VI

Limits in Categories

Old theorems never die; they turn into definitions.
E. Hewrrr

Category theory is essentially involved with two concepts—general constructions
and smallness conditions. In this chapter we consider some general constructions
—namely limits and colimits—and begin to investigate the role that smallness
conditions play in the relationship between them. In Chapter I we have seen that
the notion of cartesian products in Set is essentially the same categorically as
the notion of direct products in Grp or topological products in Top. The obvious
usefulness of these concepts within their respective categories naturally leads to
the categorical concept of “‘product™. This is one particular type of a categorical
limit. Other ‘“‘general constructions” in well-known categories naturally lead to
other varieties of limits (and colimits)—such as equalizers, kernels, inter-
sections, inverse limits, and direct limits. Later we shall see that the knowledge
of which limits and colimits exist in a given category tells much about that
category, and knowledge of which limits or colimits are preserved or reflected
by a given functor tells much about that functor.

§16 EQUALIZERS AND COEQUALIZERS

Equalizers
16.1 MOTIVATING PROPOSITION

s
If A =} Bis a pair of functions from the set A to the set B, then the embedding
a
e of the set

100
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E = {ae A]|f(a) = gla)}
into A has the following properties:

(1) e: E - A is a function;
() foe=goe;

(3) For any function e': E' — A such that fo ¢ = go €', there exists a unique
Junction &: E' — E such that the triangle

=l

By<-e- oo oe- by
"l
‘\-
X

commutes. [}
16.2 DEFINITION
Let A é{ B be a pair of €-morphisms. A pair (E, €) is called an equalizer in
€ of fand ggprovided that the following conditions hold:
(1) e: E - A is a $-morphism;
@ fee=goe;

(3) For any ¥-morphism e': E' -+ A such that fo e’ = goe’, there exists a
unique €¢-morphism &: E' — E such that the triangle

k.

~l
ty €=
) l
RN

commutes.

pUALLY: If c: B = C, then(c, C)is called a coequalizer in € of a pair 4 5 B
g
if and only if cof = cog and each morphism ¢’ with the property that
¢’ o f = ¢’ - g can be uniquely factored through c.
163 EXAMPLES

(1) If € is one of the categories Set, Grp, R-Mod, or Top and if 4 -i: B are

g9
%-morphisms, then if E denotes the set {a € 4| f(a) = g(a)} considered as a
subset (resp. subgroup, submodule, subspace) of 4 and if e: £ — A is the
inclusion map, then (E, €) is an equalizer of fand g.

(2) If € is one of the categories Set or Tap (resp. Grp or R-Mod) and if A4 :f:; B

]
are ¢-morphisms, let Q be the smallest equivalence relation (resp. congruence)
on B that contains all pairs (f(a), g(a)) for ae 4, let C be B/Q with the
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appropriate induced structure, and let ¢: B - C be the induced quotient map.
Then (¢, C) is a coequalizer of f and g.

(3) Let € be the category of locally connected spaces and continuous functions.
If X é{ Y are ¢-morphisms, and E = {x | f(x) = g(x)} is supplied with the
coarsegst locally connected topology for which the inclusion e: £ - X is con-
tinuous, then (E, ¢) is an equalizer in € of fand g.
16.4 PROPOSITION

If (E, e) is an equalizer of A %’., B, then (E, e) is a subobject of A.

Proof: We must show that e is a monomorphism (6.22). Suppose that
eor = eos. Thenfo(eor) = ge(eor)so that by the definition of equalizer,
there is a unique morphism 7 such that e o t = e o r. But each of s and r is such
a morphism; hence s = r. Thus e is 4 monomorphism. []

16.5 PROPOSITION (UNIQUENESS OF EQUALIZERS)
S
Any two equalizers of A —3 B are isomorphic subobjects of A.

Proof: If each of (E, e) aynd (E, &) is an equalizer of f and g, then by the
definition of equalizer there exist unique morphisms p and g such thate = éop
and é = eoq. Thus (E, ) < (£, é) and (£, é) < (E, e); i.e., (E, e) and (£, é)
are isomorphic subobjects of 4 (6.23). []

166 The above proposition shows that there is no essential difference between

. . s .
two equalizers of a pair of morphisms 4 =3 B. Because of this, we often speak

9
(loosely) of the equalizer of f and g [denoted by Equ(f, g)]. The notation
(E, e) = Equ(f, g) will be used to mean that the subobject (£, e) of 4 is an
equalizer of f and g. [Somectimes this is abbreviated (inaccurately) to e =

Equ(f, 9).]
DUALLY: Coeq(/, g); (¢, C) = Coeq(f, g) or ¢ = Coeq(f, g).

16,7 PROPOSITION
If (E, &) =~ Equ(f, g), then the following are equivalent :

mf=g
(2) e is an isomorphism.
(3) e is an epimorphism.

Proof:

()= (2). Iff=g,thenf-1l = gol so that there is a morphism s such that
eos = |. Hence e is a retraction and (since (E, e) is a subobject) a monomor-
phism; hence an isomorphism (6.7).

(2) = (3). Trivial.

(3) = (I). Since e is an epimorphism, fc e = g - ¢ implies that f = g. [}
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Up to this point nothing has been said about the existence of equalizers of
pairs of morphisms with common domain and common codomain. It should be
stressed that one cannot, in general, assume that they exist within a given
category.

16.8 DEFINITION

A category € has equalizers provided that every pair of €-morphisms with

common domain and common codomain has an equalizer.

DUAL NOTION: has coequalizers.
169 EXAMPLES

(1) Each of the categories Set, Grp, R-Mod, and Top has equalizers and
coequalizers.

(2) The category of all sets, with at least two members and functions between
them, has neither equalizers nor coequalizers.

16.10 DEFINITION

() If (1);er is a non-empty indexed family of morphisms contained in
homg(A, B), then (E, e) is said to be a multiple equalizer of (4,),, denoted by
(E, &) = Equ((h),), provided that:
(i) e: E— A;
(ii) Foralli,jel hjoe = hjoe;
(iii) If e': E” = A such that h;o e’ = h; ¢’ for all i, j € I, then thereis a

unique morphism é such that ec é = ¢'.

(2) A category € has multiple equalizers provided that each non-empty indexed
family of morphisms that have a common domain and a common codomain,
has a multiple equalizer.

DUAL NOTIONS: multiple coequalizer; has multiple coequalizers.

16.11 PROPOSITION
Each multiple equalizer is a subobject. [

16.12 PROPOSITION (UNIQUENESS OF MULTIPLE EQUALIZERS)
Any two multiple equalizers of the same family of morphisms are isomorphic
subobjects. [

Regular Monomorphisms

16.13 DEFINITION

(MIFE-Ss Aisa %-morphism, then (£, ¢) is called a regular subobject} of A4
and e is called a regular monomorphismtt if and only if there are €-morphisms
S and g such that (E, ¢) =~ Equ(/, g).

1 Sometimes only the object £ is (inaccurately) called a regular subobject of A if there is some e
such that (E, e) is a regular subobject of A.

1t The reason for not calling these special morphisms *‘equalizers™ lies in the fact that this
would lead to undue confusion when we define what it means for a functor to preserve equal-
izers. It will turn out that a functor may preserve regular monomorphisms without preserving
equalizers (see Exercise 24B).
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(2) A category is called regular well-powered provided that each €-object has
a representative set of regular subobjects.

DUAL NOTIONS: regular quotient object; regular epimorphism; regular
co-(well-powered).

16.14 EXAMPLES

(1) In Set, Grp, R-Mod, and CompT, the regular monomorphisms are precisely
the monomorphisms and the regular epimorphisms are precisely the epi-
morphisms. [To see that monomorphisms in Grp are regular, see Exercise
6H(a).]

(2) In Top the regular monomorphisms are the embeddings (i.e., homeo-
morphisms into) and the regular epimorphisms are the topological quotient
maps (i.e., surjective identification maps).

(3) In Top, the regular monomorphisms are precisely the closed embeddings.

[If X L, Yisaclosed embedding (i.e., a homeomorphism onto a closed subset),
thenlet Y, = Y, = Y, let Y, LI Y, denote the disjoint topological union of Y,
and Y,, let

n Y, -vY,uy,

for i = 1, 2 be the corresponding embeddings, and let
gy uyY,-2

be the quotient map that identifies for each x € X the two points u;(f(x)) and
p2(f(x)). Then Z is Hausdorff and (X, /) = Equ(q e py, q ° u3).]

(4) In Mon, SGrp, and Rng there are monomorphisms that are not regular
monomorphisms; e.g., the inclusion Z& Q.

16.15 PROPOSITION
In any category €:

(1) every €-section is a regular monomorphism in € ; and
(2) every regular monomorphism in % is a €-monomorphism.

Proof: (2) is immediate from Proposition 16.4. To show (1), assume that

A L, Bis a section. Then there is a morphism B < A such thatgef = 1,.
We claim that (A4,f) = Equ(lg, fog). Clearly lgof = fol, = fogolf.
Also if r is a morphism such that lger = (fog)eor, then r = fo(gor).
Thus r factors through f. The factorization is unique since f (being a section) is a
monomorphism (6.6). Hence, fis a regular monomorphism. []

In general, regular monomorphisms lie strictly between sections and
monomorphisms since, for example, in Top any bijective function from a
discrete space to a non-discrete space is a monomorphism that is not regular,
and the embedding of the unit circle into the unit disc is a regular monomorphism
that is not a section. In general, regular monomorphisms fail to satisfy certain
of the convenient conditions whose analogues have already been established for
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monomorphisms and sections; for example (even in the “respectable™ category
SGrp) the composition of regular monomorphisms is not necessarily a regular
monomorphism and if f = g o /i is a regular monomorphism, / is not necessarily
a regular monomorphism (see Exercises 16J and 34K). Nonetheless, we do have
the following convenient characterization of isomorphisms in terms of regular
morphisms.

16.16 PROPOSITION
For any morphism f, the following are equivalent :

(1) fis an isomorphism.
(2) [ is a regular monomorphism and an epimorphism.
(3) fis a regular epimorphism and a monomorphism.

Proof: Since every isomorphism is a section, and each section is a regular
monomorphism, (1) implies (2). That (2) implies (1) is an immediate consequence
of Proposition 16.7. Clearly (3) is the dual of (2), and (1) is self-dual. []

Kernels

An important special case of equalizers and coequalizers in Grp and
R-Mod has been observed quite early—the concepts of kernels and cokernels.

'16.17 DEFINITION
Let € be a pointed category.

(1) IfA L. Bisa ©-morphism and if 0, is the unique zero morphism from
A to B, then (if it exists) Equ(f, 0,p) is called the kernel of /. Notation: Ker(f).

(2) € is said to have kernels provided that Ker(f) exists for each f'e Mor(%).
BAIfK X disa ©-morphism, then (KX, k) is called a normal subobject of A,
and k is called a normal monomorphism provided that there is some morphism
fin € such that
(K, k) = Ker(f).
DUAL NOTIONS: the cokernel of f; Cok( f'); has cokernels; normal quotient
object; normal epimorphism.

16.18 EXAMPLES

) IfAa ZiBisa morphism in Ab, R-Mod, pSet, or pTop, and if @ is the
distinguished element of B, then

'[{03), D) = Ker(f) and (8, Bif[A]) = Cok()),
where i is the inclusion and & is the natural map from B to the quotient. Thus,
these categories have kernels and cokernels.

(2) The normal monomorphisms in Grp are (up to isomorphism)the embeddings
of normal subgroups. Hence in Grp a regular monomorphism need not be
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normal. Also in Grp, the composition of normal monomorphisms is not neces-
sarily normal. [If A, is the alternating group on the four elements 1, 2, 3, and 4,
then

Ve = {(1), (12)(34), (13)(24), (14)(23)}

is a normal subgroup of A, and
Z, = {(), 12(34)}

is a normal subgroup of V,, yet Z, is not normal in A4,.]

EXERCISES

16A. If A .f_; B are €-morphisms, show that the following are equivalent:
@ f=9
(b) (A, 1,) = Equ(/, g).
(¢) For each isomorphism C 24 = Equ(f, g).
16B. Suppose that m is a monomorphism and that m o fand m o g are defined.
Show that the following are equivalent:

(a) (€, ) = Equ(/, g).
-(b) (E, e) = Equ(me f, mog).

16C. Show that if & has equalizers and [ is the category E_M’:k% , then there
n
exists a functor F: ¥’ — ¥ and a natural transformation e = (ep) from F to the
evaluation functor relative to 1, E(_, 1): ¢! — € such that for each D: / — € the
pair (F(D), ep) is an equalizer of D(m) and D(n).
16D. Show that BanSp, and BanSp, have equalizers.

I6E. Show that the category of torsion free abelian groups has coequalizers
and that they are formed by factoring out the torsion subgroup after forming the
usual coequalizer in Ab.

i6F. Show that any non-trivial group (considered as a category) does not have
equalizers.

16G. Suppose that € has equalizers. Prove that f is a ¥-epimorphism if and
only if whenever f = mog and m is a regular monomorphism, then m is an iso-
morphism.

16H. Determine the regular monomorphisms in POS.

161. Prove that if g o f is a regular monomorphism and f is an epimorphism,
then fis an isomorphism.

16]. (a) Show that .
:\-\<\\
TL——/ )

=
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is a category and conclude that the composition of regular monomorphisms is not
necessarily a regular monomorphism.

(b) Construct a category to show that if g < & is a regular monomorphism, then 4 is
not necessarily a regular monomorphism.

16K. Prove that if fis a morphism in R-Mod, then the following are equivalent:
(a) fis an injective function on the underlying sets.
(b) fis a monomorphism.
(c) fis a regular monomorphism.
(d) fis a normal monomorphism.

16L. Kernels in Pointed Categories
(a) Show thatif X XL Xisa morphism and X JL,visa monomorphism in a pointed
category, then the following are equivalent:

() (K, k) = Ker(f).

