-universal map (v, B) for ¥, and a morphism m: B - A
such that (B, m) is a subobject of A.

30F. Suppose that G: &/ — Set has a left adjoint F.
(a) Show that for each set /, there is a bijective function from the set G - F (/) to the
set {hom(I, )G, G].
(b) Tlustrate the above result for the case.o = Grp, G is the forgetful functor, and / is
a two-clement set.
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30G. Complete Boolean Algebras
Let (&7, U) be the concrete category of complete boolean algebras and complete
homomorphisms.
(a) Prove that.s/ is complete, well-powered, and extremally co-(well-powered).
(b) Prove that there exists a U-universal map for each finite set.
(c) Let X be a topological space. A subset 4 of X is called regular open provided that
int(clA) = A (where “int” designates “interior” and “cl” designates “‘closure™). Show
that the set R(X) of all regular open subsets of X is a complete boolean algebra with
respect to the following operations:

v M = int(cl( VM), for M < R(X)
AM = imt(nM), for @ # M < RX)
A = imt(X - A), for A€ R(X).

(d) (Solovay) Let K be an infinite cardinal. Let X be the set of all ordinals with car-
dinality less than K, considered as a discrete topological space. Let P = XN be the
topological product of countably many copies of X, with projections z,: XN - X.
Prove that the complete boolean algebra R(XN) is extremally U-generated by a countable
set. [Show first that R(X™N) is extremally U-generated by the family

{r; '@ |neN,ée X).
Secondly, show that R(X™N) is extremally U-generated by the countable set

{Am.n | m, ne N},
where
Amin = {x€ XN| 7,(x) < 7(0)}.]

(e) (Gaifman-Hales-Solovay) Prove that each infinite set extremally U-generates a
proper class of pairwise non-isomorphic &/-objects.
(d) Prove that.&/ is not cocomplete and that U has no left adjoint.
30H. Let (&, U) be the usual concrete category of (commutative) C*-algebras,
and let D: &/ = Set be the “unit disc functor™ that associates with each C*-algebra X
its unit disc
DX) = {x|xeX and [x| < 1}.

Prove that D is representable, but that U is not.

301. Dualities and Representability
Let (&, U) and (&, V) be concrete categories that are dually equivalent; i.c., there are
contravariant functors G: &/ — % and F: & — & such that

FoG=x 1y
and
GoFx g
Suppose that the &7-object A represents U and the &-object B represents V, and let
A = F(B)and B = G(A). Prove that:
@ U = V(B).
(b) VoG = homy(—, A)and Uo F = homgug(_, B).
1f, moreover, & has products, then show that
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(c) for each &/-object X there exists a monomorphism
niy: G(X) » BUXO
such that ¥V(my) is the embedding of

V(G(X)) = hom X, A)
into

homg (U(X), U(A)) = homg(U(X), V(B)) = (V(B)VX z V(BUD),

Compare these results with the examples in 10.6 and 14.18.

§31 FREE OBJECTS

31.1 DEFINITION

If G: o/ — Set is a set-valued functor and (1, A) is a G-universal map for
the set X, then A is called a G-free abject over X and the morphism u: X — G(A)
is called the insertion of the generators X into 4. We say that &/ has G-free objects
provided that for each set X there exists a G-free object.

31.2 EXAMPLES

If («#, U) is the concrete category of groups, then the U-free objects of &/
are exactly the free groups. Likewise, free R-modules, free rings, free monoids,
free semigroups, free lattices, and free boolean algebras arc exactly the U-free
objects, in the sense of the above definition, for the corresponding concrete
categories with forgetful functor U.

31.3 NOTATIONAL REMARK
Throughout the remainder of this section, we will assume that G: &/ — Set
is a functor, and we will simply use the term “free” rather than “G-free”.

31.4 PROPOSITION

(1) An o/-object is free over the empiy set provided that it is an initial object of
K

(2) An sl-object is free over a singleton set provided that it represents G.

(3) & has free objects if and only if G has a left adjoini.

(4) If at least one non-empty set has a free object, then G preserves limits. ]

In the preceding chapter we have seen that if (u, A) is any G-universal map,
then u extremally G-gencrates A (26.6). However, an insertion of the generators
u: X — G(A) need not be an injective function as the following simple example
shows: Let &/ be the full subcategory of Set whose objects are the singletons and
the empty set, and let G: o/ — Set be the embedding functor. Then &/ has free
objects, but for sets that have more than one clement, the insertion of the
generators is not an injective function. The following theorem shows, however,
that it is rarely the case that insertions of generators are not injective.
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315 THEOREM
If s contains at least one object A for which G(A) has more than one element,

then for each free object B, the insertion of the generators X <> G(B) is an
injective function.

Proof: If u(x) = u(y), then for all functions f: X — G(A), there is some
f: B — A such that f = G(f) o u; hence f(x) = f()). Since G(A) has at least
two elements, this implies that x = y. [

Every free R-module is known to be projective. A corresponding theorem
does not hold for arbitrary concrete categories. For example, the discrete
Hausdorff spaces are U-free, yet they are not projective in the concrete category
(Top,, U). A corresponding theorem will become true, however, if we modify
somewhat our definition of projectivity.

