VII

Adjoint Situations

The slogan is ““Adjoint functors arise everywhere”.

S. Mac Lanef

In Chapter I we claimed that category theory allows one to make precise the
notion of “universality”. In this chapter—the most important of the text—we
will show why this is so. Here we investigate adjoint situations—situations
occurring so frequently and in so many diverse areas of mathematics that they
are regarded as perhaps the most useful of all categorical notions.

§26 UNIVERSAL MAPS

The following well-known example motivates our definition of universal maps:

Let G: Grp — Set be the forgetful (i.e., “grounding™) functor, and let B be a
set. Then there exists a group Fjp (called the ““free group on B") and a function
ug. B - G(Fp) such that for any group H and any function f: B —» G(H),
there exists a unique group homomorphism f: F; - H such that the triangle

i
B—HPG(FB) ’:H
[} ]
1 1
p Gy AT
R
G(H) H

commutes.

1 From Categories for the Working Mathematician.
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26.1 DEFINITION

Let G: o —+ # be a functor and let Be Ob(#). A pair (4, A) with
A € Ob(s7y and u: B —» G(A) is called a universal map for B with respect to G
(or a G-universal map for B) provided that for each A4’ € Ob(<«’) and each
f: B - G(A’) there exists a unique s/-morphism f: 4 — A4’ such that the triangle

B—" G (4) A

p LG
v
G (4"

|
:
[}
1
1
v
AI

commutes.

pUALLY: If F: o/ — 2 is a functor and B € Ob(8), then a pair (4, u) is
called a co-universal map for B with respect to F (or an F-(co-universal) map for B)
provided that (#, A)isa universal map for B with respect to F°7; o/°F — %°7;i.e.,
provided that u: F(4) —» B and for each «/-object A’ and each Z-morphism
J: F(A') = B, there exists a unique morphism f: 4’ = A such that the triangle

/?I F(AI)
7; F(T)i 4

v oo

A F(A)— B

commutes.

26.2 EXAMPLES

Motivated by Theorems A, B, C, and D of Chapter I, we give three major
varieties of examples of universal maps:

(1) Universal maps for forgetful functors; free objects
(a) Forgetful functors to Set

Let (<, U) be any of the concrete categories in the following table. Then
for each set B there exists a U-universal map (ug, Ap). In the table we list

(#, U) Ag
Set the set B
SGrp the free semigroup generated by B
Grp the free group generated by B
R-Mod the free R-module generated by B
R-Alg the free R-algebra generated by B
commutative rings  the polynomial ring Z[B] over Z with set of indeter-
minants B
Top the discrete space with underlying set B
POS the “‘trivial” partially ordered set on B (i.c., the order is
cquality) _
CompT, the Stone-Cech compactification of the discrete space

with underlying sct B
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only Ag, since in each case ug: B = U(Ag) is the obvious inclusion of B
into the underlying set of Az The objects A, are usually called *‘free
objects’ (more precisely ** U-free objects™) and the functions up: B — U(Ap)
are often called “insertions of the generators™.

Of special interest are the “‘free objects with one generator”, i.e., the
universal maps (ug, Ay) for a singleton set B = {a}. In this case ug just
labels one distinguished element (“the generator™) in the underlying set
of Ag.

U-free object with

(o, U) Generator this singleton

‘“‘generator”

SGrp 1 (N-{0}, +)
Mon 1 (N, +)
Grp 1 (Z, +)
Ab 1 (Z, +)
Rng X Z(X]
commutative X Z[x]

rings

1
a
N
0

BooAlg a a

(b) Other forgetful functors

If G: Rng — Mon is the functor which “‘forgets addition’ and sends each
ring (R, +, -, 1) to its multiplicative monoid (R, -, 1), then for each
monoid B there is a G-universal map (uy, 45), where Ay is the monoid
ring Z[B] of B over the additive group (Z, +), and wu, is the obvious
embedding. Likewise if H: Rng — Ab is the functor that “forgets multi-
plication” and sends each ring (R, +, -, 1) to the abelian group (R, +),
then for each abelian group B there exists an H-universal map (up, A;)
where Ay is the tensor ring over B and wup is the obvious embedding.

(2) Universal maps for inclusion funciors

If o is a subcategory of @, E: o — # is the inclusion functor, and B is a
H#-object, then (ug, Ag) is called an «/-reflection of B provided that it is an
E-universal map for B. Reflections are so abundant that they deserve special
attention (see Chapter X). In each of the examples listed below, & is a full
subcategory of # such that each #-object B has an «/-reflection (ug, Ap).
We list only A since the morphism wy: B — A, is always obvious. The examples
are arranged in several groups according to the type of construction involved
for forming A,.



180

Adjoint Situations Chap. VIl

(a) “Completions™

N4 % Ag
complete metric spaces metric spaces (and the metric completion of B
uniformly continuous
maps)
complete uniform uniform spaces (and the uniform completion
spaces uniformly continuous of B
maps)
CompT, CRegT; the Stone-Cech
compactification, 8B, of B
realcompact CRegT, the Hewitt realcompacti-
Hausdorft spaces fication, vB, of B
zero-dimensional zero-dimensional the Banaschewski zero-
compact Hausdorff Hausdorff spaces dimensional compacti-
spaces fication, {B, of B
BanSp, NLinSp the completion of the

normed linear space B

Ab cancellative abelian the group of quotients of B

semigroups
Field integral domains and the field of quotients of B
injective ring
homomorphisms
complete partially- partially-ordered sets the order-completion of Bt
ordered sets (and sup-preserving
functions)

t Theorder-completionof B is the subset of the partially-ordered set (P(B), < ) consisting
of all those subsets 4 of B which satisfy the following two conditions:

(1) xe Bac A,and x £ a= x€ A
) X © A= supp X€ A.

This completion is in general different from the well-known MacNeille completion.
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(b) Quotients formed by “‘factoring out™ subobjects

K- 4 B Ap
Ab " Grp B/B’' (where B’ is the
commutator subgroup of
B)
torsion-free abelian Ab B/ B (where B is the
groups torsion subgroup of B)
Ab™ (= abelian Ab BuB
groups G with nG = 0)
reduced rings (no commutative rings B[r(B) (where r(B) =
nilpotent elements {x ] x € B such that there
except 0) is some # € N with
x* = 0} is the nilradical
of B)
(c) “IHdentifications”
K4 2 Ap
POS quasi-ordered sets (and Bf~ (where ~ is the

equivalence relation on B
defined by & ~ b’ if and
onlyif b < & and

b = b)

monotone functions)

B[~ (where ~ is the
equivalence relation on B
defined by & ~ b’ if

and only if b € {6}~ and
b e {b}")

To topological spaces  Top

pseudo-metric spaces Bf~ {where ~ is the
equivalence relation on B
defined by & ~ &’ if and

onlyifd(b, ') = 0

metric spaces

(d) “Moedifications” of structure on underlying sets

K4 B Ap

regular topological spaces Top the regular modification of B

locally convex linear LinTop the locally convex modification
topological spaces of B
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(3) Universal maps for internal Hom-functors

For the categories &/ listed below, let Hom(C, _): of — o be the internal
Hom-functor with respect to the &/-object C, and let B € Ob(f). Then (ug, 4,)
is a universal map for B with respect to Hom(C, ), where Ay and uy are as
defined in the table that follows.

X4 Ag ug: B — Hom(C, Ap)
Set BxC (ug(®))(c) = (b, ©)
R-Mod
=b®c

(where R is commutative) B®; C (ug(b))c)

Top (where C is locally

compact Hausdorff) BxC (ug(b)Xc) = (b, ©)
pTop (where C is locally BAC the distin-
.compact Hausdorff)t (smash product) guished point, if
(ug(D))(c) =< (b, ¢) is in the
wedge of Band C;
(b, ¢), otherwise
Cator €A T B xC where (ug(b))(c) = (b, ¢), for

each b € Ob(B); and if

m: b — b, ug(m): ug(b) — ug(b’)
is the natural trans-

formation defined by:

ug(m)c = (m,1¢)

locally convex normed linear
spaces B®C where (ug(b)(c) = b® ¢

t If, for this example, one chooses the circle ' for C, then Hom(C, B) is called the loop space
of Band B A C is called the suspension of 5.