(ii) K is a zero object.
(b) Show that each non-empty pointed category that has kernels has a zero object.
(c) Show that the following conditions are equivalent for the categories R-Mod and
Grp, but not for Mon or pSet.

(i) £: X = Y is a monomorphism.

(ii) Ker(f) = (0, Opy)

(where 0 is the zero object and Oy is the zero morphism from 0 to X).
(d) Show that for each morphism f in a category that has a zero object 0,
Ker(Ker(f)) = 0.

16M. 1If % is pointed and has kernels, show that there is a functor K: 6* - €
such that for each fe Ob(%?), there is a morphism k, such that (K(/), k) =
Ker(f).

16N. Let (¥, U) be a concrete category. Prove that
(a) € is regular co-(well-powered). [Associate with each regular epimorphism
e: A — B the equivalence relation

{(a,b) | a, be U(A) and Ule)a) = Ule)(b)}.]

(b) € is regular well-powered.

160. (a) Prove that the forgetful functor from any of the categories Grp,
R-Mod, SGrp, Mon, Lat, BooAlg, or CompT, into Set preserves and reflects regular
epimorphisms.

(b) Prove that the forgetful functor from any of the categories Top, Top,, or POS
into Set preserves but does not refiect regular epimorphisms.
(c) Let U: Cat — Set be the forgetful functor that associates with each small category

its set of morphisms. Prove that U neither preserves nor reflects regular epimorphisms
(cf. Exercise 11C).

§17 INTERSECTIONS AND FACTORIZATIONS

Intersections

17.1 MOTIVATING PROPOSITION
If for each i € I, A, is a subset of the set B and m;: A;S B is the inclusion,
then the intersection nA; and its inclusion d into B have the following properties:
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(1) d: nA; = B is a function;

(2) for each i€l there is a function d;: nA; - A, with the property that
m i° d i = d N

(3) ifg: C —» Band foreachiel, g;: C - A;such that m; g, = g, then there
exists a unique morphism f: C — nA; such that the triangle

o)

~

(.._--_.-_

MNA,—'B

commutes. [

17.2 DEFINITION
If B is a €-object and (4,, m,), is a family of subobjects of B, then the pair
(D, d) is called an intersection in € of (4;, m,); provided that

(1) d: D - Bis a ¢-morphism;

(2) for each i e I there is a ¥-morphism d;: D — A; with the property that
myod, = d;

(3) ifg: C - Bandforeachie J,g;: C — A;such that m; o g; = g, then there
exists a unique €-morphism f: C — D such that the triangle

Do

SREEREEES
&l
]

commutes.
DUAL NoTION: Cointersection of a family of quotient objects.

17.3 PROPOSITION

Every intersection (D, d) of a family of subobjects (4;, m;); of an object B
is itself a subobject of B; i.e., d is necessarily a monomorphism. Furthermore
(D, d) is (up to isomorphism) the largest subobject (relative to the order < on
subobjects) that is smaller than each of the subobjects (A;, m;).

Proof: That d is a monomorphism follows from the uniqueness condition
in the definition of intersection (cf. 16.4). The last statement in the proposition
is immediate from the definitions of intersection and order on subobjects
6.23). O

For more about the relationship between intersections and the order relation
on subobjects, see Exercises 17A and 34E.

17.4 COROLLARY
Any two intersections of a family of subobjects of an object A are isomorphic
subobjects of A. [}
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Since, by the above corollary, any two intersections of a family of subobjects
of some object are essentially the same, we often speak (loosely) of the inter-
section of such a family.

17.5 DEFINITION

A category € has intersections (resp. has finite intersections) provided that
every set-indexed family (resp. finite family) of subobjects of each €-object has
an intersection.

17.6 EXAMPLES

(1) For any object B, the empty family of subobjects of B has an intersection,
namely (B, 15).

(2) If for each i € I, A, is a subset of the set B and m;: 4, B is the inclusion,
and if d: nA;< B is the usual inclusion, then (nA4,, d) is the intersection in
Set of the family (4;, m,); of subobjects of B.

(3) In a manner similar to that used for sets in (2), the “‘usuval’ construction of
the intersection of a family of subgroups of a given group or of the intersection
of a family of subspaces of a given topological space can be shown to correspond
to the “‘categorical” intersections in Grp and Top respectively.

17.7 PROPOSITION
If € is well-powered and has intersections, then every (not necessarily set-
indexed) family of subobjects of any €-object has an intersection.

Proof: Let (4,, m)),; be a family of subobjects of B. Since € is well-powered,
there is a representative set-indexed subfamily of (4,, m;),. Clearly the inter-
section of the set-indexed subfamily is also the intersection of the original
family. [

Factorizations and Extremal Morphisms

17.8 PROPOSITION
If € is well-powered and has intersections and equalizers, then every

€-morphism A L, Bhasa Jactorization
ALB=4SCcB
where e is an epimorphism and m is @ monomorphism.

Proof: Let (D,, m;); be the family of all subobjects of B which are part of
some factorization

AL B=4a2p "B

of f. By the above proposition (17.7), (D;, m), has an intersection (D, m),
which is itself a subobject (17.3). Now by the definition of intersection, there
exists a unique morphism e: 4 — D such that f = m o e.

To show that e is an epimorphism, let roe = soe, and let (E k) =
Equ(r, 5). By the definition of equalizer (16.2) there is a morphism s: 4 —» E
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such that e = ko /A Since k is a monomorphism (16.4), and since mono-
morphisms are closed under composition, (£, m - k) belongs to the family
(D, mp)y; ie., for some j € I, (E, m o k) = (Dy, m)). Thus,

mokod; =m;cd; =m=mo1l

so that since m is a monomorphism, k o d; = 1, i.e., k is a retraction (and a
monomorphism). Consequently, & is an isomorphism, so that r = s (16.7). [J

It often occurs that a morphism f can be written as a composition of an
epimorphism e followed by a monomorphism m in several essentially different
ways (cf. Exercise 17E). The factorization f = m - e constructed above is char-
acterized by the fact that the epimorphism e has an additional important property
defined below.

17.9 DEFINITION

(1) A morphism e is called an extremal epimorphism provided that it satisfies
the following two conditions:
(i) e is an epimorphism.
(i) (Extremal condition): If ¢ = mo f, where m is a monomorphism, then
m must be an isomorphism.

(2) If A <> B is an extremal epimorphism, then (e, B) is called an extremal
quotient object of A.

(3) A category is called extremally co-(well-powered) provided that each
%-object has at most a set of non-isomorphic extremal quotient objects.

DUAL NOTIONS: extremal monomorphism; cxtremal subobject; extremally
well-powered.

17.10 EXAMPLES

(1) In the categories Set, Grp, and R-Moed, extremal epimorphisms are the
same as epimorphisms and extremal monomorphisms are the same as mono-
morphisms.

(2) In the category Top extremal epimorphisms are topological quotient maps
and extremal monomorphisms are (up to homeomorphism) embeddings.

(3) In the category Top, extremal epimorphisms are topological quotient maps
and extremal monomorphisms are (up to homeomorphism) closed embeddings.

(4) In SGrp and Rng extremal cpimorphisms are surjective homomorphisms
and there are monomorphisms that are not extremal.

(5) In BanSp, a morphism X 2, Y is an extremal epimorphism if and only if
it is a surjective bounded linear transformation and it is an extremal mono-
morphism provided that there is some m > O such that forall xe X

nlxlt < 7).
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17.11  PROPOSITION

Every regular epimorphism is an extremal epimorphism.

Proof:: Clearly every regular epimorphism is an epimorphism (16.15 dual).
Now suppose that 4 - B is a regular epimorphism and e = m o J, where m

is a monomorphism. We know that there exist morphisms r and s such that
(e, B) = Coeq(r, s). Thus

mofor:eor:eos:mofos

so that since m is a monomorphism, for = fo 5. Hence by the definition of
coequalizer, there exists a morphism 4 such that hc e = f. Thus

mohoe=mef=¢e= loe

so that since e is an epimorphism, m « & = 1. Thus m is a retraction and (by
hypothesis) a monomorphism. Consequently, m is an isomorphism. [

17.12 PROPOSITION

For any morphism f, the following are equivalent:
(1) fis an isomorphism.
(2) fis an extremal epimorphism and a monomorphism.
(3) S is an extremal monomorphism and an epimorphism.

Proof:

(I) = (2). This follows immediately from the facts that each isomorphism
is a regular epimorphism and a monomorphism (16.16) and that each regular
epimorphism is an extremal epimorphism (17.11).

(2) = (I). Suppose that fis an extremal epimorphism and a monomorphism.
Then f = f- 1, where fis a monomorphism, so that by the extremal condition,
S/ must be an isomorphism.

(1) > (3). This is immediate from the fact that (1) is equivalent to (2), (1) is
self-dual and (3) is the dual of (2). [

17.13 PROPOSITION
For any category €, the following are equivalent :

(1) € is balanced.
(2) Each 6-epimorphism is an extremal epimorphism.
(3) Each 6-monomorphism is an extremal monomorphism.

Proof:

(1) = (2). Ifeisanepimorphism and e = m o f, where m is a monomorphism,
then m is also an epimorphism (6.13), so that since % is balanced, m is an
isomorphism.

(2) = (1). Immediate from the preceding proposition (17.12).
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(/) <> (3). Immediate from the fact that (1) is equivalent to (2), (1) is self-dual
and (3) is the dual of (2). [

17.14 PROPOSITION
If € has equalizers and e is a 6€-morphism that satisfies the extremal condition
(ii) of Definition 17.9(1), then e must be an extremal epimorphism.

Proof: We need only show that e is an epimorphism. Suppose that r and
s are ¢-morphisms such that ree = soe. Let (K, k) = Equ(r,s). Then k is a
monomorphism (16.4) and by the definition of equalizer there is a morphism A
such that e = k o i. Hence, since e satisfies the extremal condition, & must be
an isomorphism. Thus r = 5 (16.7). []

17.15 DEFINITION
Let & and .# be classes of morphisms of a category €.

(1) A pair (e, m) is called an (&, .#)-factorization of a ¥-morphism f provided
that:
(i) f=m-oe

(i) ee &

(iii) me M
This is sometimes abbreviated by sayingthat f = m - e isan (&, .#)-factorization
of f.
(2) % is called an (&, .#)-factorizable category provided that each ¥-morphism
has an (&, .#)-factorization.
{(3) € is called a uniquely (&, .#)-factorizable category if and only if it is (&, .#)-
factorizable and for any two (&, .#)-factorizations f = moe = nio & of the
same €-morphism f, there exists an isomorphism /4 such that the diagram

AN
ENIZ

commutes.
(4) If .« is composed of monomorphisms, then (4, f) is called an .#-subobject
provided that f € .# and ¥ is called .#-well-powered provided that each €-object
has a representative set of .#-subobjects.

DUALLY: if & is composed of epimorphisms, we have the concepts: &-
quotient object and &-co-(well-powered).

In particular, if & is the class of all extremal epimorphisms (resp. regular
epimorphisms) of ¥ and .# is the class of all ¥-monomorphisms, an (&, .#)-
factorization is called an (extremal epi, mono)-factorization [resp. (regular epi,
mono)-factorization], and if & is the class of all €¥-epimorphisms and . is the
class of all extremal monomorphisms (resp. regular monomorphisms) in €,
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an (&, .#)-factorization is called an (epi, extremal mono)-factorization [resp.
(epi, regular mono)-factorization), etc.

17.16 PROPOSITION
If € is well-powered and has intersections and equalizers, then € is (extremal
epi, mono)-factorizable.

Proof: By Proposition 17.8 we know that each €-morphism f has an
(epi, mono)-factorization f = m ¢ e. By examining the proof of 17.8, it is easy to
verify that e also satisfies the extremal condition so that f = m o e is in fact an
(extremal epi, mono)-factorization of f. []

Later (§34) we will show that under the above hypotheses, € is even uniguely
(extremal epi, mono)-factorizable.

17.17 PROPOSITION
If the square
A—>B
! g

C——b

commutes and if e is a regular epimorphism and m is a monomorphism, then there
exists a morphism h: B — C such that the diagram

A—e>B

’,’
rl &7 |
I,,
I

C——D
m

commules.

Proof: Since e is a regular epimorphism, there are morphisms r and s
such that (e, B) =~ Coeq(r, s). Thus
,nc(for) = go(cor) =go(eos) =mo(feys),

50 that since m is a monomorphism, for = fos. Hence, by the definition of
coequalizer, there is a morphism /i such that f = / < e. Since e is an epimorphism,
it also follows that g = moch. [J

17.18 PROPOSITION
If a category € is (reqular epi, mono)-factorizable, then

(1) € is uniquely (regular epi, mono)-factorizable.
(2) The regular epimorphisms in € are precisely the extremal epimorphisms.
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Proof:

(I). Ifeachof f=moeandf=moeisa (regular epi, mono)-factorization
of £, then by proposition (17.17) there is a morphism / such that the diagram

N

WA

=
.

commutes. Being the first factor of the monomorphism m, /i must be a mono-
morphism (6.5). However, since @ is a regular epimorphism, it is an extremal
epimorphism (17.11). Thus by the extremal condition, /s must be an isomorphism.

(2). Immediate. [

A further treatment of extremal morphisms and factorizations appears in
Chapter IX.

EXERCISES

17A.  Let (X;, my); be a family of subobjects of the object X and let (D, d) be a
subobject of X such that
(a) for each i, (D, d) < (X;, m)) and
(b) if (£, €) is a subobject of X such that for each i/, (E, e) < (X;, m)), then (E, e) <
(D, d).
Show by means of an example that (D, d) is not necessarily the intersection of
(X, my),.

17B. Prove that if € is (epi, mono)-factorizable and fis a morphism that satisfies
the extremal condition (ii) of Definition 17.9(1), then f'is an extremal epimorphism.