31.6 DEFINITION

Let & be a class of &/-morphisms. An &/-object P is called &-projective
provided that the functor hom(P, _): o/ — Set sends morphisms in & to
surjective functions.

If & is the class of all regular epimorphisms, then P is called regular-projective.
If & is the class of all extremal epimorphisms, then P is called extremal-projective.

If & is the class of all &/-morphisms f for which G(f) is surjective, then P is
called sur-projective.

31.7 EXAMPLE

If & is the class of all epimorphisms in &/, then P is §-projective if and only
if it is projective (cf. 12.14).
31.8 PROPOSITION

Each free object is sur-projective.

Proof: Let (u, A) be a G-universal map for X and let /24 - B and
g: C = B be o/-morphisms such that G(g) is surjective. Then, clearly, there
exists a function /1: X — G(C) such that the square

G(C)WG(B)

commutes.
Since (1, A) is a G-universal map for X, there exists a unique h: 4 —» C
with G(f) - v = h. Consequently
G(goh)ou = G(g)eGhyou = G(g)oh = G(f) = u,
so that g o h = £(26.6), i.e., hom(A, g}(h) = f. Hence, A is sur-projective. [
31.9 PROPOSITION

If of has free objects, then for each s/-object A there exists a free object Aand
amorphisme: A — A such that G(e) is a surjection. In other words, each sf-object
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is a surjective image of some free object. Furthermore, if G is faithful, then e can
be chosen so as to be an epimorphism.

Proof: Let (u, A) be a G-universal map for the set G(A). Then there exists a
morphism e: A = A such that the triangle

G ——G6D 4
o
lgua E G I{ ¢
v
G(A) A

commutcs. Since G(e) is a retraction, it must be a surjective function. If G is
faithful, it reflects epimorphisms, so that e must be an epimorphism. []

31.10 PROPOSITION

If s has free objects, then for each s/-object A, the following conditions are
equivalent :

(1) A is sur-projective.

(2) A is a “retract” of a free object; ie., there is some free object A and some
retraction r: A — A.

Proof: To see that (1) implies (2), recall that according to the previous
proposition (31.9) there is a free object A and a morphism e: A = A such that

G(e) is surjective. Consequently by (I) there exists a morphism f: 4 — A such
that the triangle

A

N
e
F
i IA
IRy
v
A

A—

commutes. Hence e is a retraction.

To sce that (2) implies (1), let A be a free object and let r: A->Abea
retraction. Then there is a morphism m with rem = 1,. Let f: A - B and
g: C — B be morphisms with G(g) surjective. Since A is sur-projective (31.8),
there exists a morphism f: A —» Csuchthatg o f = for. Consequentlyf = fom

A
/ llA
A

has the property that
y
l [
C B

gof=gefom=forem=yfol,=f 0O

—
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Now we will show that for any concrete category, each free object over a
non-empty set is a separator. First, however, we establish the following more
general result.

31.11 PROPOSITION )
If H:6 — 2 is faithful, (u, C) is an H-universal map for D, and D is a
separator for 2, then C is a separator for €.

I . .
Proof: Let A — B be a pair of ¥-morphisms such that for each %-
9
morphism &: C — A, fok = g k. Then for each A: C — A4, we have

H(f) o (H(k) < u) = H(g) > (H(K)  u).

Since (1, C) is an H-universal map for D, this implies that H(f) - k = H(g) - k,
for cach 2-morphism k: D — G(A). Since Disa separator for 2, it follows that
H(f) = H(g). Hence, since H is faithful, f = g. []

31.12 COROLLARY
If (o7, G) is concrete, then each free object over a non-empty set is a separator

Jorst. ]

Our next consideration is the question of whether or not non-isomorphic
sets must have non-isomorphic free objects. The example following 31.4 shows
that this is not always the case. Indeed, Exercises 31D and 321 show that it
may not even be true for “algebraic™ categories. However, in many cases it is
true, as the following proposition shows:

31.13 LEMMA

Suppose that s/ has an object A with | < card(G(A)) < No. Ifu: X - G(A)
is the insertion of the generators into the free object A over X and if g: Y — G(A)
G-generates A, then card X < card Y.

Proof: Letcard X =k, card Y = m, and card G(A) = n. Sinceg G-generates
A, we have

card(hom (A, A)) < card(homg, (Y, G(A))) = n™
Likewise, since (1, A) is a G-universal map for X, it follows that
card(hom (A, A)) = card(homg (X, G(A))) = n*.

Consequently n* < n™: so that since n is finite and greater than 1. we have
k<m [0

31.14 PROPOSITION

Suppose that of has an object A with 1 < card(G(A)) < N, and let A, and
A, be free over X, and X,, respectively. If 4 y and A, are isomorphic, then so are
X,and X,. [
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EXERCISES

31A. Suppose that &/ is complete, well-powered and co-(well-powered), and
that U; o/ = Set is faithful and representable. Prove that s/ is cocomplete if and only
if U has a left adjoint. [Use 23.17.]