(4) Co-universal maps

In each of the following examples E: o/ & 2 is the inclusion functor, B is a
B-object, and (Ag, up) is an E-(co-universal) map for B (where ug: E(Ag) - B
is the “‘obvious’ morphism).



Sec. 26 Universal Maps 183

abelian torsion groups Ab the torsion subgroup of B

Ab™ (see (2)b) Ab the subgroup of B composed of
all elements x of B withnx = 0

nilrings commutative the nilradical of B

rings

locally connected spaces Top the “locally connected
refinement’’ of B

compactly generated spaces Top the “compactly generated
refinement” of B

finitely-generated spaces Top the topological space whose
underlying set is that of B and
whose open sets are the
intersections of open sets in B

trivially partially-ordered sets POS the trivial partially-ordered set

with the same underlying
set as B

It is clear that the preceding examples (1)-(4) correspond to many diverse
and important classical constructions in mathematics. Moreover, it can be
shown that colimits (resp. limits) of functors D: I — o can be interpreted as
G-universal maps (resp. G-(co-universal maps)) relative to a suitable functor
G: o — o' (see Exercise 26I). The fact that all of these constructions can be
described in essentially the same way once again underscores the significance
and usefulness of categorical language. It also clearly classifies the notion of
universal maps (and as we shall see later, adjoint situations) as an extremely
important mathematical concept. Later (§28) we shall also see that most of the
above constructions can actually be accomplished in essentially the same way;
i.e., that there are very general theorems that yield most of the above examples
as special cases.

Next we introduce the concept of *‘generation”, which is a generalization of
some earlier notions (see examples 26.4) and which will be investigated more
thoroughly in later sections.
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26.3 DEFINITION
Let G: o — # be a functor.

(1) A morphism g: B — G(A) is said to G-generate 4 provided that whenever
A r: A’ are o/-morphisms such that G(r)c g = G(s) o g, then r = s.

3
(2) A morphism g: B - G(A) is said to extremally G-generate A provided that
(i) it G-generates A, and
(ii) (Extremal condition): whenever there is an »/-monomorphism m with
codomain A and a #-morphism f such that g = G(m) < f, then m must be
an isomorphism.

(3) A B-object Bis said to G-generate (resp. extremally G-generate) the s/-object
A provided that there is some Z-morphism g: B — G(A) that G-gencrates
(resp. extremally G-generates) A.

26.4 EXAMPLES

(1) If G: & — o is the identity functor, then g: B — A G-generates A if and
only if g is an epimorphism; g extremally G-generates A if and only if g is an
extremal epimorphism.

(2) If Iis a discrete category and G: & — &/ is the “constant functor” functor
(15.8), then (f;: A; = A),; G-generates A4 if and only if (f;, A) is an epi-sink in o ;
and (f;); extremally G-generates A if and only if (f;, A) is an (extremal epi)-sink
in&/ (19.1).

(3) Let (&7, U) be any one of the concrete categorics Grp, R-Mod, Lat, BooAlg,
SGrp, Mon, or Rng. If g: B — U(A) is a function from a set B into the under-
lying set U(A) of an «/-object A, then g extremally generates A4 if and only if
g[B] “‘generates A” in the algebraic sense; i.e., provided that 4 does not contain
a proper subobject whose underlying set contains g 8]. In the case of groups
and R-modules, whenever g: B — U(A) generates A, it also extremally generates
A. This is not the case for semigroups, monoids, and rings. In these cases,
g: B — U(A) generates A if and only if the embedding e: C — A of the sub-
object C of A, generated (in the algebraic sense) by g[ B], is an epimorphism.
[These examples motivate our use of the term “‘generates™.]

(4) Let (&, U) be the concrete category Top (resp. Top,). If g: B —» U(A) is a
function from a set B into the underlying set of a space (resp. Hausdorff space)
A, then g gencrates A if and only if it is surjective (resp. g[ B] is dense in A4);
and it extremally generates A if and only if it is surjective and A is a discrete
space.

26.5 PROPOSITION

If &/ has equalizers and G: s/ — B preserves them, then a B-morphism
g: B = G(A) extremally G-generates A if it satisfies the extremal condition (ii) of
Definition 26.3(2). (Cf. 17.14 and 19.4.)

Proof: We need only show that g G-generates 4. Suppose that 4 _L*_, A
s
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are &/-morphisms such that G(r) o g = G(s) o g. Let (K, k) = Equr, s). Then k£
is a monomorphism and since G preserves equalizers,

(G(K), G(k)) = Equ(G(r), G(s)).

Thus by the definition of equalizer, there is a morphism /t: B — G(X) such that
g = G(k) o h. Hence by the extremal condition k is an isomorphism, so that

r=s U

26.6 PROPOSITION
If (u, A) is @ G-universal map for B, then u extremally G-generates A.

Proof: If s and 1 are &/-morphisms such that G(s) o « = G(¢) o u, then by the
definition of universal maps there is a unique morphism x such that G(x) o u
is G(s)ou. Hence x = s = ¢,

B———G(4) 4
{

G{s)ou G| o E X
'

G(A4) A

Thus 1 G-gencrates A.

To show the extremal condition, suppose that there is a B-morphism fand
an &/-monomorphism m with codomain A such that ¥ = G(m) o /. By the
definition of universality there is a morphism j such that the diagram

B———>G(4) A
' i
] _ 1_
/ LG(7) {7
v v
G(4) A
commutes.
Hence the diagram
B - — G(A4) A
\ G(,Cy E
G(A') G(mof) Emofor 14
Qﬂ i
¢
G(A) A

also commutes. Consequently by the uniqueness condition in the definition of
universal maps m o f = 1,. Thus m is a retraction and a monomorphism; i.e., an
isomorphism. [
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26.7 PROPOSITION .

Universal maps are essentially unique; ie., if G:s/ —~ B and each of
(u, A) and (i, A') is a G-universal map for some B € Ob(2B), then there is a unique
isomorphism f: A — A’ such that the triangle

B———>G(4) A
: :
o i G(/f) i /
v v
G4 A

commutes.

Proof: By the definition of universal map there are unique morphisms
f: A= A and g: A’ — A such that the diagram
G(A)

n /
Gl

BG4 Glgof)
Glg)
\\
G(4)
commutes. But so does the triangle

G(A)
B G(l4)

G(4)
Thus, since 1 G-generates A (26.6), it follows that 1, = g o f. Similarly one can
show that 1, = fo g. Consequently fis an isomorphism. []
268 LEMMA
If G:sf - B, B,, B, € Ob(@B), and (u;, A)) is a G-universal map for B,

i = 1,2; then for each morphism f: B, — B, there exists a unique morphism
J: Ay = A, such that the square

A
i P
! LG i 7
3
v v
B——>G(4) A

commutes. [

If a functor G: & — & has the property that each %-object has a G-
universal map, then the preceding lemma will enable us to define a functor
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F: B — s/ (see Theorem 26.11). The next somewhat technical lemma will
enable us (among other things) to prove that F preserves colimits.

26.9 LEMMA

Let D: 6 — B and G: 4 —» B be functors, and for each C e Ob(%) let
(¢, Ac) be a G-universal map for D(C).

(1) Then there exists a unique functor F: 6 — s such that
(i) for each C € Ob(®¥), F(C) = A¢; and
(i) u = (uc) is a natural transformation from D to G o F.
(2) Let ((k¢), K) be a colimit of D.
(D) If ((ke), K’} is a colimit of F, then there exists a unique B-morphism
u': K = G(K’) such that for each C € OK(%¥) the square

1)
D(C)—=>G°F(C) F(C)
ke Gy |k

K -T>G(K') K’

commutes. In addition, (', K') is a G-universal map for K.

(i) Conversely, if (', K') is a G-universal map for K, then for each C € Ob(%),
there exists a unigue ki: F(C) — K’ such that the above square commutes.
In addition ((k¢), K") will be a colimit of F.

Proof:

n. If cLs C’', then D(C) o, D(C’), so that by the above lemma (26.8)
there is a unique morphism f: A, — A such that the square

13
D(C——>G(de)  Ag
H i
D() i6(f) |IF
, o
D(C )TC.>G(A6") Ao
commutes. ,

Define F(f) = J. Clearly, by the uniqueness, F: Mor(¥) —» Mor(s/) is a
function, F(I¢) = 1,,, and if F is a functor it is the unique one for which
F(C) = A and cach square above commutes. Since the squares do commute,
# = (ug): D — G o F will be a natural transformation. Thus it remains to be
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shown that F preserves compositions. Suppose that ¢-Ls ¢’ 25 C". Then
since G and D preserve compositions, each of g o f and g o f is a morphism x
such that the square

DICO—5G(do)  Ac

H 1
D(gef) 1 G(x) %x
v v
D(C')TC?G(AC') Ac
commutes. _
Thus since #c G-generates A (26.6), Gof = gof; ie, F(g)eF(f) =
F(gof).