17C. Prove that if fis an extremal monomorphism and /' = /1o g, then g must
be an extremal monomorphism (cf. Propositions 5.5 and 6.5 and Exercise 16J).

17D. Splitting of ldempotents
An idempotent in a category € is a ¥-morphism f: A —» A with the property that
fof = f. An idempotent f'is said to split provided that there is a factorization

AL, A=423B82, 4

where ros = 1

Show that the following statcments are equivalent for any category € and any
idempotent morphism A L aine.
() fsplits in 6.
(b) fhas a (retraction, section)-factorization in €.
(c) The morphisms fand 1, have an equalizer in %.
(d) The morphisms fand 1, have a coequalizer in €.

17E. Show that in the categories Top and Rng there arc morphisms f that have
two essentially different (epi, mono)-factorizations; i.e., f= moe and f= #io &
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where ¢ and ¢ are epimorphisms, m and m are monomorphisms, and there is no

isomorphism /i such that the diagram
X

7l
N

- > 42 mr

commutcs.

§18 PRODUCTS AND COPRODUCTS

18.1 MOTIVATING PROPOSITION

The cartesian product of a pair (A, B) of sets is a set P together with two
(projection) functions ny: P — A and ng: P — B with the property that if C is
anysetand f: C = A, g: C = B are functions, then there exists a unique function
h: C = P such that the diagram

commutes. [7]

18.2 DEFINITION

A %-product of a pair (4, B) of €-objects is a triple (P, 7, m5) where Pisa
%-object and m,: P - A, mp: P > B are ¢-morphisms (called projections)
with the property that if C is any ¥-objectand f: C — A, g: C — Bare arbitrary
%-morphisms, then there exists a wnigue ¥-morphism (usually denoted by)
{f, g>: C = P such that the diagram

A
Ak
{f

commutes.

Quite often the triple (P, n,, np) is denoted by 4 x B. Usually the symbol
A x Bis (inaccurately) used to stand for just the object P, rather than the entire
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product. It should be kept in mind, however, that a product is really a triple—
not just an object.

The notion that is dual to product is coproduct, the definition of which can,
of course, be readily obtained by forming the definition of product in ¥°? and
translating this back into a statement in ¥ (4.15). However because of its
importance and to make the notion explicit, we state the definition.

18.3 DEFINITION

A @-coproduct of a pair (4, B) of €-objects is a triple (u,, up, K) where Kis a
%-object and p,: A - K, py: B — K are ¥-morphisms (called injections) with
the property that if C is any ¥-object and f/: 4 — C g: B — C are arbitrary
¥-morphisms, then there exists a unigue ¢-morphism (usually denoted by)
[/, 9): K = C such that the diagram

A

I‘Al K
[f.9)

K-"2-sc

ual /

The triple (14, #g, K), and often just X, is usually denoted by 4 11 B.

commutes.

184 EXAMPLES

Category Ax B ALl B
§)] Set cartesian product disjoint union
) Grp direct product free product
3 R-Mod direct product direct sum
@) Top topological product  topological (disjoint) sum
(&) pTop topological product  topological sum with base
points identified
6 TopBung fibre product
(Whitney sum)
(7) commutative R-Alg  direct product tensor product 4 @4 B
(8) Cator¥s/d  product category (9L) sum category (9M)
(9) asingle partially infimum = AAB supremum =A4v B

ordered set (3.5(6))

It is clear that one can easily generalize the notion of products of pairs of
objects to the notion of finite products. However, as in set theory, it is useful to
consider products for arbitrary families of objects, to wit—
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185 DEFINITION

A €-product of a family (4,);.,; of €-objects is a pair (usually denoted by)
(A1 (M) satisfying the following properties:
(1) [(A});., is a €-object.
(2) foreachje I, n;: M(A));c; = A;isa€-morphism (called the projection from
M(A)ics to 4)).
(3) for each pair (C, (f})ics), (Where Cisa ¢-object and foreachj € 1,f;: C — A4))

there exists a unique €-morphism (usually denoted by) {f;>: C — TI(4);e;
such that for each j € 7, the triangle

commutes.

18.6 DEFINITION

A @-coproduct of a family (4,);., of €-objects is a pair (usually denoted by)
(e s U(A4)icp) satisfying the following properties:
(1) U(A)ic, is a G-object.
(2) for each je I, p;: A; = (A);e; is a €-morphism (called the injection
from A; to LI(4);)
(3) for each pair ((f)icp C), (where C is a ¥-object and for each jel,
J;: A; = C) there exists a unique ¢-morphism (usually denoted by)

[f): W(A)ies = C

such that for each j e /, the triangle

WA, 7777 >C

commutes.
18.7 For simplicity one often writes (l"IA o (@) or (I1A,, ;) or sometimes even

(inaccurately) I14; alone when denoting a product of the family (4);¢,. (Dually:
(), L’lAi), (#;, UA)), and L14,.) Also, when for each i € I, A; = B, then I14;

is called the Ith power of B and is denoted by B’. In this case the unique mor-
phism {(15),>: B = B! is called the diagonal morphism and is denoted by
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Ag, or simply A. (Dually: Ith copower of B; ' B; codiagonal morphism; V; V.)
Notice that when I = {l, 2},

(I;IA.', (my)
is “‘essentially the same” as
(Al x AZ’ nAlv nAz)’

so that this justifies the above definition for the generalization of the notion of
“product of pairs™.

18.8 EXAMPLES

(1) X is a ¥-terminal object if and only if (X, &) is a product of an empty
indexed family of €-objects.

(2) If A is a €-object, then (P, f) is a product of the self-indexed set {4} if and
only if f: P —+ A is a ¥-isomorphism.

(3) Products and coproducts of arbitrary families of objects in the categories
Set, Grp, R-Mod, and Top have the same names as those given in 18.4,

{(4) The categorical product in the category of abelian torsion groups is not the
group-theoretic product but is the torsion subgroup of the group-theoretic
product. The coproduct, however, is the direct sum.

(5) The categorical product in the category of locally connected spaces is not
the topological product but is the cartesian product of the underlying sets
supplied with the coarsest locally connected topology that is finer than the usual
product topology. The coproduct in this category, however, is the (disjoint)
topological sum.

(6) The coproduct in the category CompT, of compact Hausdorff spaces is
not the topological sum but is the Stone-Cech compactification of the topological
sum. The product in this category, however, is the topological product.

189 PROPOSITION (SIMULTANEOUS CANCELLATION)
h
If (A, n,) is a product of (A);.; and if C ?’ T1A4; are morphisms with the

property that for eachie I, ;o h = n; ok, then h = k; i.e., “projections, acting
in unison, act monomorphically”.

Proof: Foreachi,letf; = n; o h = =m; o k; then by the uniqueness condition
in the definition of product, # = {(f;> = k. []

Returning for a moment to the category of sets, consider an infinite set A,
the set
Ax A={ab)la,be A},
and the set
A = {f: {0, 1} > A}.

Now each of 4 x A and A2 is commonly called rhe product of A with itself,
yet these sets are quite different. At first glance one might think that they are
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regarded as “‘essentially the same™ because there is a bijection g: 42 - 4 x 4
[defined by g(f) = (f(0), f(1))). However, since A is infinite, there is also a
bijection from 42 to 4, and clearly 4 has no claim to the title “the cartesian
product of A with itself”. What has been forgotten is the fact that each of
A% and A4 x A has projections associated with it: #,: A> - A defined by
S fQ); #,: A> - A defined by fi-f(1); n,: A x A - A defined by
(@, b)—a; and n,: A x A — A defined by (a, b) + b. The reason that the
triples (42, #,, #,) and (4 x A, m,, m,) are thought of as “‘essentially the same”
is because the bijection g: 4> - A4 x A4 “respects” these projections; i.e., for
= 1, 2 the triangle

A”—)AXA

commutes.

A similar “‘essential uniqueness” holds for any categorical product, as the
following proposition shows:

18.10 PROPOSITION (UNIQUENESS OF PRODUCTS)
N
If each of (114, =) and (T1A,, &) is a product of (A,);., then there exists
Fay
a unique isomorphism s: TNA; = TIA, such that for each j € I, the triangle

A, —>ITA

N/

Proof: By the definition of product there exist unique morphisms s and ¢
such that for cach j € / the diagram

commutes.

commutes. Hence for cach je /,
nie(les) =nm; = mie lna,

Thus by the cancellation property (18.9), r - s = 1y;,,. Similarly it can be shown
that st = 175,. Consequently, s is an isomorphism. []

18.11 COROLLARY
Any two terminal objects of a category are isomorphic (cf. 7.8). [
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Because of the essential uniqueness of products, one often speaks of the
product of a family of objects rather than a product of the family and similarly
for coproducts.

It is well-known that for many concrete categories, the projection morphisms
are surjective and the injection morphisms are injective. This is not always the
case. For example in Set the projection N x ¢ — N is the empty function,
which is not surjective; and in the category of commutative rings the coproduct
QUZ, = Q®;Z, = 0, so that the injection Q — Q LI Z, is not injective.
However, we do have the following:

18.12 PROPOSITION
If € is a connected category, then every projection morphism in € is a
retraction (and dually, every injection morphism is a section).

Proof: Suppose that zi;: [14; — A; is a projection morphism. For each
iel i # jletf;: A » A, be any morphism and let f;: A; — A; be 1, . Then
by the definition of product there exists {f;>: 4; - MA; such thatn; < {f;> = 1,,.
Hence n; has a right inverse. []

18.13 PROPOSITION (ITERATION OF PRODUCTS)

Let (K),.; be a pairwise disjoint family of sets. Suppose that for each
i€ I (P, (niek) is the product of the family (X\)y cx, of €-objects and that (P, m;)
is the product of the family (P%);.;. Then (P, (o T)ic1.xex,) is the product of

(Xke v, &,

Proof: Clearly for each i € 7and k € K, n o n,: P — X,. Suppose that C is
a G-object and for each ie [/ and k € K, f: C - X,. By the definition of
product, for each i € I there exists a unique morphism (fi>: C — P'such that
for each k € K, 7l o (/> = fi. Again by the definition of product, there exists
a unique morphism ({f{»>: C = P such that for each i € I, m; (/i = {fiD).
Hence for each i € / and k € K; the diagram

1P
«riy” lw,

C __.(_f.k.).) P:

\ [
X

commutes. Since each (P', (n})) is a product, the uniqueness of <{f») is readily
established. Hence (P, n} o ) is the product of the X,’s. []

18.14 PROPOSITION

If (A, =) and (T1B;, p) are products of the families (A}); and (B)),,
respectively; and if for each i € I there is a morphism A, [N By, then there exists a
unique morphism (usually denoted by) T1f; that makes each square
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ns
I'IA,- """ > IIB‘

commute. [ ]

18.15 DEFINITION
The morphism I1f; of the above proposition is called the product of the
morphisms (f}),. If I = {1, 2, ..., n}, If; is sometimes written f; x f; x --- x f,.
DUAL NOTIONS: 1 f; is the coproduct of the morphisms (f}), f, LI/> 11 - - - LI /,.
18.16 PROPOSITION
In any category the product of
(1) retractions is a retraction.
(2) sections is a section.
(3) isomorphisms is an isomorphism.
(4) monomorphisms is a monomorphism.
(5) constant morphisms is a constant morphism,.
Proof: For cach i€l let f;: A; > By, let (I14;, n;)) be the product of

(4)); and (1B, p,) be the product of (B;);. Then for each je I we have the
commutative square

ny
HA,' E— ]TB‘

Aj —f—)BJ
J

(/). If for each f, there is some g; such that f;-g; = lg,, then by pasting
together commutative squares we see that for each je 7

p;o(If)o (Mg = J; °gjcp; = p; = pj° lpg,
Hence by the simultaneous cancellation property for the p;’s, we have that
(Mf) o (Mg} = lgg,; i.e., T1f; is a retraction.
(2). Analogous to (1).
(3). (1) and (2).
(4). If h and k are morphisms such that (T1f}) o &/ = ([1f;) o &, then for each
Jelp;jo(Ifyoh = p;o(Tf) o k,sothatforeachje I, fiomyoh = fjom, o k.
Since each f; is a monomorphism and since the n;’s in conjunction are left-
cancellable (18.9), it follows that & = k.

(5). Exercise. [}




122 Limits in Categories Chap. VI

18.17 PROPOSITION
If for each i € I,

(Ei’ ei) X Equ(.fiv gl’)
and if Ne,, [1f, and Ng; exist, then
(IE, Me;) = Equ(Ilf, Ig)).
(1.e., the product of equalizers is an equalizer of the product.)

Proof: For each j € I, consider the diagram

Me; nf‘
NME, — >4, —3 08B,

g,
It
e, £
E;, ——A; /3 B;
b
where n;, p;, and o; are projection morphisms. For each j, f;oe;om; =
g; € o ny implies that ;o If; o Me; = g < Mg, o Ie;, so that by the cancella-
tion property for projections, FIf;oIle; = Ilg; o ITe;, Now suppose that
chL MA,; is a morphism such that TIf;o/ = Tlg,o h. Then for each j,
Jio(pyoh) = g;o(pjeh). Thus since (E;, e;) =~ Equ(f}, g;), for each j, there
exists a unique morphism C L, E;such thate; o k; = p; o h. By the definition
of product, there is a unqiue morphism {k;>: C — TIE; such that for each j,
k; = m;o k).

T

Hence, for each j, p; e [le; o {k;)> = p; < h, so that by the cancellation property
Me; o (k;> = h. Also (k;> is unique with respect to this property because
e, is the product of monomorphisms and is thus a monomorphism (18.16). []

18.18 DEFINITION
A category € has products (resp. has finite products) provided that for every
set (resp. finite set) J, each family of €-objects indexed by 7 has a ¥-product.

DUAL NOTIONS: has coproducts; has finite coproducts.

18.19 PROPOSITION
In any category €, the following are equivalent:
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(1) € has finite products.
(2) € has a terminal object and a product for each pair of objects in 6. []
18.20 PROPOSITION

In any category that has products, the product of a family of regular mono-
morphisms is a regular monomorphism.