31B. Subcategories Closed Under Certain Constructions 11
Let G: € - Set be a set-valued functor and for cach full subcategory & of €, let:

Pgf = 1the full subcategory of % whose objects are (the object part of) products of
s -objects.

Ss/ = the full subcategory of ¥ whose objects are (the object part of) subobjects of
sZ-objects.

Qs = the full subcategory of € whose objects are surjective images of »/-objects; i.e.,
all objects B for which there exists an s7-object 4 and an &/-morphism e: 4 - B
where G(e) is a surjective function.

Prove that:

(@) Q0 = Qo o .

(b) If € has products and G preserves them, then PQs? = QPsf.

(c) If ¥ has products and G preserves them, then QPsf is the smallest full subcategory
of € that contains & and is closed under the formation of products and surjective
images.

(d) If € has pullbacks and G preserves them, then SQf < QSf.

(e) If¥ has pullbacks and G preserves them, then @S5/ is the smallest full subcategory
of € that contains & and is closed under the formation of subobjects and surjective
images.

(6) 1f ¥ is complete and G preserves limits, then QSPsf is the smallest full subcategory
of € that contains & and is closed under the formation of products, subobjects, and
surjective images (see Exercise 23C).

31C. Prove that if &/ has coproducts and A is a free object in & over a one-
clement set, then B is a free object over an nt-element set if and only if B = ™A.

3ID. (Jonsson-Tarski)
Let &/ be the category that has objects all quadruples of the form (A, -, I, r), where A
is a sct, - is a binary operation on 4; i.e.,

A x A A,
and / and r are unary operations on A such that for all x, y € 4,
x- =% rx-N=y Ix)rx)=x;
and such that Mor(s/) consists of all functions

i A, - L) (4,51F)
where
A=A

Jx-») = f(x)=f(»)
JUE) = IF(x)
S = F(f(e)).
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Let U: .o/ - Set be the obvious forgetful functor. Prove that:

(1) & has U-free objects.
(2) (A, -, 1, r)is an &7-object if and only if

ctAx A A
is bijective, and
1= m,()"Y  r=m)?,
where
Ayl A x A= A
are the projection functions.
(3) Any two U-free objects of &/ over finite non-empty sets are isomorphic. [First
show that X is U-free over the set M & {x, y} implies that it is U-free over
Mu {x-ph]

§32 ALGEBRAIC CATEGORIES AND
ALGEBRAIC FUNCTORS

Several of the categories usually studied in algebra—such as SGrp, Mon,
Grp, R-Mod, Rng, R-Alg, BooAlg, and Lat—have many properties in common.
Because of this, there have been numerous attempts to study them simultaneously
(universal algebra) and to abstract the essence of their common properties via a
general concept of “algebraic category”.

At first it was thought that algebraic categories should be characterized
by the fact that they can be defined by means of finite ‘‘operations’ and *‘iden-
tities”. Later it was observed that ““finiteness™ was not really essential and that
categories such as a-complete lattices, a-complete boolean algebras, complete
atomic boolean algebras, and even compact Hausdorff spaces behave in many
respects like the algebraic categories mentioned above. Because of this, more
general concepts have evolved—either constructively by means of ‘“varietal
structures™ or “‘triples over Set” or, more recently. axiomatically. In this text
we will use the axiomatic approach.

As is easily seen, each of the above “‘algebraic’ categories is complete and
cocomplete, and for each there exists a naturally associated forgetful set-
valued functor U that has a left adjoint (i.e., for each set there exists a U-free
object). Moreover, in each case U preserves and reflects regular epimorphisms.
It is this last property (namely that each morphism, f, for which U(f) is sur-
jective. must be a regular epimorphism) that is typical for algebraic categories,
and which (in conjunction with the other properties mentioned above) causes
algebraic categories to behave so nicely.

Algebraic Categories

32.1 DEFINITION
A concrete category (&, U) is called algebraic provided that it satisfies the
following three conditions:
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(1) & has coequalizers.
(2) U has a left adjoint.
(3) U preserves and reflects regular epimorphisms.

32.2 EXAMPLES

(1) The following concrete categories are algebraic: Set, pSet, SGrp, Mon, Grp,
Rng, R-Mod. R-Alg, torsion-free abelian groups, Lat, z-complete lattices,
distributive lattices, BooAlg, x-complete boolean algebras, (commutative)
C*-algebras [together with the unit disc functor (30H)]. CompT,, compact
abelian groups, and zero-dimensional compact Hausdorfl spaces (see the
remark that follows).

(2) The following concrete categories are not algebraic:

(i) Top, POS, and Cat (for these, U does not reflect regular epimorphisms).

(ii) Field, abelian torsion groups, complete lattices, complete boolean
algebras and the “‘usual™ concrete category of (commutative) C*-algebras
(for these, U has no left adjoint).