(2). (i) By the above definition of F, and the fact that G preserves compositions,
for each g: C —» C’' we have commutativity of the diagram

de
DO—SGFC) g4y

D(9) G(F(@) 5G(K')
pc)—>GFEC
c'

Thus ((G(kd) o uc), G(K") is a natural sink for D, so that there is a
unique morphism #': K = G(K') such that for each C e 0b(%), the

square
ie
D(C)—>G(F(C))
kcl Gke)
K---;;--> G(X")
commutes.

To show that (', K’) is a G-universal map for K, suppose that
f: K = G(4). Then since the (uc, F(C)) arc universal maps, for each
C e Ob(®) there is a unique f¢: F(C) — A such that the triangle

D(C)—5G(F(C))  F(C)
i |

e

1
O LE

2€mocmm

v
G(A4)
commutes.
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Now if g: C — C’, then each of f. and f.. o F(g) is a morphism
x: F(C) - A for which the outer square of the diagram

u
D(C) = >G(F(C)) F(C)
D(g) G(F(@g),” | :
i ]
/s ] 1
ke D(Ch»—>G(FIC)) 16t |=x
] ]
ke G(fc,) ' v
K A
y: G(A)

commutes.

Thus, by uniqueness, fc = f¢ ° F(g), so that ((f¢), 4) is a natural sink
for F. Since ((k¢), K') is a colimit of F, there is a unique f: K’ — A4 such
that for each C € Ob(%), the triangle

k¢
F(C)—<—>k'

~»

fe

Wgmmmm

commutes.
Consequently, for the diagram

DO —— 2 5 G(FiCY)

G(ke)
G(KY | 6Up

/Y

—>G(A)

we have commutativity of the outer square, the upper quadrilateral, and the
right-hand triangle; from which it follows that for each C € Ob(¥),

Soke = G(f)ou' ke

Since ((k¢), K) is a colimit, and thus an epi-sink, we have f = G(f) - «'.
The uniqueness of f with respect to this property follows from its construc-
tion and the fact that (u¢, F(C)), being a universal map, G-generates F(C).
Hence (¢, K’) is a G-universal map for K.

(i) Suppose that (#', K’) is a G-universal map for K. Since each (u¢, F(C))
is a G-universal map for D(C), we have for each C € Ob(%¥) the existence
of some k¢: F(C) — K’ such that the square
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D(C)—S>G(F(C))  F(C)
1 |
ke ’; Gk Lk

1

|

v v
K———GK) K

commultes.

We wish to show that ((kc), K’} is a colimit of F. Since ((k¢), K) is a
colimit of D and since #: D — G o F is a natural transformation, for each
g: C —» C’ we have commutativity of all (except at most the right-hand
triangle) of the diagram

i
D(C) c >G(F(C))
D(g) G(F(g)
Upe
ke D(CY—5GF(CY) |Gy
ket Gke)
K >G(K’)

i

Since ue G-generates F(C), it follows that kg = k¢ o F(g). Thus ((k¢), K')
is a natural sink for F. To show that it is a colimit, assume that ((gc), Q) is
also a natural sink for F. It is easy to see that ((G(qc) o v¢), G(Q)) is then a
natural sink for D, so that there is a unique morphism /i: K - G(Q) such

that each triangle
5

D(C)

K
(]
i
1
vh
;
Gigp)ou, v
R e((+)

commutes.

Since (', K') is a G-universal map for K, there is a unique i: k' > Q
such that the triangle

G(h)

2
©
Q-

commutes.
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But each of g and F o k¢ is a morphism x such that the triangle

DO GFC) F(O)

E G(x)
heko=Glge)ouc !

1
ix
v
G(Q) Q
commutes.

Hence, since #e G-generates F(C), gc = h < k¢ for each C e Ob(%).
Since (k¢, K) is an epi-sink and (', K’) is a G-universal map, it is easy to
see that i is unique with respect to this property. Consequently (k¢, K') is
a colimit of F. [

26,10 COROLLARY

Let of be a €-cocomplete category and let G: s/ — B. Then the full sub-
category B’ consisting of all objects of & that have universal maps with respect to
G, is closed under the formation of €-colimits in B; ie., if D: € — % has a
colimit (k¢), K) in B and if each D(C) is in &', then K must be in B'. [

26.11 THEOREM

Let G: of — B be a functor such that for each B € Ob(%B) there exists a
G-universal map (g, Ag).

(1) Then there exists a unique functor F: B — of such that
(i) for each B € Ob(®), F(B) = Ay, and
(it 3 = (np): 1@ — G o F is a natural transformation.
(2) Moreover, F preserves €-colimits for each category €, and
(3) There is a unique natural transformation : Fo G — 1, such that

Gz

GI% GoFoGEH G =G5,
and

FP FoGoF2E F= F1e, F;
i.e., for each A € Ob(s/),

G(ea) ° 6y = laeay
and for each B € Ob(%),
erey ° F(np) = 1ry
Proof:
(1). This follows immediately from the preceding lemma (26.9), where D is
the identity functor 14: 8 — 2.

(2). Supposc that D:% — @& is a functor with colimit ((k¢), K). Since
K € Ob(%8), by hypothesis there is a G-universal map (i, A) for K. Thus by
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Lemma 26.9, we have for each C € 0b(%) a morphism k¢: Fo D(C) - Ay such
that ((k¢), Ay) is a colimit of Fo D and each square

D(C)—"”—‘“’»G(Fozl)(c» FoD(C)
kgl E G(ké)

K——>G(4)=G(F(K)) Ax=F(K)

ke

G-

commutes.

However, since : 153 — G o F is a natural transformation, the morphisms
F(kc): Fo D(C) =» F(K) also make the above squares commute. Since 1,
G-generates F o D(C), it follows that F(kc) = k¢, for each C, so that

(ko). Ax) = ((Fke), F(K))
is a colimit of Fo D. Hence F preserves ¢-colimits.
(3). For each A e 0b(f), G(A) € Ob(&), so that (g F(G(A)) is a G-

universal map for G(A). Consequently, by the definition of universal map, there
exists a unique morphism &,: F o G(4) — A such that the triangle

GAEBG(FGA)  FoGld)

Gle,y)

L
Y

]
i
lcm: 5
¥

G(A)

X €-mecm-

commutes.
If ¢ = (g,) is a natural transformation, then the commutativity of the
triangle for each A clearly shows that
ls=(G*e)e(n2G) (see 13.13).
To show that g is a natural transformation, let f: A — A’. Then
G(fogy) o ngay = G(f) 2 Gley) ° gy = G(f) ° lgay
= lgy ° GUf) = Gles) © tigary ° G
But since 5: 1z — G o Fis a natural transformation, this becomes:
G(foey) o Ny = Gley) o (G o FY)G(S)) NGy
= G(gy o (Fo GY)) ° tigeay
Thus since 564, G-generates (Fo G)(A), we have
So&y = &40 (FoG)(S),

so that ¢ = (g4): 1, = FoG is a natural transformation. To show that
(ex F)o(F = ) = I, notice that for each B € Ob(#)

G(eppy © F(np)) © g = Glepmy) © (G ° F(np) © ip)-
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But since » is a natural transformation, this is

G(Er(n)) °NG.Fp) < lB = G(lr(a)) ° .

Consequently, since for each B, ng G-generates F(B),

€pp) © F(ng) = Lrgy-

(ex F)o(Fxnm) = lp. []

Hence

26.12 PROPOSITION

Let G: o/ — B be a functor such that for each B € Ob(B) each of (g, Ap)
and (g, Ap) is a G-universal map for B. If F and F are the corresponding functors,
guaranteed by the above theorem, such that F(B) = Agand F(B) = Ay, then F is
naturally isomorphic to F.