Proof: See Proposition 18.17. [
18.21 EXAMPLES
(1) The following categories have both products and coproducts: Set, Grp,
R-Mod, Top.

(2) The category Field has neither finite products nor finite coproducts. (See
Exercise 18L).

(3) NLinSp and BanSp, each have finite products but not (arbitrary)
products. (See Exercise 18M.)

(4) A partially-ordered set (considered as a category) has products if and only
if it has coproducts if and only if it is a complete lattice. (Indeed, we have the
following:)

18.22 THEOREM (FREYD)
For any small category €, the following are equivalent :
(1) @ has products.
(2) € has coproducis.
(3) € is equivalent to a complete lattice.
Proof: If € is a complete lattice considered as a category, and (4,), is a
family of €-objects, it is clear that
I14; = inf(A)
1 1
and
];'Ai = sup(A;).
I

Since a complete lattice is a skeletal category, categories are equivalent provided
they have isomorphic skeletons, and products are unique only up to commuting
isomorphisms, we have that (3) implies (1) and (3) implies (2). If a small category
% has products, then ¢ is a quasi-ordered set, considered as a category. For
suppose to the contrary that A ::: B are distinct €-morphisms. Let / be the
cardinal number of Mor(€), and for each function f: / — {0, 1} and each
iel let

fo g g lg 0TS =0

A= Bbe i i) =
By the definition of product, for each f, {(r{>: A — B'. Now if f # f, then for
some jel, f(j) # f(j) so that since g # h, m;o<rf> # m;0 (r{). Thus
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{rly # (rf). Consequently there are at least 2’ different morphisms from A
to B!, which is impossible. Since € is a quasi-ordered set, any skeleton, &, for
it is a partially-ordered set, and, since € has products, & has infima. Thus it is a
complete lattice. Hence (1) implies (3). Analogously (2) implies (3). [

18.23 PROPOSITION
: , , I
Suppose that for each iel, D; =5 Dg is the equalizer of D, :",A b

(T1A,, (r)) is the product of the family (A), and f = {f;y: Dy — N4, and
g = {g>: Do = IA; are the unique morphisms induced by the product. Then
(C, d) is the equalizer of [ and g if and only if it is the intersection of the family
(Dy, ey

Proof: If (C, d) =~ Equ(/f, g), then for each i, f;od = g, d implies that
there exists a unique morphism /;: C — D; such that d = e; o /;. Now suppose
that (K M, D) and X LN D, are morphisms such that for each i, e;o h; = k.
Then for each i,

mogok = giceoh; = ficeohy = mnofok,

so that by the cancellation property for projections, g e k = f» k. Hence since
(C, d) is the equalizer of f and g, there exists a unique morphism p: K - C
such that d o p = k. Thus (C, d) is the intersection of the family (D,, e¢)),.

D, __,nA
/I" T,
k g,
K A;
Conversely, if (C, d) is the intersection of the family (D,, e));, then for each i
there is a morphism /;: C — D, such that d = e, /,. Hence, for each i,
miofod = fioeoly=gioecl =mogod

Again by the cancellation property for projections, we have fed = g o d. Now
suppose that & is a morphism such that fo &k = g o k. This implies that for each i,
Jiok = gy k so that there exist morphisms /i, such that e; o 1; = k. But by
the definition of intersection, there exists a unique morphism p such that

dop=k.
Thus (C, d) =~ Equ(f, g). [

18.24 COROLLARY
If € has products, then every intersection of regular subobjects in € is a

regular subobject. []
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1825 COROLLARY
If € has products (resp. finite products) and equalizers, then € has inter-
sections (resp. finite intersections) of regular subobjects. []

EXERCISES

18A. If the category ¥ has finite products, show that there is a bifunctor
— X 1% x € — ¥ defined by:

—x _(A,B)= A x B,
and if
A= A and g:B—- B
_x_(fig)=fxg:Ax B— A x B,
where f x g is the unique morphism which makes the diagram

A—[———>A'

w,,T - T""'

commute. Dually, if € has finite coproducts, show that there is a bifunctor — 11 _:
%€ x € — ¥, which assigns 10 each pair of €-objects (4, B) the coproduct 4 II B.
(Cf. 9.8 and 91.)

18B. Suppose that € has finite products, Be Ob(%), and _ x B: ¥ - € is

the left associated functor (with respect to B) of the functor described in 18A. Show
that the family (7 )4 eone) is @ Natural transformation from __ x B to 1.

18C. Show that if & has products and if F: ¢ — 4, then for each set I, there
is an induced functor F': € — &, defined by
Fi(4) = (F)),
for each A € 0H(%).
Fi(f) = U F(N): (F)Y - (F(BY,

foreach4 -2, Be Mor(€).

18D. If (A4,);; is a set-indexed family of €-objects, prove that the following are
equivalent: :
(a) (P, (m)) is a €-product of (A4)).
(b) For each B € O(%), the function hom (B, P) — [] hom(B, A,), defined by:
1

BL P (mio e
is bijective (where [T hom(B, A)) is the cartesian product in Set and (7, o f);; is the

1
unique element of the cartesian product whose ith coordinate is x; o ). Conclude
that categorical products can be defined in terms of cartesian products of sets (cf. 6B).



126 Limits in Categories Chap. VI

18E. Suppose that (P, (7)) is the product in € of the family (4;) and that
f:B- P
(a) Prove that fis a constant morphism if and only if 7, o f is a constant morphism
for each /.
(b) Show that if there is some i such that 7;  fis a monomorphism (resp. section), then
fis a monomorphism (section).

] 18F. Suppose that A is a €-object, K and L are sets such that (F # K < L and
A* and A" are powers of A. Show that A* can be considered as being simultancously a
subobject of A* and a quotient object of A by exhibiting a section s and a retraction r
such that

AY AR D AN = ).
18G. Show that the product of epimorphisms is not necessarily an epimorphism.

18H. Prove that the product of multiple equalizers is the multiple equalizer of
the product (cf. 18.17).

181. Let X be a 6-terminal object. For each ¢-object A prove that the product
{object) X x A exists and is isomorphic to A.

18J. Show that X is a terminal object in Set if and only if each Set-object is a
copower of X.

18K. Show that any non-trivial group considered as a category does not have
finite products.

18L. Let % be a category such that:

(2) every morphism is a monomorphism; and
(B) there exist two distinct morphisms with the same domain and the same codomain.

(a) Prove that ¥ does not have finite products.
(b) Prove that % does not have finite coproducts.
(c) Conclude that Field has neither finite products nor finite coproducts.

18M. Let A and B be Banach spaces.

(a) If Pis the cartesian product of A and Bsupplied with the sup-norm (i.e., |[(a, b)!! =
sup{la, {lb; }), show that (P, n,, mg) is a product of A and B in NLinSp, BanSp,,
and BanSp,.

(b) If Q is the cartesian product of 4 and Bsupplied with the sum-norm (i.e., }(a, b){ =
‘a’ + b)), show that (Q, m, ny) is a product of 4 and B in NLinSp and in BanSp,
but is not a product of A and B in BanSp,.

(c) Show that neither of the categories NLinSp and BanSp, has products.

§19 SOURCES AND SINKS

As we have seen, the product of a family (X;); of objects in a category is
defined to be a pair (11X, (7;),); where I'.X; is an object and (r;), is a family of
morphisms with common domain I1.X,, satisfying certain conditions (such as
acting “'in concert” monomorphically). Such families of morphisms with com-
mon domain (or dually with common codomain) appear frequently and thus
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deserve special attention. In this section we will provide some of the necessary
details that will look rather technical at first sight, but that will turn out to be
very useful.

Mono-Sources and Epi-Sinks
19.1 DEFINITION

(1) A source in € is a pair (X, (f;);), where X is a ¥-object and (f;: X — X)),
is a family of ¥-morphisms each with domain X. In this case X is called the
domain of the source and the family (X)), is called the codomain of the source.
[To simplify notation a source (X, (f}),) is often denoted oy (X, f7).]

(2) A source (X, /) is called a mono-source provided that the f; can be simul-
taneously cancelled from the left; i.e., provided that for any pair Y _—'_t X of
s

morphisms such that f; o r = f; o s for each , it follows that r = s.

(3) A source (X, f)) is called an (extremal mono)-source provided that
(i) it is a mono-source, and
(ii) (Extremal condition): for each source (Z, g;) and each epimorphism e
such that for each i, the triangle

x—t sy,
Y
A
commutes, ¢ must be an isomorphism.

DUAL NOTIONS: sink in €; (f;, X); codomain of a sink; domain of a sink;
epi-sink; (extremal epi)-sink.

19.2 EXAMPLES

(1) (X, &) is a mono-source if and only if for each object Y there is at most one
morphism from Y to X. (Hence, in case the category is connected, this is
equivalent to the condition that X is a terminal object.)

(2) (X, /) is a mono-source if and only if fis a monomorphism. It is an (extremal
mono)-source if and only if f/is an extremal monomorphism.

(3) Each product (I1X;, ;) is a mono-source (18.9). In fact each product is an
(extremal mono)-source (Exercise 19D).

(4) Let (f;, X) be a sink in one of the categories Grp, SGrp, or R-Mod. Then
(f:» X) is an (extremal epi)-sink if and only if the union of the set-theoretic
images of the homomorphisms f; generates X in the usual algebraic sense.

(5) Let (X, 1) be a source in Top. If (X, /) is an (extremal mono)-source, then X
has the weak (i.e., coarse) topology with respect to the continuous functions f;.
Conversely if (X, f;) is a mono-source, then it is an (extremal mono)-source if X
has the weak topology with respect to the functions f;.
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(6) Let (f;, X) be a sink in Top. If (f;, X) is an (extremal epi)-sink, then X has
the strong (i.e., fine) topology with respect to the continuous functions f;.
Conversely if (f;, X) is an epi-sink, then X has the strong topology with respect
to the functions f; only if (f;, X) is an (extremal epi)-sink.

19.3 PROPOSITION
Let (X, f) be a source, (I1X;, n;) be the product of the codomain (X}) of the
source, and f+ X — T1X,; be the unique induced morphism for which all triangles

=45
——— X,
f; [""
X,

commute. Then

(1) (X, f) is a mono-source if and only if f is a monomorphism.

) (X, f) is an (extremal mono)-source if and only if f is an extremal mono-
morphism.

Proof: (1) is immediate since ([1X;, ;) is a mono-source. It is also clear
that if (X, f;) is an (extremal mono)-source, then fis an extremal monomorphism.
To show the converse, suppose that f is an extremal monomorphism; (Y, g,)
is a source and e is an epimorphism such that for each i the triangle

x—L sy,
N
Y
commutes. By the definition of product, there is a unique morphismg: Y — I1X;

such that for each i, g; = m; o g. Now since (I1X,, n;} is a mono-source, this
implies that the diagram

X,
X g X
\ A
Y

commutes. Thus since f is an extremal monomorphism, ¢ must be an iso-
morphism. []

19.4 PROPOSITION
If € has coequalizers and (X, f3) is a source in € which satisfies the extremal
condition (ii) of Definition 19.1(3), then (X, f;) must be an (extremal mono)-source.

Proof: Analogous to the proof of Proposition 17.14 dual. []
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Separators and Coseparators

195 PROPOSITION
For any €-object C, the following are equivalent :

(1) C is a coseparator.
(2) For each €-object X, the source (X, hom(X, C)) is a mono-source. ]

19.6 PROPOSITION
If € has arbitrary powers of the object C, then the following are equivalent :

(1) C is a coseparator.
(2) For each 6-object X, the unique morphism induced by the product,

X = ChomtxO

is a monomorphism.
(3) Each €-object is a subobject of some power C' of C.

Proof: If C is a coseparator, then by the above proposition (19.5)
(X, hom(X, C)) is a mono-source, so that the induced morphism X — Chem(X.0)
must be a monomorphism (19.3). Hence (1) implies (2). Clearly (2) implies (3).
To show that (3) implies (1), let X be any ¥-object. Then by hypothesis, there
is an index set / and a monomorphism X <L, ¢! But f = (z;° [, so that by
Proposition 19.3, (X, n;of) is a mono-source. But each m; o f belongs to
hom(X, C). Hence (X, hom(X, C)) is a mono-source, so that by the above
proposition, (19.5), C is a coseparator for €. []

19.7 DEFINITION

Let € be a category which has products and let .# be a class of mono-
morphisms in .

A @-object C is called an .#-coseparator of € provided that each €-object
is an .#-subobject of a suitable power C! of C. In particular: (extremal mono-
morphism)-coseparators are called extremal coseparators and (regular mono-
morphism)-coseparators are called regular coseparators. (Cf. 19.6.)

DUAL NOTIONS: (if 6 has coproducts and & is a class of epimorphisms in €):
&-separator; extremal separator; regular separator.

198 EXAMPLES
(1) The closed unit interval is both an extremal separator and an extremal
coseparator for CompT,.

(2) The two-clement discrete space is both an extremal separator and an
extremal coseparator for the category of zero-dimensional compact Hausdorfl
spaces.

(3) CRegT, has no extremal coseparator.

(4) For the categories Grp, R-Mod, and Set, the coseparators are precisely the
same as the extremal coseparators.
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Stronger Smallness Conditions

19.9 DEFINITION

A category € is called strongly well-powered provided that for each set-
indexed family (X)), of €-objects, there is at most a set of pairwise non-isomorphic
%-objects X with the property that there is a mono-source from X to (X}),.

DUAL NOTION: strongly co-(well-powered).

19.10 EXAMPLES
Set, Top, and Grp are both strongly well-powered and strongly co-(well-
powered).

19.11 PROPOSITION
Ervery strongly well-powered category is well-powered.

Proof: Consider the one-clement families. [

For a category the properties of being well-powered and strongly well-
powered are, in general, different (see Exercise 19F dual). However, as the next
proposition shows, under the often satisfied condition that the category has
products, the two properties are equivalent.