For almost all of the examples in 32.2(1) it has already been established that
& is complete and has coequalizers and that the forgetful functor has a left
adjoint. It is also easy to see that in each case the forgetful functor preserves
regular epimorphisms and reflects isomorphisms. Thus, the following theorem
shows that for each, the forgetful functor reflects regular epimorphisms as well.

32.3 THEOREM

Let (o, U) be a concrete category that has pullbacks and coequalizers and
Jor which U preserves pullbacks and regular epimorphisms. Then U preserves and
reflects monomorphisms, s¢ is uniquely (regular epi, mono)-factorizable, and U
preserves these factorizations. If, in addition, U reflects isomorphisms, then U
reflects regular epimorphisms and thus also reflects the (regular epi, mono)-
Jactorizations.

Proof: Since U is faithful, it reflects monomorphisms (12.8) and since it
preserves pullbacks, it must preserve monomorphisms (24.5). Let / be an
&/-morphism, let (p, q) be the congruence relation of /. and let (g, G) be the
coequalizer of p and ¢. Then there exists a unique morphism m with f = nr - g.
Consider the following commutative diagram in Set.

U(p)

U(g)
4] Ulg) %m)‘

‘————)

\V

Since U preserves regular epimorphisms, U(g) is surjective. From the fact that
the outer and inner squares are pullback squares (since U preserves pullbacks),
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and the fact that the diagram commutes, it follows that U(m) is injective.
Since U reflects monomorphisms, m must be a monomorphism. Hence f =
mog is a (regular epi, mono)-factorization of f. Clearly, U preserves the
factorization and the factorization is unique (17.18). Now suppose that U
reflects isomorphisms and f is an &/-morphism for which U(f) is surjective.
Let f= moe be the (regular epi, mono)-factorization of f. Then since U
preserves monomorphisms, U(m) is bijective so that m must be an /-
isomorphism. Hence f must be a regular epimorphism. []

324 THEOREM
If a concrete category (s/, U) has the following properties:

(1) & is complete and U preserves limiis;

(2) U preserves regular epimorphisms and reflects isomorphisms;

(3) each set extremally U-generates at most a set of pairwise non-isomorphic
s-objects; and

(4) o is well-powered and extremally co-(well-powered);

then (&, U) must be algebraic.

Proof: Conditions (1), (3), and (4) imply that U has a left adjoint (28.9),
and conditions (1) and (4) imply that & has coequalizers (23.11). Hence by the
preceding Theorem (32.3) U must reflect regular epimorphisms. []

Actually, we shall see that a concrete category (&, U) is algebraic if and
only if it satisfies the four conditions of Theorem 32.4 (see 32.5, 32.10, and
32.12). Note especially that the non-algebraic categories Top, POS, and Top,
satisfy all of the conditions of the above theorem except for the property that U
reflects isomorphisms.

325 PROPOSITION
If (o, U) is algebraic, then U preserves and reflects monomorphisms and
isomorphisms.

Proof: Since U is a functor, it preserves isomorphisms; since it has a left
adjoint it preserves limits (and thus preserves monomorphisms (24.5)); and
since it is faithful, it reflects monomorphisms (12.8). By definition, U reflects
regular epimorphisms so that since a morphism is an isomorphism if and only
if it is a regular epimorphism and a monomorphism (16.16 dual), U must
reflect isomorphisms. []

32.6 COROLLARY
Let (&, U) be algebraic and let f be an sf-morphism. Then

(1) fis a monomorphism if and only if U(f) is injective.

(2) fis a regular epimorphism if and only if U(f) is surjective.
(3) [ is an isomorphism if and only if U(f) is bijective. []
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32.7 PROPOSITION

Let (o/, U) be algebraic, f A — C be an sf/-morphism, g: A - B be a
regular epimorphism in ¢, and h: U(B)y = U(C) be a function such that the
triangle

U(A)ﬂ)U(C)

U(g\ /
U(B)

commutes. Then there exists a unique s¢-morphism h: B — C such that U(h) = h.

Proof: Since g is a regular epimorphism, (g, B) must be the coequalizer
of some pair (p, ¢q) of of/-morphisms. Now

U(fop) = U(f) > U(p) = he U(g) - U(p)
hoU(g)e U(g) = U(f)- U(g) = U(f-q).

Since U is faithful, we have fo p = f- gq. Hence by the definition of coequalizer,
there exists a unique morphism h: B — C such that / = i o g. Since U(g) is an
epimorphism, U(h) - U(g) = U(f) = h> U(g) implies that U(h) = h. Unique-
ness follows from the fact that U is faithful. [
328 PROPOSITION

Let (of, U) be algebraic, (X, (g))) and (Y, (m))) be sources in s¢ such that
(U(Y), (U@m,))) is a mono-source in Set, and h: U(X) —» U(Y) be a function
such that U(g;)) = U(m,) o h for each i. Then there exists a unique s¢-morphism
h: X = Y such that U(h) = h.