Proof: This follows immediately from the fact that universal maps are
essentially unique (26.7). (]

EXERCISES

26A. Show how the second example in (3) of 26.2 is implied by Theorem D of
Chapter I. [Note that each morphism f: B - Hom(C, D) induces a bilinear map
from B x Cto D.}

26B. For each of the examples of 26.2 with which you are familiar, determine the
unique induced colimit-preserving functor F guaranteed by Theorem 26.11.

26C. Show that every set has a universal map with respect to the “‘squaring
functor” (9A(b)). Describe the induced functor guaranteed by Theorem 26.11.

26D. If R—ng is the category of rings that do not necessarily have identities and
G: Rng - Rng is the forgetful functor (which forgets the identity), show that each

object of Rng has a G-universal map. What is the induced functor guaranteed by
Theorem 26.11?

26E. Determine the “‘free lattice with two generators”, i.e., the U-universal
map (i, Ap) with respect to B, where U: Lat - Set is the forgetful functor and Bis a
two-element set.

26F. Determine whether or not the category of algebraically closed commutative
fields is a reflective subcategory of the category of commutative fields.

26G. State the duals [including the contravariant duals (12.4)] of Theorem 26.11.
Use the covariant dual to show that if G: &/ - 4 is a functor such that every #-object
has a G-universal map, then G preserves limits.

26H. Universal Maps and Initial Objects
Let G: &/ —» # and B € Ob(A).
() If B is an initial object of # and u is the unique Z-morphism from B to G(A),
prove that the following are equivalent:

(i) (u, A) is a G-universal map for B.

(ii) A is an initial object of & .
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(b) If B: 1 -+ & is the functor whose value at the single object « is B, prove that the
following are equivalent:

(i) (u, A) is a G-universal map for B.

(ii) (s, #, A) is an initial object of the comma category (8, G) (see 20D).
(c) Use part (b) to obtain an alternate proof that universal maps are “essentially
unique"’ (see 26.7).

261. Colimits as Universal Maps
Let &f and / be categories, let G: of - of! be the “‘constant functor” functor from
o to ! (15.8), let D: 1 = of be a functor, and for each i € Ob(J) let

ui: DY - G(A)i) = A

be an &f-morphism. Prove that:

(@) u = (ug): D -+ G(A) is a natural transformation if and only if ((#,), A) is a natural
sink for D,

(b) (4, A) is a G-universal map if and only if (1)), A)is a colimit of D.

Now let 4 = (4;,): D - G(A) be a natural transformation. Prove that:

(c) u G-generates A if and only if ((«,), A)is an epi-sink.

(d) u extremally G-generates A if and only if ((«,), A) is an (extremal epi)-sink.

(e) Using Proposition 26.6 obtain a new proof that colimits are (extremal epi)-sinks
(20.4 dual).

(f) Using Theorem 26.11 obtain a new proof of the commutation of colimits (25.4
dual).

(g) Dualize each of the above results (a)-(f).

§27 ADJOINT FUNCTORS

Recall that when we were considering what it should mean for a functor to *“*have
an inverse”, our first notion was that of an isomorphism between categories.
However, since functors with such a “strong” type of inverse rarely occur, a
more suitable notion was found in the conjunction of the notions full, faithful,
and dense (i.e., equivalences between categories). Equivalences (although
“weaker” than isomorphisms) have been seen to occur relatively frequently
(14.16 and 14.18) and to be of such “strength” that they preserve and reflect
categorical properties.

An even weaker notion of a functor which in some sense has an inverse, is
that of a functor that has a left or right adjoint. Indeed, there is a plethora of
such functors, yet the notion is still **strong” enough to be intensely interesting.

In the last section we have seen that if G: s — & is a functor such that
each %-object has a G-universal map, then there exists a functor F: & — &
together with two natural transformations n and ¢ such that

(Gee)o(n*xG) =1
and
(e*x F)o(Fen) = Iy
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This section is devoted to a further study of such situations.
27.1 DEFINITION

(1) If o and & are categories, G and F are functors and 5 and ¢ are natural
transformations such that:

)G vBand F: & - o,
(i) n: 1y > GoFand &: Fo G > 1,
(i) G5 GoF- G %5 G = G% G, and
FEY FeGoFSS F=FlnF
then this is called an adjunction or adjoint situation, and is denoted by

ey F—G: (A, B)
or more briefly by
(n,e): F— G
or simply by
F—G. '

(2) If (n, &): F — G, then Fis said to be a left adjoint of G, G is said to be a
right adjoint of F, n is called the unit of the adjunction and ¢ is called the counit
of the adjunction.

(3) A functor G: &/ — & is said to have a left adjoint provided that there
exist F, n, and ¢ such that (i, €): F ——{ G. Similarly F: # — & is said to have a
right adjoint provided that there are G, n, and ¢ such that {(n, &): F—— G. In
other words, a functor has a left adjoint provided that it is the right adjoint
of some functor, and it has a right adjoint provided that it is the left adjoint of
some functor.

The next proposition follows immediately from the definition of equivalence
situations (14.12).

27.2 PROPOSITION
() If (F, G, n, €) is an equivalence situation, then

(e F—G

and
e 'Hn"):G—F

(2) If G: o > % is an equivalence, then there exists a functor F: B — s/
that is simultaneously a left adjoint and a right adjoint of G. [ ]

Before giving some other concrete examples of adjoint situations, we wish
to clarify the relationship between adjoint situations and universal maps.
According to Theorem 26.11, whenever a functor G: & — 4 has the property
that each #-object has a G-universal map, this gives rise to an adjoint situation.
The next theorem shows that each adjoint situation can actually be obtained in
this way.
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27.3 THEOREM
La G:of — B.

(1) If each B € Ob(B) has a G-universal map (13, Ap), then there exists a unique
adjoint sitnation (3, €): F —| G such that n = (p) and for each B e Ob(%),
F(B) = Apg.

(2) Conversely, if we have an adjoimt situation (n, &): F——| G, then for each
B € Ob(®), (ng, F(B)) is a G-universal map for B.

Proof: The first assertion follows immediately from Theorem 26.11 and the
definition of adjoint situation (27.1). To show (2), suppose that B € Ob(%) and
J: B = G(A). We wish to find a unique morphism f: F(B) - A such that the
triangle

B—25(GoF)(B) F(B)
[ !
P
! i G(/) E
¥ ¢
A
commutes.
LetJ = g4 0 F(f). Then
G(f)eng = G(e4) > (G o F)(f) o np.
But since n: 1; — G o F is a natural transformation and since

(Gre)o(n*G) = lg,
this becomes
Gles) © NGiay of = P of =1

Hence f makes the triangle commute.
To show uniqueness, suppose that h: F(B) - A is a morphism with
f = G(h) 3. Then since ¢ is a natural transformation and since

(c* F)o(Fey) =l

we have commutativity of the diagram

F(B) Yem » F(B)

k >

Fm* )

FU (FoGoF)(B) A
(FoG)(M)

(FoG)(A) >

L

Hence h = g4 F(f). [

274 COROLLARY )
If each of F and F is a left adjoint of the functor G, then F is naturally
isomorphic to F.
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Proof: This is an immediate consequence of the above theorem and

Proposition 26.12,

27.5 EXAMPLES OF ADJOINT SITUATIONS

F |G
K- B {(left adjoint) (right adjoint) referencef

Grp Set free group functor forgetful functor 26.2(1)a
R-Mod Set free R-module functor forgetful functor 26.2(1a
Top Set discrete space functor forgetful functor 26.2(1)a
Rng Mon monoid ring functor  forgetful functor 26.2(1)b
Rng Ab tensor ring functor forgetful functor 26.2()b
complete  uniform uniform completion inclusion functor 26.2(2)a
uniform spaces functor
spaces
CompT,  CRegT, Stone-Cech inclusion functor 26.2(2)a

compactification

functor
BanSp, completion functor inclusion functor 26.2(2)a

NLinSp

cancellative Ab

group of quotients

inclusion functor

26.2(2)a

abelian functor
semigroups
Field integral field of quotients inclusion functor 26.2(2)a
domains functor
(injective
homo-
morphisms)
Ab Grp abelianization functor inclusion functor 26.2(2)b