19.12 PROPOSITION
If a category € has products, then € is well-powered if and only if it is
strongly well-powered.

Proof: Suppose that € is well-powered and (X)), is a set-indexed family of
%¢-objects. Let (T1.X;, n,) be the product of the family (X/),. Then by the definition
of product, for ecach mono-source (4, 4 14, X;) with codomain (X)), there
exists a unique morphism f: 4 — I1X; such that for each i€/, f; = 7,0 f.
Also, by Proposition 19.3, f is a monomorphism. Thus for each mono-source
(4, (/) with codomain (X});, there corresponds a subobject (4, /) of IX,.
Since € is well-powered, there is no more than a set of pairwise non-isomorphic
subobjects of T1X;. Hence there is no more than a set of pairwise non-isomorphic
©-objects A with the property that there is a mono-source from 4 to (X;);. [J

Factorizations of Sources and Sinks

19.13 DEFINITION
Let (X; Z5 X, X) beasinkin €. Then X; % Y ™ X is called an (epi-sink,
mono)-factorization of (/;, X) if and only if:
(1) (g;, Y) is an epi-sink,
(2) m: Y — X is a monomorphism, and
(3) foreachi, X; L x = x, % v 2, x.

Analogously, onc has [(extremal epi)-sink, mono]-factorizations and (epi-sink,
extremal mono)-factorizations.

DUAL NOTIONS: (epi, mono-source)-factorization; [epi, (extremal mono)-
source]-factorizations; (extremal epi, mono-source)-factorizations.
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19.14 PROPOSITION
If € is well-powered and has intersections and equalizers, then every sink in
€ has an [(extremal epi)-sink, mono}-factorization.

Proof: The proof is analogous to the proofs of Propositions 17.8 and 17.16.
Let (f;, X) be a sink in € and let (D;, m;), be the family of all subobjects of X
that are part of some factorization

;9 x=x,"p M x

of the sink (f;, X). By Proposition 17.7, the family (D;, m;); has an intersection
(D, m) that is a subobject of X. By the definition of intersection, for each i,
there is a unique morphism e;: X; — D such that for each j the diagram

(£

X, > X

/

commutes.

We need only show that (e;, D) is an (extremal epi)-sink, and to do this it is
sufficient to show that it satisfies the dual of the extremal condition (ii) of
Definition 19.1(3) (see Proposition 19.4 dual). Suppose that (g;, Z) is a sink and
1 is a monomorphism such that for each i, the triangle

X——)D

PN

commutes. Then (Z, m - rit) belongs to the family (D;, m;),; i.e., there is some
jeJsuchthat moniod; = m = mo 1. Since m is a monomorphism, we have
fitody = 1. Thus s is a retraction (and a monomorphism); hence an isomor-
phism. Consequently (e;, D) is an (extremal epi)-sink. [

EXERCISES

19A. Suppose that (f;, X) is a sink and for each i, f; = f. Prove that (f;, X)
is an epi-sink if and only if fis an epimorphism.

19B. Suppose that one has the factorization
a¥%p-al,c®p
of the source (A4, f;). Prove the following:

(a) If (A, f;) is a mono-source (resp. (extremal mono)-source), then h is a mono-
morphism (resp. extremal monomorphism).
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(b) If i is a monomorphism and (C, g,) is a mono-source, then (A, f;) is a mono-source.
Obtain some earlier results about monomorphisms as corollaries.

19C. Interpret a source in ¢ in the following two ways:

(a) as a functor from a category of the form

into 6.
(b) as a natural transformation between two functors from a discrete category into €.
19D. Prove that each product (11X}, xn;) is an (extremal mono)-source.

19E. Prove that if € has products and C is a €-object, then the following are
equivalent:

(a) C is an extremal coseparator.
(b) For each object X, (X, hom(X, C)) is an (extremal mono)-source
(c) For each €-object X, the unique morphism induced by the product X — Ckem(X.)
is an extremal monomorphism.
19F. Consider the following subcategory € of Set. Let a be a set and for
each ordinal « let a, and a, be unequal sets such that for any two ordinals « and a,
a; # a6 j=12
The objects of € are the following sets: {a} and A,, for each ordinal a, where
A, = {a,, a;). Besides the identity functions, there are the following hom-sets for
each a.
hom(A,, A,) = all four functions from 4, to A,.
hom({a}, A,) = both functions from {a} 10 A,.

All hom-sets not specified by the above are empty.
(a) Prove that in % the epimorphisms are precisely the surjections, and conclude that ¥

is a co-(well-powered) category.
(b) Prove that € is not strongly co-(well-powered).

19G. Determine whether or not the category of complete lattices (and complete
homomorphisms) is either co-(well-powered) or strongly co-(well-powered).

19H. In a category that has equalizers, show that a sink (f;, A) is an epi-sink
if and only if whenever there is a factorization of (f;, A)

xloa=x2%8" 4

with m a regular monomorphism, m must be an isomorphism. Obtain 16G as a
corollary.
191. Obtain Proposition 17.16 as a corollary to Proposition 19.14,

193.  Separating Sets
Let € be any category.
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(a) Prove that for each set & of ¥-objects, the following conditions are equivalent:
S
(i) For any pair X —=} Y of distinct €-morphisms, there exists some S € & and

g
h:S - Xsuchthat feh # goh.
(ii) For each $-object X, the pair ( \J #om(S, X), X) is an epi-sink.
Se¥

& is called a separating set for ¥ provided that it satisfies (i) and (ii).

(b) Prove that if € is a connected category that has coproducts and & is a set of
%-objects, then & is a separating set for ¥ if and only if LI{S'| S € &} is a separator
for %.

(c) Show that Set x Set has no separator, but that

(D, (DN (D}, D}

is a separating set for Set x Set.
19K. Prove that the functor __ x __: Set x Set — Set (18A) is not faithful.

§20 LIMITS AND COLIMITS

In this section we introduce the notion of the limit of a functor, which is a
generalization of each of the notions “terminal object”, “equalizer”, “inter-
section”, and “product”. We have seen that using the categorical notion of
product, one can simultaneously prove many theorems about particular products
in various categories. Generalizing one step further, we will see that with the
concept of limit one can simultaneously prove theorems about particular limits
(such as equalizers, intersections, and products). For example, the fact that
limits are “essentially unique” (20.6) will tell us immediately that terminal objects,
equalizers, intersections, and products are *‘essentially unique”. Later, other
special types of limits, such as inverse limits of directed systems, inverse images,
and pullbacks will be introduced and will provide us with additional useful
tools for working within the realm of category theory.

20.1 DEFINITION

If I and ¥ are categories and D: I — ¥ is a functor, then a natural source
for D is a source (L,(!});copry) in € such that for each i e Ob(1), I;: L — D(i);
and for all morphisms m: i — jin 7, the triangle

D(i)
e
L D(m)
4
D(j)

commutes.
In other words, if L: 7 — % is the constant functor whose value at each
object is L and whose value at each morphism is 1, and if (L, (I);cos(r)) is a
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source in %, then (L, (/);c0p(y) is 2 natural source for D if and only if (/);con¢)
is a natural transformation from L to D.

DUALLY: A natural sink for D is a sink ((k;);cop(r)y K) where (k);copq) is 2
natural transformation from D to the constant functor X: I — 4.

To simplify notation, we often write D, rather than D({) and usually write
(L, (I),) or even (L, /)) to denote the natural source (L, (/);q05(1))-

20.2 DEFINITION

If D: I - € is a functor, then a natural source (L, /;) for D is called a
limit of D provided that if (L, 1)) is any natural source for D, then there is a
unique morphism hi: L — L such that for each j € Ob([), the triangle

e Tt

—>D
i
commutes [i.c., provided that (L, /) is a “terminal” natural source (see

Exercise 20A)].

DUALLY: A natural sink (k;, K) is called a colimit of D provided that every
natural sink for D factors uniquely through it.

203 EXAMPLES
(1) Let 7 be the category

1 m 2

e —3 .
_ -,
n

and let D: I —» €. Then (L, ({);-,.,) is a limit of D if and only if (L, /;) is an
equalizer of D(m) and D(n) and I, = D(m)oly = D(m) o ly. ((Kpiag,2 K) is a
colimit of D if and only if (k,;, K) is a coequalizer of D(m) and D(n) and
ky = kyo D(m) = k; o D(n).

(2) Let  be a category that is just a sink (4; 2 Ao, Ao), and let D: I » €
be a functor such that for each i, D(f;) is a monomorphism. Then (L, (/), 1)
is a limit of D if and only if (L, /p) is an intersection of the family (D(4,), D(/)))
of subobjects of D(Ag) and Iy = D(f}) /; foreachie I

(3) Let 7 be any discrete category, and let D: I — €, then (L, (/))) is a limit of D
if and only if it is a product of the family (D(i));copr) and ((k;), K) is a colimit
of D if and only if it is a coproduct of the family (D(1));c0s1)-

(4) If Iis the empty category and D: I — &, then (L, (/))) is a limit of D if and
only if L is a terminal object for ¥ and (/) = &&; likewise ((k;), K) is a colimit
of D if and only if X is an initial object for € and (k) = &J.

(5) If D: ¥ — € is the identity functor, then (L, (/) is a limit of D if and only
if L is an initial object of € and for each A € 0b(%¥), 1, is the unique morphism
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from L to A. ((k,), K) is a colimit of D if and only if K is a terminal object of ¥
and for each 4 € Ob(%), k, is the unique morphism from A to K. [Notice that
in this example the families (/,)4cope) aNd (K4)4concs) are not necessarily sets.]

204 PROPOSITION
Any limit (L, (I)) of a functor D: I — €, is an (extremal mono)-source.
Proof: 1If Q ':; L are ¥-morphisms such that for each i € Ob(I),
s
Ler=1los,
then (Q, (/; ° F);cony) 1s anatural source for D. Thus by the definition of limit,
there is a unique morphism Q 2, L such that for each i e Ob(1),
Lioh=1-r

But each of r and s is such an 4. Hence r = 5. Consequently (L, (/;)) is a mono-
source. To show that it is extremal, suppose that it has factorization

LY D) = L RIS D,

where e is an epimorphism. Since e is an epimorphism, (R, (f})) is clearly a
natural source for D. Hence by the definition of limit, there is a morphism
g: R — L such that for each i, f; = /; < g. Hence, for each {

[i°g°e=fi°e=,i=[i°l
so that since (L, (/})) is a mono source, g ¢ = 1. Thus e is a section (and an
epimorphism); hence e is an isomorphism. []

20.5 COROLLARY
Each regular monomorphism is an extremal monomorphism, and each
product is an (extremal mono)-source (cf. 17.11 dual and Exercise 19D). []

20.6 PROPOSITION (UNIQUENESS OF LIMITS)
If each of (L, (I,)) and (L, (1)) is a limit of the functor D: I — €, then there
exists a unique isomorphism h: L — L such that for each i € Ob(I) the triangle

=
B> €= mmm o

commutes.

Proof: By the definition of limit there are unique morphisms A: L — L
and k: L - L such that for all i, I;</h = I, and /,o k = 1,. Consequently,
for all /,

Lickeh=1lh=1=1-1,

so that since (L, (/})) is a mono-source, ke/t = 1,. Similarly hok = 1;;
hence /1 is an isomorphism. [
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20.7 COROLLARY
Terminal objects, equalizers, multiple equalizers, intersections, and products
are “essentially unique” (cf. 7.8, 16.5, 16.12, 17.4, 18.10). []

20.8 Because of the essential uniqueness of limits, by an abuse of the language
we often speak of the limit of a functor D: I — % (when one exists) and denote
it by Lim D. Dually we speak of the colimit of D (denoted by Colim D). Thus in
general we write

Lim D ~ (L, (,))
and
Colim D = ((k), K).

However, we sometimes (inaccurately) call the object L the limit of D and write
Lim D =~ L. For example, when 7 is discrete,

Lim D ~ (ID@i), n;)
and
Colim D =~ (u;, LID());

m
when lis « —3 o,
n

Lim D ~ Equ(D(m), D(n))
and
Colim D = Coeq(D(m), D(n))

and when [ is the empty category, Lim D is the terminal object and Colim D is
the initial object.

EXERCISES

20A. The Cartegory of Natural Sources
Suppose that D: I — € is a functor. Let €, be the quasicategory whose objects are
the natural sources for D where the morphisms from (L, /) to (L, [,) are precisely
those morphisms f: L — L such that for each i, /; = i,o f; and composition of
morphisms is that induced from %.
(a) Show that %, is indeed a quasicategory.
(b) Prove that (L, /;) is a terminal object of €, if and only if it is a limit of D.
(c) Obtain as immediate corollaries the facts that limits are mono-sources and are
essentially unique.
(By the above, every limit is a terminal object. We have already seen that each terminal
object is a limit. Thus in some sense the theory of limits is equivalent to the theory
of terminal objects.)

20B. Describe multiple equalizers as limits and multiple coequalizers as colimits.

20C. Suppose that D: 7 — € is a functor.
(a) Prove that the following are equivalent:
@) (L, (&) is a natural source for D.
(ii) ((/)), L) is a natural sink for D°P: [P — G°P,
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(b) and that the following are equivalent:
@) (L, (1)) is a limit of D.
(i) (), LY is a colimit of D°P.
20D. General Comma Categories
Ifof X5 € and B S € are functors, then the comma category (F, G) is the category

whose objects are those triples of the form (4, f, B) where 4 € Ob(/), Be Ob(®),
and f: F(A) = G(B); and whose morphisms are those pairs

(@, b):(4,f, B) > (A, [, B))
where a: A —» A’ and b: B — B’; such that the square
F(4) —L’ G(B)
Fla) lG (5)
Fa-L>a)
commutes. Composition of morphisms is defined by:
(a,b)(d, by = (a>d,bob)

(a) Verify that (F, G) is indeed a category.