Proof: Let (4, A) be a U-universal map for U(X). Then there exist /-
morphisms g and f such that the diagram
u(x)

N

U(X)*(‘/;!;)- U(A4) '&('[")')U( Y)

commutes. Thus
U(gieg)ou = Ulg) ° IU(X) =Um)oh = Umiof)ou,
so that since u U-generates A, it follows that

gicg = myof  foreach i
Now, for each i

Um)cheU(g) = U(gicg) = Um;of) = Uimy o U(S)

so that since (U(Y), (U(m,))) is a mono-source, it - U(g) = U(S). But U(g)is a
retraction, so that since U reflects regular epimorphisms, g must be a regular
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epimorphism. Hence f; g, and / satisfy the hypotheses of Proposition 32.7.
Consequently there is a unique &/-morphism / such that U(h) = h. [

329 COROLLARY
Let (s, U) be algebraic, f: A - C be an s/-morphism, m: B — C be a
monomorphism in s/, and h: U(A) — U(B) be a function such that the triangle

un
UA)—U(C)

AN
h\ Utm)

U(B)
commutes. Then there exists a unique sf-morphismh: A — B such that U(h) = h.

Proof: Since U preserves monomorphisms, (U(B), (Um)) is a mono-source.
Apply the proposition. []

32.10 PROPOSITION
Every algebraic category is well-powered and regular co-(well-powered).

Proof: We already know that every concrete category is regular co-(well-
powered) (16N). To show that an algebraic category (&, U) is well-powered,
let (B, h) and (C, g) be subobjects of an /-object A, such that (U(B), U(h))
and (U(C), U(g)) are isomorphic subobjects of U(A4). By the above corollary,
(B, h) and (C, g) must be isomorphic subobjects of 4. Thus since Set is well-
powered and U preserves monomorphisms, &/ must be well-powered. []

32.11 PROPOSITION
If (o, U) is algebraic, then U reflects limits.

Proof: Let D: I — s be a functor and let (L, (/))) be a source in & such
that (U(L), (U(1))) is a limit of U< D. Since U is faithful, (L, (/;)) must be a
natural source for D. If (X, (g;)) is some natural source for D, then (U(X), (U(g,)))
is a natural source for Uo D, so that there exists a unique function
h: U(X) —» U(L) such that U(g)) = U(l)) < h, for each i. Since (U(L), (U(1))) is
a limit, it is a mono-source. Hence by Proposition 32.8 there is a unique /-
morphism ki such that U(k) = h; i.e., (since U is faithful) such that for each
i,g; = 1; o h. Consequently, (L, (/;)) is a limit of D. []

32.12 THEOREM
If (o, U) is algebraic, then sf is complete and U preserves and reflects limits.

Proof: Since U has a left adjoint, it preserves limits, and by the above
proposition (32.11) it also reflects them. Thus we need only show that & is
complete.

Let D: I — & be a small functor, let (L, ({,)) be a limit of U~ D, and let
(u, A) be a U-universal map for L. Then for each i there is a unique morphism
1;: A —» D(i) such that U(1)) o u = I;. Now for each I-morphism m: i — j, the
equality

UQpou=1; = (UeDYm)ol; = (Ue D)m)o UQ)eu= UDm)ol)ou
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and the fact that u U-generates A (26.6) implies that1; = D(m) <1,

(U°D) (j) D(j)

Consequently, (4, (1)) is a natural source for D, so that (U(A), @) is a
natural source for U« D. Hence there exists a unique function f: U(4) = L
such that for each i, UQ,) = I; o f. Since (L, (/})) is a limit, it is a mono-source, so
that the equations

Lofou=Ul)cu=1=1l°l,
imply that fou = I,. Thus f is a surjection and, as such, is a regular epi-
morphism. Therefore (f, L) must be the coequalizer of some pair of functions
Cﬁ; U(A). Let (v, B) be a U-universal map for C. Then there exist unique
mo:'phisms F, §: B = A such that

r=U{F)ov and s=U@E)ov.
Let (g, Q) = Coeq(F, 5). Then the equality
U@)er = U(q)e (U(F)ov) = U(geF)ov
= UlgeHov = Ulg)o (UG v) = Ug)es

implies that there is a unique function &: L — U(Q) with U(g) = h o f. Since
U(q) is surjective, h must be surjective also. Furthermore, for each i,

UlieP)ov = Ul)or =ljofor =lofos= Ul)os = Ul;8) e

This, together with the fact that » U-generates B, implies that J;oF = 1,05.
Consequently, for each i there exists a unique morphism ¢;: @ — D(i) such that
li=gioq. v

C—U(B)

\\“"‘E) ]UG)
S
" v

L——— U(d) — L
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Now
Ugdohef=Ug)e  Uqg) = Ulg;cq) = UQ) = 1,0,

so that since f is a surjection, U(g;) - i = 1, for each i. This provides a factoriza-
tion of the (extremal mono)-source (L, (/})) (19.13), where 4 is an epimorphism.
Hence £ is an isomorphism. Thus (U(Q), (U(g;))) is a limit of U < D. Since U
reflects limits (32.11), (@, (q,)) must be a limit of D. [

32.13 COROLLARY
Each algebraic category (<7, U) is uniquely (reqular epi, mono)-factorizable,
and U preserves and reflects these factorizations.