1 Note that either the existence of a universal map for cach B e OH(.#) or the exislence of a
co-universal map for each A e Ob(<7) gives rise to an adjoint situation.
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F |G
K4 g (left adjoint) (right adjoint) referencet
Ab abelian inclusion functor torsion subgroup 26.2(4)
torsion functor
groups
torsion Ab torsion free functor  inclusion functor 26.2(2)b
free
abelian
groups
A" Ab functor which takes  inclusion functor 26.2(2)b
B to B/nB
Ab Ab® inclusion functor (subgroup of elements 26.2(4)
of order being a divisor
of m)-functor
locally LinTop locally convex inclusion functor 26.2(2)d
convex modification functor
linear
topological
spaces
Top compactly inclusion functor compactly generated  26.2(4)
generated refinement functor
spaces
R-Moad R-Mod —®gC Hom(C, ) 26.2(3)
(where R
is com-
mutative)
pTop pTop suspension functor loop space functor 26.2(3)
Grp pointed fundamental group Eilenberg-Mac Lane
arcwise functor I, space functor
connected
spaces (with
homotopy
cquivalence
classes of
maps)

t Note that either the existence of a universal map for each B € Ob(8) or the existence of a
co-universal map for cach A € 05(s¥) gives rise to an adjoint situation,
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F |G
K- % (left adjoint) (right adjoint) referencet
& (where of7 Colim *‘constant functor” 261
& has I- ! functor
colimits)
! & (where  *‘constant functor” Lim 261
& has functor 1

Himits)

t Note that either the existence of a universal map for each B e Ob(2) or the existence of a
co-universal map for each 4 € Ob(.) gives rise to an adjoint situation.

27.6 THEOREM (DUALITY)

Let G:sd = B, F: B >, n: 1y GoF,ande: FoG — 1. Then the

Jfollowing are equivalent:
(1) (o, 8): F— G: (o, B).
(2) (g, n): G°P —— F°P: (%°F, A°P).

Proof: 1If we are given the situation (1), then translating this into a statement
in terms of &/°% and #°P, we see that G°?: o/°? — #°°, and F°P: &°F — f°F
(see 9.2(5)). Since n: 1 3 = G o Fisa morphism in [ %, #], itis also a morphism in

(B, B]°F = [#°°, 3°F) (see 15A).
Thus, in the category [#°°, #°°], we have n: G*?o F? — |40,. Similarly
£: 140, = F°P o G°?. Again, translating the statement:

GX%G6eFGEHG=6"%C
from [&f, 8] to [&#°P, 4°°] means reversing the arrows; viz.
Gor 26”7 ne Gor G o F*P o G S0 Gopee G = G° e Gor.
Likewise, we have
For F7*0 pop Gov o pop SF7 pop _ pop 127 pop

Thus we have the adjoint situation
(g, n): G°? —— F°P: (#°F, 4°P).
Clearly, applying the same considerations to situation (2) yields situation (1). [

27.7 THEOREM
If we have an adjoini situation (n, €): F —— G: (&, B), then F preserves
colimits and G preserves limits.

Proof: By Theorem 27.3 we know that for each B € Ob(®), (15, F(B)) is a
G-universal map. Hence by Theorem 26.11, F preserves colimits. By duality
(27.6), (&, n): G°» ——| F*? is an adjoint situation, so that, by the abc /e, G°°
preserves colimits: i.e., G preserves limits. ]
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27.8 PROPOSITION
Adjoint situations can be composed; specifically if

m, ) F— G: (A, B)
and
v, 8): S — T: (4, %),
then
(Txy*xS)ov,ec(Fxd*G)): Fe S — ToG: (o, ).

Proof: This is a straightforward application of Godement’s *“five” rules

(13.14). O

279 THEOREM
IfG: s/ = B and F: # — &, then the following are equivalent:

(1) F is a left adjoint of G: i.e., there exist natural transformations 3 and ¢
such that (y, €): F— G.

(2) The associated set-valued bifunctors (10B)

hom(F—, _): #°° x sf — Set,
and
hom(_, G__): #°° x o — Set

are naturally isomorphic.

Proof:
() = (2). If (4, €): F— G, then define «: hom(F_, ) - hom(_—, G_) by
aga(f) = G(f) o ne.

If #p,(f) = ag,(g), then G(f)ong = G(g)ony, so that since (g, F(B)) is a
G-universal map for B, by the uniqueness condition for universal maps, f = g.
Consequently, %,, is an injective function.

If /: B = G(.A), then again by the property of universal maps there is some
morphism f: F(B) — A such that the triangle

B—2>(G°F)(B) F(B)

1 '

) iG(H 4T
v v
G(4) A

commutes, i.c., such that xg(f) = G(f) o5y = f. Consequently a5, is sur-
jective; hence, bijective. Thus to establish that « is a natural transformation, we
need only show that if

%8B and AL 4
then the square
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Trom (F(B), A)——=— hom (B, G(A))
hom(F (), f) homlg, G( 1))
hom (F(B"), A')a—>lzom (B',G{A"))

A’

commutes.
Let x € hom(F(B), A). Then

(g4 © hom(F(g), ) = a4 (fo x < F(g))
= G(feoxo F(g) ong = G(fox)o(GoF)g)ety
But since : 13 — G o F is a natural transformation, this is
G(fox)ongeg = G(f) o (G(x)ong) e g = hom(g, GUING() ° 11s)
= (hom(g, G(f)) ° 2g,)(x).

Thus the square commutes.

(2) = (). Suppose that a: hom(F_, ) - hom(—, G—) is a natural iso-
morphism. For each B € 0b(%), let

g = aH,F(B)(lF(B))-

By Theorem 27.3, we need only show that for cach B e Ob(&), (g, F(B)) is a
G-universal map for B.

Suppose that f: B — G(A). Applying the commutativity of the square

hom (F(B), F(BY)—=22 hom (B, Go F(B))
hom(l g, ar /) hom(ig, Glaga (/M)
hom (F(B), A) —a—m—me (B, G(A))
to the element 1pg) € hom(F(B), F(B)), we have
S = agalagi(N)) = (ap4 © hom(lpqy, 254 (N rmy)

= (hom(lg, G(“EAI (f)e as,r(s))(lr(n)) = G(“EAI (f) o ng
Hence, the triangle

B—25(GoF)(B)  F(B)
H ]

1

) \Glagiy (D Japh (/)
¥ v
G(A) y

commutes.
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To show uniqueness, suppose that g: F(B) -+ A such that G(g)ong = f.
Again by commutativity of the above square, with az (/) replaced by g, we have

ags(g9) = ag (hom(lgp), 9)Urs))
= (hom(lg, G(9)) ° xp r(a)(lpmy) = G(g)onp = f.
Thus, since ag, is bijective, g = ag (/). [J

This theorem, together with earlier ones, tells us that if G: & » & and
F: # - o, then there are at least four ways of describing the fact that Fis a
left adjoint of G:

(1) by means of a family (15, F(B)) of universal maps;
(2) by means of a family (G(4), ¢,) of co-universal maps;
(3) by means of natural transformations

n:lyg—>G-F and eFeG -1,
such that
* GoFoGEL G = Gl G,
and

FEANF.G-FE5 F= FA5 F,

(4) by means of a natural isomorphism

a = (ag,): hom(F_—, ) — hom(_, G_).

The fourth way is perhaps the quickest and easiest to state and is thus often
used as the definition of adjoint situation. However, in practice, the first or
second way is often easier to establish and closer to one’s intuition.
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EXERCISES

27A. Let H and K be groups considered as one-element categories, and let
f: H = K be a group homomorphism (i.e., a functor from H to K). Show that the
following are equivalent:

(a) fis an isomorphism,
(b) f has a left adjoint.
(c) fhas a right adjoint.

27B. Let A4 and B be classes considered as discrete categories, and let /: 4 - B
be a function (i.e., a functor from A to B). Show that the following are equivalent:
(a) fis a bijective function.
(b) fis an equivalence.
(c) fis an isomorphism.
(d) f has a left adjoint.
(e) fhas a right adjoint.

27C. Let A and Bbesets and let f: 4 » B be any function. Since the power sets
#(A) and P(B) are partially-ordered by inclusion, they can be considered as categories
(3.5(6)). Show that:
(a) the induced functions

Il )24 - 2(B)
and
I :PB) » P(4)

are functors.
() £ 1isaleft adjoint of f='[ ).
(c) Using the fact that right adjoints preserve limits, conclude that

S HNCG] = nftC)

for any family (C,) of subsets of B.