(b) If F: ¢ — € is the identity functor and G: 1 — % is the functor whose value at
the single object is A, show that (F, G) is isomorphic with the comma category (%, A)
and that (G, F) is isomorphic with the comma category (4, €) (4.18 and 4.19).

(c) If each of F and G is the identity functor on ¥, show that (F, G) is isomorphic
with the arrow category €2 (4.16).

(d) If F:1 > € is the functor whose value at the single object is 4 and G:1 - €&
is the functor whose value at the single object is B, show that (F, G) is isomorphic
with the discrete category (i.e., the set) hom (A, B).

(e) Let P,, P,:6* = € be functors defined by P,(f,9) = f and Py(f,9) = g.
Define ““projection functors” Q,: (F, G) » &, Q.: (F, G) » %, and H(F, G) > ¢*
such that the diagram

A< F,6)—2> g
Fl Hl lG
> o2 7
¢ P, ¢ P; >¢

commutes.
(f) Let I be the category

£ J r L) 5 -
N
and let D: I -» €45 be the functor defined by D(m) = F, D(n) = G, D(r) = P,,

and D(s) = P,. Show that (F, G) together with the functors Qy, P, H, H, P, o H,
and Q, is the limit of D,
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§21 PULLBACKS AND PUSHOUTS

In this section we investigate some important special cases of the general
notions of limit and colimit.

Definitions and Examples

21.1 DEFINITION

(1) The square in ¥

4]
P—>D,

Dy——— Dy
Iz

is called a pullback square provided that (P, (p;);=0,;.2) is 2 limit of the functor
D: I - € where I is the category

D(m) = f;, D(n) = f3, and py = f, o p; = f2 ° p2. In other words, the square
is a pullback square if it commutes and for any commutative square of the
form:

;’_L)Dl

Dg —>Do

fi

there exists a unique morphism &: P — P such that the triangles in the diagram

commute.
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@2 If

Pi—»Dl

"’l lfl

Dz —)Do
T

is a pullback square, then p, is said to be a pullback of f; along /5. In the case
that f; is a monomorphism, p, is commonly called an inverse image of /, along /5.

(3) We say that € has pullbacks provided that each functor from

to € has a limit; i.e., provided that each figure
|
o —> 0
A

in € can be extended to become a pullback square. € has inverse images provided
that each figure
|

*—> 0
A

in €, with f; a monomorphism, can be extended to become a pullback square.

DUAL NOTIONS: Pushout square; pushout of f, along f; ; direct image of f;
along f; has pushouts; has direct images; in particular, the square

Do —L > p,

f:l lpl
Dy——P
¥ 3

is called a pushout square provided that ((p));=0,1,2, P)is a colimitof D: 7 — &,
where 7 is the category

n\i.z

D(m) = f,, D(n) = fand po = py°fy = p2°/>.
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Since limits and colimits are essentially unique, it immediately follows that
pullbacks and pushouts are. Thus when they exist, we often speak of t/e pullback
(resp. the pushout) of a pair of morphisms with common codomain (resp.
domain).

21.2 EXAMPLES

(1) If A and B are subsets of the set C, with inclusions A& C and B& C,
then
ANBC—— 4

[

BC—C

is a pullback square in Set. Similarly in Grp when 4 and B are subgroups of C
and in Top when A and B are subspaces of C.

(2) If /: B =» C is a function on sets and 4 < C, then
42

A
L,
A

A— C

is a pullback square in Set. [This motivates the terminology “inverse image”.]

f

(3) If X L5 Band Y % B are morphisms in Top and if

E={xnIfx=90)}cXxY
has the subspace topology, then

Y ——8B

is a pullback square in Top, where py and p, are the usual projections restricted
to E.t

(4) The construction in (3) “works” in many categories; e.g., Set, Grp, R-Mod,
Rng, and BanSp,.

+ Notice that if in this example (X, f, B)and (Y, g, B) are considered to be topological bundles
with base space B, then (E, /o py, B) is the fibre product (= Whitney sum) of (X, £, B) and
(Y, g, B) and (together with the morphisms p, and p,) is the categorical product of these two
objects in TopBung (see Exercise 21C).
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Relationship of Pullbacks to Other Limits

The last example above indicates that in many categories pullbacks can be
constructed as equalizers of products. Next we see that this is in fact always
true, provided that the corresponding products and equalizers exist.

213 THEOREM (CANONICAL CONSTRUCTION OF PULLBACKS)
Let

A—L,
B—5

be a pair of €-morphisms with common codomain. If (A x B, n,, ng) is a product
of (A, B) and if (E, €) =~ Equ(f° n,, g - ng), then the outer square

T €
E—4

e LN
raoel/\,; XB/'lf
B‘ﬁ-g-—>c

is a pullback square.

Proof: The square is constructed so that it commutes. If ¢,: @ — A4 and
gs: O — B such that fo g, = g g, then by the definition of product, there
is a unique morphism h: @ - 4 x Bsuch that m,oh = g, and ngo h = gq,.
Thus (fom)oh = (gomng)oh, so that since (E, ) is an equalizer of fox,
and g o mg, there is a unique morphism k: @ — E such that e & = h. Hence
(nyoe)ock = q, and (ngoe)ek = gg. Also k is unique with respect to this
property since products and equalizers are mono-sources. []

21.4 COROLLARY
If € has finite products and equalizers, then € has pullbacks. []

21.5 PROPOSITION
If T is a terminal object, then the following are equivalent :

1

is a pullback square.
(2) (P, p4» pg) is a product of A and B.
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Proof:
(1) = (2). Suppose that f: C — 4 and g: C — B; then since T is a terminal
object, the square

]
C—4

1 ]

B—>T
commutes, so that by the definition of pullback, there is a unique morphism
h: C = Psuchthat f = p,ochhand g = pgoh.

(2) = (I). The square commutes, since T is a terminal object. Since (P, p,, ps)
is a product, any pair of morphisms to A and B can be uniquely factored through

paand pp. O

21.6 COROLLARY
I € has pullbacks and a terminal object, then € has finite products. (]

The condition that € has a terminal object cannot be deleted in the above
corollary, since every non-trivial group (considered as a category) has pullbacks
(21B) but no such group has finite products (18K). Also Field has pullbacks
(21A) but does not have finite products (18L).

21.7 PROPOSITION
s
If A == B are €-morphisms, if (A x B, 14, ng) exists, and if
g

P—2 54

p:l l(l/lvf)

A—>( .9 A X B

is a pullback square, then
(1) py = pa.

(2) (P, p)) = Equ({l, £, {14 9)-
3) (P, py) = Equ(/, 9).

Proof:
(7). Since {1, > opy = 14 g p3, we have
pr=ngellgfYopy =mo{l,9)0p2 = p;.
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(2). Immediate from the fact that the square is a pullback square.
(3). Suppose that K — A such that fo k = g o k. Then

(mgo 1) ok =(rgo(lycgd)ok

and since k = k,

(maellpfP)ok =(@yo(log))ek.

Since the product is a mono-source, we obtain

Ly Pk =LKl g0k

so that since the square is a pullback square, there is a unique A: X ~ P such
thatk = p,oh. [

21.8 COROLLARY
If a category € has finite products and finite intersections, then € has
equalizers. (]

21.9 THEOREM
For any category €, the following are equivalent :

(1) € has equalizers and finite products.
(2) % has pullbacks and a terminal object.

Proof:

() = (2). Immediate from Corollary 21.4 and the fact that a terminal object
is the product of an empty family.

(2) = (I). If € has pullbacks and a terminal object, then by Corollary 21.6,
€ has finite products; hence by Proposition 21.7, € also has equalizers. [

Relationship of Pullbacks to Special Morphisms

21.10 PROPOSITION
Suppose that the diagram

4

|

A

commutes.

(1) If the *“‘outer square” is a pullback square, then so is the “‘inner square”.

(2) If the “inner square” is a pullback square and h is a monomorphism, then the
outer square is a pullback square. []
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2111 PROPOSITION
If

P—y

o lf

A———B

is a pullback square, then f is a regular epimorphism if and only if (f, B) =
Coeq(p,, p2)-

Proof: If f is a regular epimorphism, then (f; B) = Coeq(q,, 9,) for some
morphisms 0 q—_,"' A. By the definition of pullback square, there exists a morphism
q2

h: @ = P such that g, = p, ol and g, = p, o 1. Clearly fop, = fop,. Now
ifgop, = gops thengep,oh = g,op,oh, so that go g, = geoq,. By the
definition of coequalizer, there is a unique morphism k such that g = ko f.
Hence (f; B) = Coeq(p,, p2). [

21.12 PROPOSITION
In any category A L, Bisa monomorphism if and only if

14
A——4

l |

A——B

is a pullback square. []

21.13 PROPOSITION
Every pullback of:

(1) a monomorphism is a monomorphism (thus in particular all inverse images are
nmonomorphisms).

(2) a regular monomorphism is a regular monomorphism.
(3) a retraction is a retraction.

Proof: Suppose that

is a pullback square.
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(I). Let fbe a monomorphism. If &, k: Q@ — P such that s h = 5ok, then
folrohy=golsoh) =ge(sok) =fo(rok),

so that since f is a monomorphism, r o h = r o k. Since pullbacks (being limits)

are mono-sources, we can cancel r and s simultaneously, so that 4 = k.

(2). Let (4,f) =~ Equ(p, g). Then (pog)es = (g°g)os. Now ift:Q0— B

such that (pog)et = (gog)et, then by the definition of equalizer, there is

some u: O — A such that fou = got. Hence by the definition of pullback,

there is some h: Q — P such that ¢ = s h. Moreover, & is unique with respect to

this property since by (1), s is a2 monomorphism. Thus (P, s) = Equ(p°g.q-°g).

(3). Exercise. [

Congruences

If /- A —» Bis a group homomorphism, then the congruence relation deter-
mined by fis (in the elementary sense) the subset S of 4 x A consisting of all
pairs (a, b) with f(a) = f(b). Obviously S can be regarded as a subgroup of

Ax A, and if m: 5SS 4 x A is the embedding and 4 x 4 %A are the

"2
projections, then (according to Theorem 21.3) the square

nem
S—4

ml lf

A—B

is a pullback square.
This motivates our next definition.

21.14 DEFINITION
p
*———e
ql lf
G
is a pullback square, then the pair (p, g) is called a congruence relation of /.

(2) A pair (p, q) of ¥-morphisms is called a congruence relation provided that
there exists some ¥-morphism f such that (p, ¢) is a congruence relation of f.

21.15 PROPOSITION
Let (p, q) be a congruence relation of f. Then

) If
_

(1) (p, q) is a congruence relation of m o f, for each monomorphism m (for which
the composition is defined).
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@ iff=gohandhop = hogq, then (p, q) is a congruence relation of h.
(3) ¢ = Coeq(p, q) implies that (p, q) is a congruence relation of c.

Proof: (1) and (2) follow immediately from Proposition 21.10. To show (3)
notice that since ¢ = Coeq(p, q), there exists a morphism g such that f = g o c.

Apply (2). [

21.16 PROPOSITION
For any square

the following are equivalent :

(1) The square is both a pullback square and a pushout square (i.e., a pulation
square, see 41.6).

(2) (p, q) is a congruence relation of f and [ =~ Coeq(p, q).
) (p, q) is a congruence relation of f and f is a regular epimorphism.
) (p, q) is a congruence relation and f = Coeq(p, q).

Proof: That (1) implies (2) and (2) implies (3) is immediate. That (3)
implies (4) follows from Proposition 21.11. To see that (4) implies (1) notice
first that since (p, q) is a congrucnce relation, there exists a unique morphism
t: A - Csuch that pot = 1, and get = 1,. To show that the square is a
pushout square, suppose that r and s are morphisms such that rep = s04q.
Then

r = l'°IA = ropo[ =soqo[ =S0]A = 5.

Hence rop = rogq so that since /= Coegq(p, q), there exists a unique mor-
phism hsuch that r = hiof=s. [

21.17 PROPOSITION
In any category, the following are equivalent :

(1) f is a monomorphism.
(2) (1, 1) is a congruence relation of f.
(3) f has a congruence relation of the form (p, p).
Proof: That (1) implies (2) follows from Proposition 21.12 and that (2)
implies (3) is trivial. To see that (3) implies (1), suppose that r and s are mor-

phisms such that feor = fos. Then by the definition of pullback, there is a
morphism A such that r = pehands =peh; hencer = 5. [
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EXERCISES

21A. Show that even though the category Field does not have finite products,
it does have pullbacks. [Using the canonical construction form the pullback in Rng.]

21B. Show that every group (considered as a category) has pullbacks.
21C. Generalize the statement in the footnote to Example 21.2(3) by showing
that for any category €

pl
P——4

p,l s/

is a pullback square in € if and only if P L2:Z9°", C together with p, and p, isa
product of 4 £ C and B -2 C in the comma category (¥, C) of € over C (4.19).

21D. Galois Correspondence Between Pullbacks and Pushouts
Show that the process of forming pullbacks and pushouts of commutative squares
yields a Galois correspondence in the sense that if P is the process of forming the
pullback square

L—>Ii
C—D

of the lower corner of a commutative square
I_)T
C——D

and Q is the process of forming the pushout square
A—> l[
C—K

of the upper corner, then PQP = Pand QPQ = Q.

21E. Pasting and Cancelling Pullback Squares
Show that:

(a) if the smaller squares in the figures
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are pullback squares, then so is the large rectangle and the large square; i.e., pullbacks
can be composed by ““pasting their edges together™.
(b) if figure A commutes and its outer rectangle and right square are pullback squares,
then its left square is a pullback square.