Proof: Immediate from Theorem 32.3. [

32.14 THEOREM
Every algebraic category is cocomplete.

Proof: If (o, U) is algebraic, then & has coequalizers. Thus it remains to
be shown that &/ has coproducts (23.8). To do this, it is sufficient to show that
for each small discrete category I, the “‘constant functor”™ functor G: & — &'
has a left adjoint (261). It is easily seen that G preserves limits (28F(a)) so that
since & is complete and well-powered, it suffices to show that each &/’-object
extremally G-generates at most a set of pairwise non-isomorphic &/-objects
(28.9); i.e., that each /-indexed family of «/-objects (A4;), is the domain of at
most a set of pairwise non-isomorphic (extremal epi)-sinks.

Let ((n;), LHU(A))) be the coproduct in Set of the family (U(A4))),;, and let
(u, A) be a U-universal map for LIU(4;). We claim that if (4; 25 B, B) is an
(extremal epi)-sink with domain (4,),, then B must be (the object part of) a
regular quotient of A. (There is at most a set of such pairwise non-isomorphic
regular quotients, since & is regular co-(well-powered).) Since ((yt;), LIU(A))) is
a coproduct, there is a unique function g such that the top left triangle in the
following diagram commutes:

U(A) u@) U(B)
i UlnD
SIS (e
Ule)

Since (i, A) is a U-universal map for L U(A)), there exists a unique &/-morphism
g: A = B such that the middle triangle commutes. It remains to be shown that
(g, B) is a regular quotient of A.
Let )
AL B=4CcB
be a (regular epi, mono)-factorization of §. Then the commutativity of the
above diagram and Corollary 32.9 imply that for each i there exists a unique
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&f-morphism h;: A; = C with U(h;) = U(e) o u o p;. Hence since U is faithful,
(g); = m < (h;); is a factorization of the sink ((g;);, B). But since m is a mono-
morphism and ((g;);, B) is an (extremal epi)-sink, , must be an isomorphism.
Thus § must be a regular epimorphism. []

Algebraic Functors

If (7, U)is an algebraic category, then by definition the forgetful functor U
preserves and reflects regular epimorphisms and has a left adjoint. We will
now see that each functor between algebraic categories that “forgets part of the
structure”, such as the forgetful functor from Rng to Ab (“‘forgetting multi-
plication™), from Rng to Mon (*‘forgettingaddition™), or from compact topological
groups to Grp (“forgetting the topology™), has the same properties (32.20). On
the other hand it will be shown that each functor that has these properties is
essentially one that “‘forgets part of the structure”; i.e., is one that is faithful
(32.17). It is this concept of an “algebraic functor™ that plays a central role in
categorically distinguishing algebra from other areas of mathematics.

32.15 DEFINITION
A functor is called an algebraic functor provided that it has a left adjoint
and preserves and reflects regular epimorphisms.

32.16 PROPOSITION
The composition of algebraic functors is algebraic.

Proof: Recall that the composition of functors that have left adjoints has a
left adjoint (27.8). [}

32.17 PROPOSITION
Each algebraic functor is faithful.

5.
Proof: Suppose that G: o — & is algebraicand 4 —3 A are &/-morphisms

3
such that G(f) = G(g). Let (u, A’) be a G-universal map for G(A4). Then there
is a unique &/-morphism s: A’ —» A such that the triangle

’

G(4) —> G(A")

A

!

! !
N
v v

A

GA

commutes.
Hence since v G-gencrates A’, the equality

G(feh)ycu=G(geoh)ou

implies that fo & = g < &. Since G(h) is a retraction, it is a regular epimorphism
(16.15 dual), so that since G reflects regular epimorphisms, # must be an epi-
morphism; hence f = g. []
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32.18 PROPOSITION
Each algebraic functor

(1) preserves and reflects monomorphisms ;
(2) preserves and reflects isomorphisms;
(3) preserves and reflects (regular epi, mono)-factorizations. []
32.19 PROPOSITION
If o has coequalizers and if U: &f — Set, then the following are equivalent :
(1) (&, U) is an algebraic category.
(2) U is an algebraic functor. {}
3220 THEOREM
If (o, V) and (B, V) are algebraic categories and G: s/ — % is any

Junctor such that the triangle
R4 -—G———> B
l\ /
]

Set
commutes, then G is algebraic.