27D. Let A be a totally-ordered set and let R be the real numbers (considered as a
totally-ordered set). Consider each of A and R as categories (3.5(6)) and letg: 4 - R
be a functor (i.e., a monotone function).

(a) Show that if g has a left adjoint, then g is upper semi-continuous (where now A
and R are thought of as ordered topological spaces).

(b) Show that if A4 is complete and g is upper semi-continuous, then g has a left adjoint.
(c) State analogous results involving lower semi-continuity.

27E. Let 6 be a category that has finite products and finite coproducts and let
G: % - € be defined by:

GA)=Ax A

G =rx/
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Let F: € — € be defined by:
F(A)=AU A

FNH=rurf
Show that Fis a left adjoint of G.

27F. Suppose that € is a category that has coproducts and 4 is a fixed object in
€. Let F: Set - € be the “copower functor” that assigns to each set 7 the object 14
(i.e., the Ith copower of A) and to each function f: I - J the unique induced morphism
J: 14 - 74 (for which fo u; = py,, for each i € I). Show that F is a left adjoint of
hom(A, _): € - Set. (Cf. 27E.)

27G. Prove that every functor that has a left adjoint preserves monomorphisms.

27H. Given (3, &): F — G: (&, &). Show that:

(a) G is faithful iff all ¢,’s are epimorphisms.

{b) G is full iff all £,’s are sections.

(c) If all ¢ ,'s are regular epimorphisms, then G reflects limits.

271. Dualize statements (a), (b), and (¢) in Exercise 27H.

27). For each of the examples of 27.5 with which you are familiar, determine
both the unit and the counit of the adjunction. -

27K. Prove that if Fis a left adjoint of G, F is a left adjoint of G, and G is
naturally isomorphic to G, then F is naturally isomorphic to F.

27L. Prove thatif (4, £): F— G, then there exists aunique natural isomorphism
a: hom(F_, ) — hom(__, G__)
such that for each f: F(B) —» A,
aga(f) = G(f)ong

and for each g: B -+ G(A)
#54(9) = £4° F(g).

27M. Prove that if F: # - & and G: &/ — % are functors and
a: hom(F_, ) — hom(—, G_)

is a natural isomorphism, then there is a unique adjoint situation (#, ¢): F - G such
that for each B € Ob(%)

ng = og ra(lrp)
and for each 4 € Ob(&)

— -1
g4 = oga.a(lga)-

27N. Suppose that.s/ S, Band B 2, o are functors and :lg > Go Hand
1: Ho G - 1 are natural transformations such that

¥ G6oH-GE5 G = 6L,

(a) Show that G does not necessarily have a left adjoint.
(b) Show that if & has any one of the properties:
() & has equalizers,
(ii) £ has coequalizers,
(iii) idempotents in 2 split (17D),
then G does have a left adjoint.
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270. Show that if o <5 B and # -5, o, then Fis a left adjoint of G if and
only if there isan isomorphism between the comma catcgories (F, 1) and (1, G)that
commutes with the projection functors to & and @ (see 20D(e)).

27P. Adjoinis and Functor Categories
(a) Prove that for any category /, the internal hom-functor

Hom(l, _): € AT —> CoAdT

(15.2) preserves adjoint situations; i.c., if

F— G:(s#,8), then (Fo_))—— (Go__): (' 2.
(b) State and prove a similar assertion for the contravariant internal hom-functor
Hom(__, I).
(c) Suppose that F—| G: (&, B); 1 is a category; Cpy: ¥ -+ o# and Cyp: B » H'
are *“‘constant functor” functors (15.8), and b,’m,,:d’ - &7 and Lz;ma: B' > B are
the corresponding limit functors (23.4).
Show that
CyoF—G OLI;m'_,,: (', B)
and that
(Fe)°Cqyg — Ll,'ma (Ge): (' B)

and conclude that G o L;'m,, and La;ma,(G o __) are essentially the same; i.c., that right

adjoints preserve I-limits.

(d) Using (a) and (c), obtain an alternate proof of the commutation of limits (cf. 25.4).
27Q. Adjoints and Galois Correspondences

(a) Suppose that of = (4, <) and & = (B, <) are quasi-ordered classes and

G:f - @B and F: B - & are order-reversing functions. Consider the following four

statements about this situation:

(1) Forallae Aand forall b€ B, a < F(b) if and only if & < G(a).
(2) Forallae A, a < F(G(a)) and for all b€ B, b < G(F(b)).
(3) For all a € 4, G(a) * G(F(G(a))) and for all b € B, F(G(F(b))) = F(b) (where
in either quasi-ordered class x is the equivalence relation induced by the quasi-
order relation).
@ If of = (F(b)| be B}and # = {G(a)| a € A} (each with the induced order),
then the restrictions G: &/ = & and F: & - .o are (up to the equivalence )
anti-isomorphisms.
If condition (2) is satisfied, then the quadruple (&, &, G, F) is called a Galois corre-
spondence. Now regard & and % as categories (3.5(6)) and G: .of°° - & and
F: & — s °P as functors. With this interpretation, show that the four conditions above
translate into the following four conditions:

(1) F— G:(A°?, &B); i.e., Fis a left adjoint of G.
(2) There exist natural transformations ¢: Fo G = I and #: 1y » Go F.
(3) There exist natural isomorphisms from G to G o F» G and from Fto Fo G o F.
(4) Fand G are equivalences.
(b) Show that (1) = (2) = (3) = (4).
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(c) Let ¥ be a category that has pullbacks and pushouts, let A be the class of all pairs
of morphisms in € with common codomain, with the quasi-order relation < defined

§ lf < lh

—_— —_—
g k

if and only if there is a morphism r such that the diagram

commutes,
and let B be the class of all pairs of morphisms in € with common domain, with the
quasi-order relation < defined by:

1] w
_— —_—

[ <

if and only if there is a morphism s such that the diagram

commutes.

Using pullbacks and pushouts, define functions G: (A, <) - (8, <) and
F: (B, <) » (A, <) such that (4, <), (B, £), G, F) is a Galois correspondence
(cf. Exercise 21D). Obtain a similar result for sinks and sources indexed by a given
class /7.

27R. Show that if € is a pointed category that has kernels and cokernels and if
cL.Disa % -morphism, then
@) Ker(Cok ) = (C, [);
(b) (f, D) = Cok(Ker f);
(c) Ker(Cok(Ker f)) = Ker f; and
(d) Cok(Ker(Cok f)) =~ Cok f.
[Hint: Use Exercise 27Q. ]

27S. Suppose that (y, £): F—]| G: (¢, B), (), &): F— G: (o, %), and
o: G -+ G is a natural transformation.

(a) Show that there is a unique natural transformation 7: F - F such that for each
B € 0b(%), the square
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B— 5 GEBy  FB)

g

€—-==-

G(F(B)———>G(F(B))  F(B)

commutes.
(7 is often called the conjugate of 5.)

(b) Use part (a) to obtain an alternate proof of the essential uniqueness of left adjoints
(27.4).

§28 EXISTENCE OF ADJOINTS

In this section we will see that under suitable conditions on & one is able
to characterize those functors F: .o/ — 2 that have a left adjoint (and by duality,
those which have a right adjoint). We have seen before that category theory
consists essentially of both general constructions and smallness considerations.
The adjoint functor theorems of this section are prime examples of this fact.
Below we will see that each of them contains a completeness condition and a
smallness condition, neither of which can be eliminated.

28.1 DEFINITION

Let G: o7 — 2 be a functor and let B be a #-object. A set-indexed family
(u;, A;);, where each A, is an o/-object and each u;: B — G(A,) is a #-morphism
is called a G-solution set for B provided that for each s/-object A and each
morphism f: B — G(A), there exists some i € / and some morphism f: A, —» A
such that the triangle

B——>G(4)

Q
:o

J

>

Q

TN e

A
!
v
A

~—

commutes.

28.2 PROPOSITION
Let G: sf — B be a functor and let u: B — G(A) be a #-morphism. Then
the following are equivalent :
(1) (u, A) is @ G-universal map for B.
(2) (v, A) is a G-solution set for B and u G-generates A. [

28.3 FIRST ADJOINT FUNCTOR THEOREM
Let st be complete and G: o — B. Then G has a left adjoint if and only if



208 Adjoint Situations Chap. VII

(1) G preserces limits, and
(2) Each B-object has a G-solution set,

Proof: If (n, €): F— G, then by Theorem 27.7 G preserves limits, and by
Theorem 27.3 for cach B € Ob(#), (ng, F(B)) is a G-universal map for B. Hence
by the above proposition it is also a G-solution set for B.