21F. Pullbacks and Products Commute
Show, in any category €, that the product of pullbacks is a pullback of the products;
specifically if

P—4 pP——4
l lf and l J’A
Pt Bge

are pullbacks and if 4 x 4, B x B, and C x C exist, then P x P exists if and only
if the pullback (P, p,, p,) of

AxA

</

X X

BxB——CxC

gxg

exists, and if they exist, P x P and P are isomorphic; moreover, if / is the category

.

l ~

m m

— e r——=p
n

and D: I -+ @ is the functor defined by D(m) = f, D(n) = g D) = f,and D(A) = 4,
then P x B together with the six morphisms to 4, B, C, 4, B, and € indicated by the
figure
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is a limit of D, and £ together with the six morphisms to 4, B, C, 4, B, and € indi-
cated by the figure

~

A
. A b
P

X A

h N

i
>

s
A
P, lf r=f |7
B——C
RN

o
X
t

——=——>CXx

gx§ =

Q

AN
3/ n
A 4

»

g
is also a limit of D.
21G. Suppose that the pair of morphisms (f, g) has a coequalizer. Prove that

(/. 9) is a congruence relation if and only if it is a congruence relation of Coeq(f, g).

21H. Show that if f* X - ¥ is a morphism and (X x X, n,, n,) is the product
of X with itself, then the following are equivalent:
(i) fis a constant morphism.

(ii)

X xXx—>sx

l lf

X—Y
!

is a pullback square; i.e., (m,, 7,) is a congruence relation of f.
(iii) fom, = fom,.
211. Show that if f: X » Y and k: K - X are morphisms in a category that
has a zero object 0, then the following are equivalent:
() (K, k) = Ker(f).
(i)

is a pullback square.
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21J. Prove thatif X 2, Y isa morphism and Z is an object in any category,
then

Tx
XxZ—>X

Ixlz lf

YXZ——Y
Ty

is a pullback square.

21K. Multiple Pullbacks
In any category the multiple pullback of a sink ((f;);, A) is defined to be the limit
(L, (), d) (if it exists) of the sink regarded as a functor D in the following way: the
indexing set I is considered to be a discrete category and a new category I is formed
from it by adjoining a terminal object 7; i.e., I has the form:

ioe m;

3

Joe m;
mk LI 4

—

and the functor D is defined by D(m,) = f;, for each i € 1. (Notice that for all i € I,
d = f;ol;.) We say that a category has multiple pullbacks (resp. has finite multiple
pullbacks) provided that every set-indexed sink (resp. finite sink) has a limit. The dual
notion is that of multiple pushouts.

(a) Interpret intersections as multiple pullbacks.

(b) Prove that a category has finite multiple pullbacks if and only if it has pullbacks.
(c) State and prove analogues of 21.3, 21.4, 21.5, 21.6, 21.7, 21.8, 21.9, and 21C for
multiple pullbacks.

21L. Prove that if % has pullbacks, then the following are equivalent:
(i) Every epimorphism in % is a regular epimorphism.
(ii) If e is an epimorphism in € and

¢ — e

|k

s—>e
(4

is a pullback square, then it is also a pushout square.

21M. Show that even though the pullback of a retraction is a retraction, the
pullback of a section is not necessarily a section (cf. 21.13).

2IN. Pullbacks of Epimorphisms

(a) Show that in Set and Top the pullback of an epimorphism is an epimorphism.
(b) Show that in Grp, R-Mad, Lat, Rng, and Mon the pullback of a regular epimorphism
is a regular epimorphism.

(c) Show that in general the pullback of an epimorphism (resp. a regular epimorphism)
is not necessarily an epimorphism.
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210. (Regular Epi, Mono)-Factorizations
Let € be a category which has pullbacks and coequalizers. Prove that if any of the
following conditions is satisfied, then % is uniquely (regular epi, mono)-factorizable.
(a) The pullback of each regular epimorphism in € is an epimorphism.
(b) The class of regular epimorphisms in € is closed under composition.
(c) There exists a faithful functor U: % — Set which preserves and reflects regular
epimorphisms.
[Let (p, g) be the congruence relation of a ¢-morphism £, let g = Coeq(p, q), and
let m be the unique morphism such that f= mog. To show that m is a mono-
morphism, consider:
For (a): The diagram

of successively constructed pullbacks.
For (b): A factorization m = ho § with g a regular epimorphism. Use the fact that
gog = Coeq(p, q) to show that 7 is an isomorphism. ]

21P. Show that every commutative square

in Top,, for which fis a dense embedding, g is perfect, and & is an embedding, must be a
pullback square.

§22 INVERSE AND DIRECT LIMITS

We now investigate some additional important particular cases of the notions
of limit and colimit.

22.1 DEFINITION
(1) A downward-directed class is a partially-ordered class with the property
that each pair of elements has a lower bound.

(2) Any functor from a downward-directed class (considered as a category)
into a category ¢ is called an inverse system in €.

(3) If I is downward-directed, D: I — € is an inverse system in 4, and (L, /)
is the limit of D, then (L, /,) is sometimes called the inverse limit of D.
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(4) € has inverse limits provided that for each downward-directed set I, each
functor D: I — € has a limit.

DUAL NOTIONS: Upward-directed class; direct system in %€'; direct limit; has
direct limits.

There is an apparent inconsistency in terminology when “inverse” limits
are defined to be particular limits and ““direct’ limits are particular colimits, The
reason for the *“‘switch” is that historically, in certain categories such as Grp
and Top, inverse and direct limits were defined in a manner consistent with
Definition 22.1. This situation is similar to some encountered earlier; e.g., the
“free product” of groups is really a categorical coproduct and the *“Whitney
sum” of topological bundles is really a categorical product (18.4).

22.2 EXAMPLES

(1) Categorical inverse limits and direct limits coincide with the classical
notions of inverse (or projective) limits and direct (or inductive) limits in the
categories Set, Top, Grp, and R-Mod. Each of these categories has both inverse
and direct limits.

(2) For a given set A, the family of all finite subsets of 4 together with inclusion
functions is a direct system in Set, and A4 together with all of the inclusions
into it is the direct limit of the system,

(3) Similar to (2) above, each group is the direct limit of its finitely generated
subgroups, each R-module is the direct limit of its finitely generated submodules
and each partially-ordered set is the direct limit of its finite subsets.

(4) A Hausdorff space is compactly penerated (i.e., is a k-space) if and only if
it is the direct limit in Top of its compact subspaces.

(5) Every compact Hausdorff space is an inverse limit of compact metric
spaces, and every compact metric space is an inverse limit of polyhedra. However,
not every compact Hausdorff space is an inverse limit of polyhedra. The reason
for this lies in the fact that inverse systems cannot be composed (or iterated).

(6) In each of the concrete categories Set, SGrp, Mon, Grp, R-Mod, Rng, and
Field, direct limits can be constructed in the following canonical way: Let 7 be
an upward-directed set and let D: I — € be a direct system in ¥, where for
cach i e Ob(I), D(i) = A;and if i < j, then

Dii —j) = A; % 4,

Let U: ¢ — Set be the appropriate forgetful functor and let (y,, C) be the
coproduct (i.e., disjoint union) of (U(A4,)) in Set. Define an equivalence relation
~ on C by:

“if x and y are members of C with x € U(4,) and y € U(4)), then x ~ p
if and only if there is some k = /, j such that U(f,)(x) = U(f,)(»).”
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Let &: C - C/~ be the corresponding natural quotient map. Then there
exists a unique “@-object structure” on C/~ such that all of the functions

Ho My U(Ai) bnd C/~

become ¥-morphisms /;: A; = C. (/;, C) is the direct limit of the given direct
family. [Observe in particular that Field has direct limits but not coproducts.]
(7) The direct limits in Top are constructed in essentially the same manner as
that described in (6) except that the topology on C/~ is taken to be the finest
one such that all of the functions & o y; are continuous.

223 PROPOSITION

Let I be a downward-directed class and let J < I be an “‘initial” subclass of 1
(i.e., for each i in I there is some j in J such that j < i). If D: I » € is a funcior,
E: J = € istherestriction of D to J, and for each i € J there is some l;: L — D(i),
then the following are equivalent :

(1) (L, () is a limit of E.
(2) For eachiinI — J, there is some I;: L — D(i) such that (L, (1});) is a limit
of D.

[Thus inverse limits are determined by inverse limits of “initial” subsystems.
Dually, direct limits are determined by direct limits of “final” subsystems.]

Proof:

(1) = (2). Letibe an object of I — J. Then there is some jin J and m: j — i.
Let /; = D(m) = I,. Since I is downward-directed, J is initial in 1, and (L, (7});)
is a limit of E, this assignment yields a well-defined function and (L, (/});) is a
limit of D.

(@) = (I). Clearly (L, (I);) is a natural source for E. If (R, (r;),) is also a
natural source for E, then, as above, the family (r;), can be augmented to provide
a natural source (R, (r;);) for D. This guarantees the existence of a unique
Iz R = L such that the appropriate triangles commute. [}

22.4 COROLLARY

If I is a downward-directed set with a smallest element i,, then each functor
D: I - € has a limit (L, I) with L = D(ip). [

22.5 PROPOSITION
Products are inverse limits of finite subproducts. Specifically, suppose that
(0) (X)) is a family of €-objects;
(ii) for each finite set J < 1, (l-',IX i 7;) is the product of (X));;
(iii) for all finite subsets J and K such that J < K, pg,: I;{IX i = I;IX ; Is the
unique morphism induced by the projections,

(fv) for each i€ I, h;: HX ; — X, is the projection (iso)ymorphism; and
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) (L, (Ip) is a natural source for the inverse limit system D induced by
the finite products and the morphisms (py;) between them.

Then the following are equivalent:

(1) (L, (,)) is the limit of D.

(2) (L, (h; o ) is the product of (X).

Proof:

(1) = (2). Clearly hjoly: L — X;. Suppose that for each ie ], f;: R - X,
By the definition of product, for each finite set K < 7, there is a unique morphism
rg:R— l;!X,- such that for each j € K,

myorx = hyopgy o rx = Jfj
Now if J = KX, then for each j& J
Tyopgyoly = hj°p.l(j)°pKJ°rK =j:i = m;or,.
Hence since products are mono-sources, pg, i = ry. Thus (R, (r,)) is a natural
source for the inverse system D, so there is a unique morphism g: R — L such
that for each finite J, [, o ¢ = r,. Thus, in particular for each i € /,
11501“,09 =hory =/i

and g is easily seen to be unique with respect to this property. Hence (L, (4; 2 /()
is the product of (X}),.

(2) = (1). If(R, (ry) is a natural source for the inverse system D, then by the
definition of product, there is a unique morphism g: R - L such that for
eachiel

hyelyeg = hyory.
Hence for each finite set J < I, if i € J, then
mory=lopyyory=horgy =holyog=molog.
Thus since preducts are mono-sources, r, = ;o g. []

22,6 COROLLARY
If € has finite products and inverse limits, then € has products. []

EXERCISES

22A. Formulate definitions for inverse and direct limits without using the notions
of functor or general limits and colimits.
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22B. Prove that a topological space is the direct limit in Top of its finite sub-
spaces if and only if it is a finitely-generated space (see 14C).

22C. Show that an abelian group is torsion free if and only if it is a direct limit
of free abelian groups.

22D. Limits and Initial Subcategories (sec correction p. 382)
(a) Let / be any category which has pullbacks, and suppose that J is a full initial sub-
category of I (i.c., for each i € Ob(J), there is some j € Ob(J) and some m:j - i).
If D: I » € is a functor, E: J - € is the restriction of D to J, and for each i € 0b(J),
there is some /;: L - D(i), then show that the following are equivalent:

(1) (L, (1)),) is a limit of E.
(2) For each i in Ob(I) — Ob(J), there is some /;: L -+ D(i) such that (L, (/;);)
is a limit of D.

(b) Obtain Proposition 22.3 as an immediate corollary.

22E. Finitary Functors, Objects, and Categories
A functor F: € -+ 2 is called finitary (resp. strongly finitary) provided that for each
direct limit (/,, L) of a direct system D in €, (F(I)), F(L)) is an epi-sink (resp. direct
limit of Fo D) in 2. A €-object A is called (strongly) finitary if and only if the functor
hom(A, _): € —» Set is (strongly) finitary. A concrete category (¥, U) is called
(strongly) finitary provided that U is (strongly) finitary.
(a) Prove that for any set X the following conditions are equivalent:

(i) X is finite.
(ii) X is a finitary object of Set.
(iii) X is a strongly finitary object of Set.
(b) Let X be any R-module. Prove that the following conditions are equivalent:
(i) X is finitely presented (i.e., there exists an exact sequence

R" = R"—= X - 0).

(i)) X is a finitary object of R-Med.
(iii) X is a strongly finitary object of R-Mod.
(c) Let X be a topological space. Prove that the following conditions are equivalent:
(i) X is discrete and compact.
(i) X is a finitary object of Top.
(d) Show that the concrete category of Hausdorff spaces is finitary but not strongly
finitary.
(e) Determine which of the concrete categories given in 2.2 is (strongly) finitary.

§23 COMPLETE CATEGORIES

Until now we have investigated limits of functors whose domains are a few
special categories. For example, the empty category (which yields terminal
objects); the category

o—___)!o
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(which yields equalizers); categories of the form

(

(which yield multiple equalizers); discrete categories (which yield products); the
category

(which yield multiple pullbacks); and downward directed sets (which yield
inverse limits).

We have also seen that certain categories such as Set, Grp, and Top have
all of these special kinds of limits; i.e., if € is Set, Grp, or Top, then for each
small category I of one of the above types, each functor D: I — € has a limit. At
this point, because of the myriad of possibilities for small categories, it might
seem to be an impossible task to verify that Set, Grp, or Top has a limit for every
functor from any small category. However, we shall see in this section that merely
knowing that a category has only a few kinds of limits (e.g., products and
equalizers) is enough to guarantee the existence of all limits of small functors.
We shall also see that, surprisingly enough, for many categories the property
of “having all small limits” is equivalent to the property of “having all small
colimits”.

Definitions and Preliminaries
23.1 DEFINITION

(D) If Iis a category, then the category ¥ is said to be I-complete (or to have
I-limits) provided that every functor D: I — € has a limit.