Proof: Since U and V preserve and reflect regular epimorphisms and limits,
G must do likewise. Thus we need only show that G has a left adjoint, and to do
this it is sufficient to show that each #-object, B, extremally G-generates at most
a set of pairwise non-isomorphic s/-objects (28.9). Let (u, A) be a U-universal
map for V(B) and let g: B — G(A) extremally G-generate A. Since & is regular
co-(well-powered), it is sufficient to show that for some morphism g, (g, 4) is a
regular quotient object of 4. By the definition of universal map, there exists a

unique /-morphism g: A — 4 such that V(g) = U@)ou. Let 4 23 4 =

A A’ 25 A be the (regular epi, mono)-factorization of g (32.13).

V(B) ————>U(A) = (V>G)(A)
(VeG)le)

V(g) U(g) (V°G)(Al)
(VeoG)m)
U(A)= (V°G)(4)
By Corollary 32.9, there exists a unique #-morphism /i: B - G(A’) such that
V(h) = (V < G)e) < u. Since V is faithful, this implies that
B G(A) = BL G4y &2 G(A).
Since g extremally G-generates A, this implies that m is an isomorphism.
Hence § must be a regular epimorphism. []

Note the similarity between this theorem and Theorem 28.12. Since
algebraic categories need not be co-(well-powered), the above theorem is not a
special case of the earlier one.
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Above, algebraic categories have been defined “‘externally”, i.e., as particular
concrete categories. The next theorem gives an “‘internal” description by char-
acterizing those (complete and cocomplete) categories &/ for which there exists
a set-valued functor U such that (&, U) is algebraic. Since any such functor
must be representable (30.20), this amounts to characterizing those &/-objects A
for which hom(A, __): &f — Set is algebraic.

32.21 THEOREM

If ¢ is complete and cocomplete, and if A is an sf-object, then the following
are equivalent:

(1) hom(A, ) is an algebraic functor.

Q) (7, hom(A, __)) is an algebraic category.

(3) A is a regular separator and is regular-projective.
(4) A is an extremal separator and is regular-projective.

Proof:

(1) = (2). Immediate from Proposition 32.19.

(2) = (3). Let the functor hom(A, —) be denoted by U. Since U preserves
regular epimorphisms, A is regular projective (31.6). Furthermore, each
s7-object is a U-surjective image of some U-free object (31.9); i.e., of some
copower of A (31C). Since U reflects regular epimorphisms, 4 must be a regular
separator (19.7 dual).

(3) = (4). Immediate from the fact that each regular separator must be an
extremal separator.

(4) = (I). Since o is cocomplete, U = hom(A, ) has a left adjoint (30.20),
and since A is regular-projective, U preserves regular epimorphisms (31.6).
Thus it remains to be shown that U reflects regular epimorphisms. Suppose that
S+ X = Y is an &/-morphism such that hom(A, __)(f) is surjective. Let

YLy=x5Sz2y
be the (regular epi, mono)-factorization of f(32.13). Then
hom(A, _Y(m): hom(A, Z) — hom(A, Y)

must be surjective. Thus for each g € hiom(A, Y) there is some f, € hom(A, Z)
such that

g = hom(A, m)(f;) = mo [,

Since A is an extremal separator, (hom(A. Y), Y) is an (extremal epi)-sink (19E).
Thus since m is a monomorphism, it must be an isomorphism. Hence fis a
regular epimorphism. []

32.22 COROLLARY
If (o, U) is an algebraic category and A is a U-free object, then hom(A, )
is an algebraic functor.

Proof: Since each free object is sur-projective (31.8) and since U preserves
regular epimorphisms, each free object must be regular projective. Also it is
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easily seen that each o/-object is a U-surjective image of some copower of A.
Since U reflects regular epimorphisms, this implies that 4 is a regular
separator. [}

32,23 COROLLARY

If G. of = B where B is complete and cocomplete and if B is a B-object
that is a regular separator, is regular-projective, and has a G-universal map; then
G preserves limits.

Proof: Since hom(B, ) is algebraic, it reflects limits (32.11), and since
hom(B, _) o G is representable (30.13), it preserves limits. Hence G must preserve
limits. (J
32.24 COROLLARY

If G: of — Set and if B is a non-empty set that has a G-universal map, then
- G preserves limits. [] (Cf. Theorem 30.17.)

3225 COROLLARY

Let s/ be a full subcategory of Set, containing at least one non-empty set.
Then the embedding functor E: s/ — Set preserves limits. [] (Cf. Corollary
30.18.)

EXERCISES

32A. Suppose that & is a (regular epi, mono)-factorizable category and that
U.of -+ B preserves and reflects monomorphisms. Prove that U reflects regular
epimorphisms if and only if it reflects isomorphisms.

32B. Prove that in any algebraic category the regular epimorphisms and the
extremal epimorphisms coincide.

32C. Prove that if (&7, U) is algebraic, my: 4y = A and m,y: Ay, -+ A are
&/-morphisms, g,: X — U(A4,) and g5: X — U(A,) are functions such that

Umy) =g, = Uim,) < g,

g, extremally U-generates A,, and m, is a monomorphism, then there exists a unique
s/-morphism f: 4, — A, such that the diagram

g
X——— U4y

9{ o | uomy
&
U(A,) ———>U(A)
Ulm,)
commutes.