To show the converse, suppose that (1) and (2) are satisfied. By Theorem
27.3 it is sufficient to show that there exists a G-universal map for each #-object
B. Let (u;, A;); be a G-solution set for B, and let (ITA;, n;) be the product of the
family (A4;);. Since G preserves products, it follows that (G([14,), G(n)) is the
product of the family (G(A)));. Thus (by the definition of product) there exists
a unique morphism u,: B — G(I[1A;) such that for each i e I the triangle

B—">G(I4) =TIG(4)
", G(’;)

G(4)

commutes. Obviously (5, I1A4)) is a G-solution set for B. Now let (g,), be the
family of all morphismsin iom(I14;, T1A;) with the property that G(g;) o ug = ug,
and let (A, €) be the multiple equalizer of (g;), (16.10). Now since G preserves
limits, (G(Ag), G(e)) is the multiple equalizer of the family (G(g,)),. Thus there
is a morphism ng: B = G(Ap) such that G(e) o 45 = up. We claim that (i1p, 4p)
is a G-universal map for B. To show that (tp, Ap) is a G-solution set for B,
suppose that 4 is an &/-object and f: B — G(A). Since (u,, 4,); is a G-solution
set for B, there is some u;: B — G(A;)and somef: A; » A such that G(f) o, = f.
Let f = fomoe; thenf = G(f) e yp. '

L)
B 2 > G(Ap) Ap
N} G(iy /
G114 A;
. |G A -
Gy ¢h  f 7
G(/f)
7
\(A \‘:
G(4) A

To show that 5, G-generates Ap, let Ag —;," A be a pair of «/-morphisms such

that G(r) o 55 = G(s) o 5. Let (E, €') be the equalizer of r and s. Since G
preserves limits, (G(E), G(¢')) is the equalizer of G(r) and G(s); so that there
exists some morphism /1: B —» G(E) such that the triangle
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commutes. Since (ug, [1A;) is a G-solution set for B, there is some morphism
h:MA, - E such that G(h)-uy = h. Now eoe’ = h is a morphism from
IMA; to T1A4; such that

Glece - h)cug = Gle)- G(e') < G(h) - ug = Gle) - G(e') < h = G(e) > ng = up.

Consequently, e < ¢’ - h belongs to the family (g;);- Thus since (Apg, €) is the
multiple equalizer of (g;), and since 1y, also belongs to (g;),;, we have

(eceeh)yce =15, -e=ecl,,.

The fact that ¢ is a monomorphism (16.11) implies that ¢’ < hee = 1,,. Thus
¢’ is a retraction and a regular monomorphism, hence an isomorphism (6.7), so
that r = s (16.7). Consequently, n, G-generates Ay, so that by the above
proposition (55, Ag) is a G-universal map for B. [ ]

Whereas the “limit preservation™ condition in the above theorem is a
*“nice” condition that is usually easy to check in concrete cases, the “‘solution set”
condition is cumbersome and usually difficult to check (especially since the
theorem gives no idea of how to find a solution set), To help alleviate this
problem, we will essentially split the latter condition into two conditions, the
first being a “‘factorization™ condition that is automatically satisfied in many
cases (Lemma 28.6) and the second being another (unavoidable) *“‘smallness™
condition that is usually easier to check than the solution set condition. The
latter smallness condition is essentially the existence of some *‘canonical solution
set” (Theorem 28.9).

284 DEFINITION
Let G: &/ - A be a functor and /2 B — G(A) be a #-morphism. A
factorization

BL Gy = B G(A) T2 Gay

of fis called an (extremal G-generating, mono)-factorization of (£, A) if and only
if g extremally G-generates A and m: 4 — A is an &/-monomorphism. Similarly
one can define (G-generating, extremal mono)-factorizations.

285 FXAMPLES

(1) If G: &/ — o is the identity functor and f: A — B is an s/-morphism, then
an (extremal G-generating, mono)-factorization of (f, B) is the same as an
(extremal epi, mono)-factorization of f(cf. 17.15).

(2) IfG: & — o' is the “*constant functor” functor (15.8) and f = (f): B— G(A)
is an .o/’-morphism, then an (extremal G-generating, mono)-factorization of
(f, A) is the same as an [(extremal epi)-sink, monoJ-factorization of the sink
((f). A) (cf. 19.13).

(3) If U: Grp — Set is the forgetful functor and f: B — U(A) is a function,
then an (extremal G-generating, mono)-factorization of (f, A) is (up to iso-
morphism) the factorization

B-Ls U4) = B2 UA) Y vy
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where 4 is the subgroup of A generated by the set f[B], m: A - A is the
inclusion homomorphism, and g is the unique function with f = U(m) < g.

28.6 FACTORIZATION LEMMA
If o is well-powered, has intersections and equalizers, and the functor

G: oA — B preserves limits, then for each B-morphism of the form B TN G(A),
the pair (f, A) has an (extremal G-generating, mono)-factorization.

Proof: Let of be the class (D;, d,); of all subobjects of A that are part of
some factorization

B-L G4a) = B2 6(D) 29 Gy
of (f, A), and let (A, m) be the intersection of &/ (17.7), where for each i,
m = d; o k;. Since G preserves limits (G(A), G(m)) is the intersection of the
family (G(D,), G(d,));. Thus there is a morphism g: B —» G(A) such that the
diagram

B >»G(A)
\\\ h‘ (;(d/v
\\ G(D)
g\‘\ A(;(k‘) G(m)
\\4

G(A)

commutes for each i € /.

We need only show that g extremally G-generates 4. Notice that by
Proposition 26.5 it is sufficient to show that g satisfies the extremal condition;
i.e., that if

B-% G(A) = BL 6(A) B 6A)
where i: A = A is a monomorphism, then /1 must be an isomorphism. If
indeed g = G(h) - g’, where /i is a monomorphism, then (A, m o ) belongs to of
so that m < i = d, for some j € /. Thus we have

djolz = (lj - ]noh = djokjoh

so that since d; is a monomorphism, 13 = k; o h. Consequently / is both a
monomorphism and a retraction, hence an isomorphism. []

28.7 COROLLARY
Every well-powered category that has intersections and equalizers is
(extremal epi, mono)-factorizable (cf. 17.16). []

28.8 COROLLARY
If o is well-powered and has intersections and equalizers, then every sink in
& has an [(extremal epi)-sink, mono]-factorization (cf. 19.14). [
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289 THEOREM

If o7 is complete and well-powered, G: sof — @B preserves limits, and each
%B-object extremally G-generates at most a set of pairwise non-isomorphic sf-
objects, then G has a left adjoint.

Proof: Let B be a %-object and let (B -2 G(A4,), A;), be a representative
set for the class of all pairs (g, A) for which g: B — G(A) extremally G-generates
A. Then according to the Factorization Lemma (28.6), this is a G-solution set
for B. Apply the First Adjoint Functor Theorem (28.3). []

28.10 SECOND ADJOINT FUNCTOR THEOREM

Let of be complete, well-powered and extremally co-(well-powered). Then
G: o - B has a left adjoint if and only if the following two conditions are
satisfied :

(1) G preserves limits.

(2) Each B-object extremally G-generates at most a set of pairwise non-isomorphic
s/ -objects.

Proof: That the two conditions are sufficient for the existence of a left
adjoint has been shown in the preceding theorem (28.9). To show that they are
necessary, first recall that each right adjoint preserves limits (27.7). Thus we
need only verify that (2) holds.

Let B be a #-object and suppose that # is a class of pairwise non-isomorphic
objects of & such that for each 4 € # there is some f,: B = G(A) which extrem-
ally G-generates A. Since G has a left adjoint, there exists a universal map
(ng, Ap) for B (27.3). Hence for each A € # there is a morphism f,: Az — A
such that the triangle

n
B—R>G(AB) f“'B
| |
r, VAR
¥ ¥
G(A) A

commutes.

We claim that each f, is an extremal epimorphism. To show this, it suffices
to show that if

PR LRSI Iy S

is a factorization of f,, where m is a monomorphism, then m must be an iso-
morphism (17.14). If indeed f, = m = g where m is a monomorphism, then we
have the following factorization of f,:

B 1% G(4) = B 29", GA) S Ga).