32D. Prove that if (&, U) is algebraic, then for each function f: X = U(A), the
pair (f, A) has an essentially unique (extremal U-generating, mono)-factorization.
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32E. Prove that if (&, U) is an algebraic category and B is ans/-object, then Bis
regular-projective if and only if it is a retract of a U-free object.

32F. Prove that in any algebraic category the puliback of a regular epimorphism
is a regular cpimorphism.

32G. Finitary Algebraic Categories
(a) For any algebraic category (s, U) [= (&, hom(A, _))], show that the following
conditions are equivalent:

(i) (&, U) is finitary (sce 22E).

(ii) If (f;, L) is a direct limit, and all the /;'s are monomorphisms, then each
morphism /> B — L from a finitely generated s object, B, into L can be factored
through one of the /;'s.

(iii) If B is a finitely generated o/-object, then for each morphism /= B -+ /4 there
exists a finite subset J of 7 such that f can be factored through the natural
injection pf: 74 — 14,

(iv) A is “abstractly finite”, i.c., for each morphism f: 4 -» /4 there exists a
finite subset J of I such that f can be factored through the natural injection
#hilad =14,

(v) If Bis ans/-object and M is a subset of U(B) that extremally U-generates B,
and if (By), is the family of all subalgebras of B that are extremally U-generated
by finite subsets M; of M, then {U(B)) | i € I} covers U(B).

(vi} If ((k)), K) is a direct limit in s, Bis an s/-object, and /: U(K) -» U(B)isa
function such that for each i there exists a morphism f; with U(f}) = fo (U(k))
then there exists a morphism j: L = B with U(f) = /.

(b) In the case that &7 is connected, show that the above conditions are equivalent to:

(**) If B is a finitely generated /-object, then for each morphism f: B — 11 A,

I

there exists a finite subset K of 7 such that f can be factored through the
natural injection:
w11 A; = 11 A,
I3 1

(c) Show that if (&, U) is a finitary algebraic category, then cach &/-object 4 is a
direct limit of those subobjects of A that are extremally U-generated by finite sets,
(d) Show that the category of zero-dimensional compact Hausdorff spaces is algebraic,
but not finitary.

32H. The Dual of the Category of Sets
Let 2: Set®” —+ Set be the power-set functor defined by:
PX)y={A| A< X}
2(x L v)(4) = f1[4).
(a) Prove that 2 is faithful.
(b) Prove that 2 has a left adjoint. [For cach set X, define u: X - P(P(X)) by:
x) = {A|xe A < X},

and show that (4, (X)) is 2 Z-universal map for X.]

(c) Prove that £ preserves and reflects regular epimorphisms.

(d) Show that (Set®”, 2) is an algebraic category.

(e) Prove that the dual of any concretizable category is concretizable (cf. Exercise 12L).
(f) Determinewhether or not the dual of each “algebrizable® category is “algebrizable™,
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() Let (&, U) be the concrete category of complete atomic boolean algebras and
complete boolecan homomorphisms (see Exercise 14H). Prove that the functor
G: Set°? - of defined by:

G(X) = the complete atomic boolean algebra of subsets of X.

G L YY) = -1 [4]
is an equivalence of categories.
(h) Prove that the triangle

G
Sett——>./

W%

Set

commutes, and conclude that (&7, U) is algebraic.

(i) Construct a functor F: &/ — Set°” and natural isomorphisms # and & such that
(G, F, n, &) is an equivalence situation.

(j) Prove that each set is an inverse limit of finite sets.

(k) Prove that each «f-object is a direct limit of s/-objects each of which is extremally
U-generated by a finite set. ’

() Prove that (&, U) is not finitary.

321. Prove that the category (&, U) described in Exercise 31D is algebraic.

32]. Let & be the category of abelian torsion groups, and let U: s/ - Set be
the forgetful functor. Prove that:

(1) & is complete and cocomplete.

(2) U preserves finite limits.

(3) U preserves and reflects regular epimorphisms.
(4) U reflects congruence-relations.

(5) U does not preserve products,

32K. Let (&7, U) be the concrete category of compact Hausdorff spaces, and
let A be an &7/-object. Prove that
(a) hom(A, ) reflects regular epimorphisms if and only if U(A) # (.
(b) hom(A, ) is algebraic if and only if U(4) # (& and A is extremally disconnected
(i.e., int(cl(int B)) = cl(int B) for each subset B of A).

32L. Let (&, U) be the concrete category of abelian groups, let & be the full
subcategory of ¥ whose objects are those groups that can be embedded into products
of finite abelian groups, let E: #~ & denote the embedding functor, and let V' =
Uo E: @ - Set denote the forgetful functor. Prove that
(a) (4, V) is algebraic.
(b) (B, V) is finitary.
(c) (8, V) is not strongly finitary. [Hint: Q/Z is a direct limit in &/ of its finite sub-
groups, but does not belong to & since each homomorphic image of Q/Z is divisible. ]