But since f; extremally generates A, this implies that m is an isomorphism.
Consequently for cach 4 € #, (f,. A) is an extremal quotient object of A,.
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Thus since the objects in # arc pairwise non-isomorphic and & is extremally
co-(well-powered), # must be a set. [

It is interesting to observe that in general both of the smallness hypotheses
of the Second Adjoint Functor Theorem are needed [for well-powered, sce
Exercise 28C; and for extremally co-(well-powered), seec Exercise 28D]. The
next theorem provides a remarkable simplification in the case where the category
&/ has a coseparator. Recall that we have earlier seen that this condition (in
conjunction with well-poweredness) is actually a quite strong smallness
condition (23.14).

28.11 SPECIAL ADJOINT FUNCTOR THEOREM
Suppose that s¢ is well-powered, complete, and has a coseparator C. Then
Jor each functor G: & — B the following are equivalen :

(1) G has a left adjoint.
(2) G preserves limits.

Proof: Clearly (1) implies (2) (27.7). To show that (2) implies (1) it is
sufficient to show that (2) implics that each B-object, B, G-generates at most a
set of pairwise non-isomorphic «&7-objects (28.9). Suppose that & is a class of
pairwise non-isomorphic «/-objects and that for each Ae %, a suitable
morphism

B 24, G(A)
G-generates A.

Now by the definition of product, for cach A € # there exists a morphism
I, such that for each f e hom(A, C), the diagram

A L) Chom(A.C)

f v
C

commutes. Since C is a coseparator, each /1, must be a monomorphism (19.6).
Since each g, G-generates A, the function from hom(A, C) to hom(B, G(C))
defined by fi— G(f) - g, is injective. Thus for those objects A € # for which
hom(A, C) # &, there is a section s,: ChomA-C) , Chom(BGICY (18F), and
(A, s, © hy) is thus a subobject of CEC If hom(A, C) = &, then ChmAC)
is the terminal object 7. Thus for each A € 4, cither (4, s, o 11;) is a subobject
of Chom(B.GCN or (A, h,) is a subobject of T. Since & is well-powered, this
means that 2 must be a set. [

Observe that the above theorem implies, for example, that if &/ is any one
of the categories Set, R-Mod, Top, or CompT,, then any functor F: &/ — 3
has a left adjoint if and only if it preserves limits and has a right adjoint if and
only if it preserves colimits.
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The following adjoint functor theorem is often applicable when the functors
U and V are forgetful functors from concrete categories to the category Set.
28.12 THEOREM

If the diagram of categories and finctors

commutes, and if the following conditions are satisfied:

(1) o is complete, well-powered, and co-(well-powered),
(2) G preserves limits,
() U has a left-adjoint,
@) V is faithful ;
then G has a left adjoint.
Proof: By Theorem 28.9, it suffices to show that cach #-object G-generates

at most a set of pairwise non-isomorphic s/-objects. Let B € Ob(%) and suppose
that 2 is a class of pairwise non-isomorphic s/-objects such that for each

Ae R, B2 G(A) G-generates A. Since U has a left adjoint, there is some
U-universal map (u, A) for V(B). Now for each morphism g,,,
V(ga): V(B) — V(G(4)) = UA),

so that since (i, A) is a U-universal map, there exists a unique §,: A — A such
that the triangle

V(B)——> U(4) A
' :

PR LA N A
0 v
U(d) = (VoG)A) A

commutes.
We claim that §, is an epimorphism. To see this, suppose that
rogy = sogy
Then
U(r) e U@Ga)

I

U(s)o U(g,);

(Ve G)(r) o V(ga) = (Vo G)s) o V(ga)

Since V is faithful, we have G(r) - g, = G(s) - g, But since g, G-generates 4, this
implies that r = 5. Hence each g, is an epimorphism. Since &/ is co-(well-
powered), this implies that # is a set. [

hence
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Notice that condition (2) in the above theorem can be replaced by the
condition that V reflects limits. This then eliminates all conditions on G whatso-
ever, except that the diagram of functors commutes.

EXERCISES

28A. Prove that if o is complete and G: &/ -+ # is a full functor which is also a
surjection on objects, then the following are equivalent:

(a) G has a left adjoint.
(b) G preserves limits.

28B. For the examples of 27.5 in which & is complete, use the various adjoint
functor theorems of this section to obtain proofs of the existence of the given adjoint
situations.

28C. Let % be the partially-ordered class of ordinal numbers, considered as a
category; let & be the category 1, with only one morphism; and let G: €°7 -+ & be
the unique functor from €°7 to &.
Show that:
(a) €°? is complete.
(b) €°? is co-(well-powered).
(c) Each %-object extremally G-generates at most a set (actually the empty set) of
@°P-objeclts.
(d) €°° has a coseparator.
(e) G preserves limits.
(f) G has no left adjoint.

Conclude that the *‘well-powered” hypothesis is necessary in the Second Adjoint
Functor Theorem and in the Special Adjoint Functor Theorem.

28D. Let & be the subcategory of the category POS of partially ordered sets,
defined as follows:
A € Ob() if and only if A has a greatest member m, and for each a € A, the order
relation on A induces a well-order on the closed interval

{a,m] = tx]la < x < my}.

A morphism f: 4 - Bin POS between two &/-objects is in Mor(s/) if and only if for
eachace 4, f[[a, m;]] = [f(a), mz] and the restriction

fot la, infix|a < x, f(x) = mg}] = [f(a), mg)
is a bijection.
Let U: o/ — Set be the forgetful functor. Show that:
(a) & is complete. [For products, partially order the underlying set P of the product
of the underlying sets by: (a,) < (b)) il and only if @, <, b; for each i and for any
two indices i and &k
Ord|a,, b;] = Ordla,, b,]

or

Ord[a,. b‘] < Ord[a., b“] and b| = my,
or

Orda,, b;] > Ord|a,, b,] and b, = my

(where Ord X is the ordinal number of X).]
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(b) U preserves limits.
(c) & is well-powered and strongly co-(well-powered).
(d) U has no left adjoint.

Conclude that the condition that each #-object extremally G-generates at most a
set of pairwise non-isomorphic &/-objects, in the Second Adjoint Functor Theorem,
cannot be deleted.

28E. Prove the following slightly modified form of the Second Adjoint Functor
Theorem:

Let &/ be complete, well-powered, and co-(well-powered). Then G: &/ — & has a left
adjoint if and only if the following two conditions arc satisfied:

(x) G preserves limits.
(B) Each #-object G-generates at most a set of pairwise non-isomorphic s/-objects.

28F. Let o be complete and well-powered, and for each category /, let
C;: of — /7 be the *“constant functor” functor (15.8).
(a) Show that each C; preserves limits.
{b) Using the form of the Second Adjoint Functor Theorem proved above (28E),
obtain a new proof of the fact that.of is cocomplete if it is strongly co-(well-powered)
(cf. 23.13).

28G. Let &f be the category of discreie topological spaces, let 4 = Top, and
let G: &/ - # be the inclusion functor.

(a) Show that G has no left adjoint.
(b) Conclude that the condition that G preserves limits cannot be deleted from the
hypothesis of Theorem 28.12.

28H. (Freyd) An Adjoint Functor Theorem With Weak Completeness Condition

Suppose that & is a category in which idempotents split (170) and G: S Bisa
functor. Prove that G has a left adjoint if and only if the following two conditions are
satisfied:

(a) Each $-object has a G-solution set.

(B) For each small category 7 and each D: [ - & such that (B, (})); is a natural
source for G o D, there exists a natural source (A, (k);) for D and a morphism
h: B —» G(A) such that for each i € /, the triangle

B
|
ki /L
|
v
GG, G(PI

commutes.

[To show that («) and (B) are sufficient, construct a universal map for each
Z-object B. To do this begin with a solution set for B, considered as a functor, and use
(B) 1o obtain a singleton solution set (B N G(A), A). Then take all of-morphisms
h: A = A for which G(h,)of = f. Consider this as a functor and use (8) again to
obtain a factorization

B L GA) = B2 G(A) ™ G4).
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Then obtain a morphism #: A -+ A4 such that m o & is an idempotent in 7. If

A A=A 54
is a (retraction, section) factorization of n1 e u, then (G(r) » £, A) will be a universal
map for B.]
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