(2) @ is said to be complete provided that € is I-complete for each small category
I

(3) € is said to be finitely complete (or to have finite limits) provided that ¥
is I-complete for each finite category I.

DUAL NOTIONS: I°?-cocomplete (or has /°’-colimits); cocomplete; finitely
cocomplete.

23.2 EXAMPLES

(1) All categories are 1-complete, 2-complete and 3-complete.
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(2) % is I-complete % is I°P-cocomplete
I means that €: means that ¢:
[7,] has a terminal object has an initial object
S e— has cqualizers has coequalizers
. . has products of pairs has coproducts of pairs
:}, . has pullbacks has pushouts
3) % is I-<complete for % is 1°’-cocomplete for
1 all categories 7 of all categories 7 of this
this form means that ¢ form means that ¢:
ot e has multiple equalizers has multiple coequalizers
N2
small discrete has products has coproducts
L)
% has multiple pullbacks has multiple pushouts
. ot . s multiple
: _7) as muitiple p plc p ’
downward
directed set has inverse limits ‘ has direct limits

233 PROPOSITION

Let 1 be a category, € an I-complete category, and for each functor D: I - G,

let (Lp, 1{(D)) be the limit of D. Then there exists a unique functor Ll;m: ¢ -
such that:

(1) for each €'-object D, L;m(D) = Ly, and
(2) for each €'-morphism n = (8): D — E, the squares
I(D
Lim(D) LCINYe
Lim () "
Li E(i
lIm(E)——I‘.(?) @
commute, for each i € Ob(I).
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Proof: (Lp, n, ¢ 1(D)) is casily seen to be a natural source for E. Hence
there exists a unique morphism Lilm(q) such that the above squares commute
for all i. A straightforward verification shows that this defines the required
functor. [

23.4 DEFINITION
If € is I-complete, then the functor Ll;m: €' — € constructed in the above

proposition is called the I-limit functer for €. Analogously, if € is I-cocomplete,
there exists an /-colimit functor for ¥, denoted by Colxl'm: ¢ - €.

23.5 DEFINITION

(1) A subcategory & of a category € (with embedding functor E) is said to be
closed under the formation of /-limits in € provided that for each functor

D:1- o,

each %-limit object of E = D lies in /.
(2) A subcategory & of € that is closed under the formation of [-limits, foreach
small category /, is called a complete subcategory of €.

DUAL NOTIONS: closed under the formation of 7°”-colimits in ¢ ; coacomplete
subcategory of €.

If & is a complete subcategory of € (with embedding E), D: I - &/, and
(L, 1;) is a limit of E - D, then (L, /;) is not necessarily a limit of D. (Why not?)
However, if & is full in €, we have the following:

23.6 PROPOSITION
A full complete subcategory of a complete category is itself complete. [

It should be pointed out that the converse of the above proposition does
not hold; i.e., if &/ is a complete category that is also a full subcategory of a
complete category %, then .o/ is not necessarily a complete subcategory of €.
Take, for example, &/ as the category of abelian torsion groups and ¢ as Ab
(Example 23.9(8)) or & as the category of locally connected topological spaces
and ¢ as Top (Example 23.9(7)).

Characterization of Completeness

23.7 THEOREM
For any category, 6, the following are equiralent :
(1) ¢ is finitely complete.
(2) ¢ has pullbacks and a terminal object.
(3) ¢ has finite products and pullbacks.
(4) € has finite products and inverse images.
(5) € has finite products and finite intersections.
(6) € has finite products and equalizers.
(7) € has finite products, equalizers, and finite intersections of regular subobjects.
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Proof:
(1) = (2). Pullbacks and terminal objects are limits of particular functors with
finite domains.
(2) = (3). Corollary 21.6.
(3) = (4). Inverse images are particular pullbacks.
(4) = (5). Finite intersections are particular inverse images.
(5) = (6). Corollary 21.8.
(6) = (7). Corollary 18.25.
(7) = (I). Suppose that [ is a finite category and D: / - €. Form the product

(T1D(#), n;) of the family (D(i));.0p(1, Of €-objects. For each J-morphism i — j,
let

(Enn em) =~ Efl“(D("') e my, 7[})-

By hypothesis, the intersection (NE,, d) of the family (E,, €.)mepmora) €Xists.
We claim that (nE,, (r; o d)) is a limit of D.

X

i D

Clearly, for each i = j, D(m)on,od = n;>d. Now suppose that (P, (p;))
is also a natural source for D. Then by the definition of product, there is a
morphism h: P — T1D(i) such that for each i, ;o h = p,. Since (P, (p))) is a
natural source for D, we have that for each i — j,

Dim)omyoh = ny0h.

Hence by the definition of equalizer, for each such m there is a morphism
Jmi P = E, such that e, o f,, = h. Thus by the definition of intersection, there
is a unique morphism g: P - nE,_ such that dog = h. Consequently, for
each i

(niod)og = mioh = p;

and since preducts are mono-sources, and d is a monomorphism, g is unique
with respect to this property. Consequently (nE,,, (n; o d)) is a limit of D. []

238 THEOREM
For any category, €, the following are equivalent :

(1) € is complete.
(2) € has multiple pullbacks and a terminal object.
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(3) € has products and pullbacks.

(4) € has products and inverse images.

(5) € has products and finite intersections.

(6) ¢ has products and equalizers.

(7) € has products, equalizers, and intersections of regular subobjects.
(8) % is finitely complete and has inverse limits.

Proof: The cquivalence of (1) through (7) can be shown with proofs
analogous to those given in the finite case above. This is left as an exercise.
Clearly (1) implies (8), since inverse limits are particular limits. That (8) implies
(6) follows from the fact that products are inverse limits of finite subproducts

(22.6). (]

As expected, the above characterization theorems are indispensable when
it comes to establishing the completeness and cocompleteness properties of
particular categories.

239 EXAMPLES

(1) The category of finite sets and the category of finite topological spaces are
both finitely complete and finitely cocomplete, but neither is complete or co-
complete.

(2) The category of finite groups is finitely complete, but is not finitely cocom-
plete.

(3) The categories Set, Grp, R-Mod, and Top are complete and cocomplete.

(4) The category of non-empty sets is neither finitely complete nor finitely
cocomplete.

(5) The category Field is neither finitely complete nor finitely cocomplete.

(6) Each of the categories BanSp, and BanSp, is finitely complete but not
complete.

(7) The category of locally connected topological spaces is complete and cocom-

plete [however, products and equalizers are not the topological products and
subspaces (18.8(5) and 16.3(3))].

(8) The category of abelian torsion groups is complete and cocomplete
[products, however, are not the direct products (18.8(4))].

(9) The category of torsion free abelian groups is complete and cocomplete
[coequalizers, however, are not the quotient groups (16E)].

(10) A partially-ordered set considered as a category is finitely complete and
finitely cocomplete if and only if it is a lattice with a smallest member and a
largest member.

(11) If € is a small category, then the following arc equivalent:
(i) € is complete.
(ii) € is cocomplete.
(iti) € is equivalent to a complete lattice (see 18.22).
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Completeness Almost Means Cocompleteness

Since completeness and cocompleteness are dual notions, it might seem
reasonable to assume that the presence of either condition in a category would
have nothing to do with the presence of the other. It is somewhat surprising
then that (as the last example above shows) for small categories the two con-
ditions are equivalent. We have previously had another hint that completeness
and cocompleteness are in some way related; namely that a terminal object in a
category is both the limit of the empty functor and the colimit of the identity
functor (20.3(4) and 20.3(5)). Presently, we shall see that even in quite general
settings completeness often implies cocompleteness. That this is not always true
is shown by the following three examples. In each example, the category ¢
is complete but not cocomplete.

23.10 EXAMPLES

(1) Let € be the opposite of the partialiy-ordered class of ordinals, considered
as a category. € has no initial object; i.e., no empty coproduct.

(2) Let € be the category of complete lattices and complete lattice homo-
morphisms. If X is the three-clement lattice, then there is no coproduct of three
copies of X. [Hales, 1964.]

(3) Let € be the category of complete boolean algebras and complete boolean
homomorphisms. If X is the four-element complcte boolean algebra, then there
is no coproduct of countably many copies of X. [Gaifman, 1964; Hales, 1964.]

The following theorems show that under suitable smallness conditions,
completeness in a category implies cocompleteness. This is one of the many
instances that illuminate the fact that category theory is essentially a “two-
pronged” subject, consisting of:

(1) general constructions; and
(2) smallness considerations; which guarantee that the constructions can be
carried out within certain “‘regions’ (usually fixed categories).

23.11 THEOREM
Every complete, well-powered, extremally co-(well-powered) category € has
coequalizers.

S . .
Proof: Let A g:; B be given €-morphisms. Let & be the class of all extremal

quoticnt objects (g, X) of B for which gof = gog. Since € is extremally
co-(well-powered), there is a representative class (1, X;); of & that is a set.
Since € is complete, we can form the product (I1X;, x;), the definition of which
guarantees the existence of a morphism

h= (): B> IX;

such that for each i, i; = m; o h. Since € is (extremal epi, mono)-factorizable
(17.16), there is a factorization of /
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B nx, = B 5y,

where e is an extremal epimorphism and m is a monomorphism. We claim that
(e, C) is a coequalizer of f and g. Since for each i,

niomoeof= n"ohof=hiof=h‘og = n‘ohog= Myomoeocg

and since the product is a mono-source and m is a monomorphism, we have
that e of = e o g. Now suppose that i is a morphism such that fof = hog.
Again by Proposition 17.16, there exists an extremal epimorphism é and a
monomorphism M, such that A = m ¢ & Since /i is a monomorphism, éof =
é o g, so that by the definition of isomorphic quotient objects, there is some
Jj € I and some isomorphism ¢ such that 1o h; = é.

f/,c,,,

A-_—_,—’B——h——>nx.-

D<—XJ‘

4
~
m

Thus r = Mo tom;om is a morphism such that roe = fi, and since e is an
epimorphism, r is unique. Hence (e, C) = Coeg(f, g). [

z

23.12 COROLLARY
If € is complete, well-powered, and co-(well-powered), then the following are
equivalent:

(1) € is cocomplete.
(2) € has coproducts.
(3) € has finite coproducts and direct limits. ]

A complete, well-powered, and co-(well-powered) category does not have
to be cocomplete (see Exercise 23D). However, if the category is also strongly
co-(well-powered) (19.9), then, as the next theorem shows, it must also be
cocomplete.

23.13 THEOREM
If € is complete and well-powered, then the following are equivalent:

(1) € is strongly co-(well-powered).
(2) € is cocomplete and co-(well-powered).

Proof: That (2) implies (1) is immediate from the dual of Proposition 19.12.
To show that (1) implies (2), it suffices (due to the dual of the characterization
theorem (23.8)) to show that each complete, well-powered, strongly co-(well-
powered) category has coproducts and coequalizers. The proof for coequalizers
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has been given above (23.11), and since the proof for coproducts is quite
similar, we will only provide a sketch of it. If (4,); is a set-indexed family of
©-objects, let (X;); be a representative set of €-objects with the property that
for each &, there is an epi-sink

f‘
(4; = Xy, Xy

Since (X,) is a set, we can form the product (I1X;, m;). Then there is an induced
sink

4, L2 nx,, nx,)

which, by Proposition 19.14, admits an [(extremal epi)-sink, mono]-factorization
(4)¥ c I ny,.
Then ((2,), C) is a coproduct of (4)),. ]

The similarities in the proofs of the above theorem and Theorem 23.11
are not accidental. The reason for this is that the construction of these colimits
are typical “universal map” constructions and colimits will turn out to be par-
ticular “‘universal maps” (see §26).

The following theorem shows that *“‘having a coseparator” is (for complete,
well-powered categories) a very strong smallness condition.

23.14 THEOREM
If € is complete, well-powered and has a coseparator C, then € is co-(well-
powered) and cocomplete.

Proof: According to the above theorem, it is sufficient to show that € is
strongly co-(well-powered). Let

X; 2 X, X)
be an epi-sink.

Casel. (X;) # . By the definition of epi-sink, /' — (f - g;) defines an injective
function from fom(X, C).into l"I hom(X,, C). Consequently if hom(X, C) # &,
then C*™X.O j5 a subobject of CM*™(X«O (see Exercise 18F). If hom(X, C) = &,
then C*™X.©) is a terminal object. Since C is a coseparator, X is a subobject
of C*mX.0 (19.6) and therefore it is either a subobject of CMhmXO) or of

the terminal object of €. Since € is well-powered, there can be no more
than a set of such objects which are pairwise non-isomorphic.

Case II. (X)) = . Exercise. [}
We conclude this section with several partial results.

23.15 THEOREM
Ifin a complete, well-powered category €, a copower 4 of a6-object A exists,
then XA exists for each non-empty subset K of I.
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Proof: Let (u;, 4) be a coproduct and let
A3 B W
be an [(extremal epi)-sink, mono]-factorization of the sink
(4 =5 A)exs 4).
Then (v,, B) is a coproduct of (4), . To prove this, let
(AL Chyex

be a family of ¥-morphisms. Fix an arbitrary ko € K and define f; = f;  for
each i € I — K. Then there exists a morphism f: ‘4 — C such that f; = fo y;
for each i. Consequently, the morphism g = fom: B — C has the property
that f, = g o v, for each k € K. Since ((v;), B) is an epi-sink, g is uniquely deter-
mined by this property. []
23.16 THEOREM

If € is complete, well-powered and connected, and 11X; exists for a family
(X)), then LUX, exists for each subfamily (X,) of (X)), including the empty sub-
Jamily.

Proof: Similar to that given for Theorem 23.15 above. []

23.17 THEOREM
If € is complete, well-powered, co-(well-powered), and has a separator S,
then the following are equivalent:

(1) € is cocomplete.
(2) € has arbitrary copowers of S.
Proof: (1) obviously implies (2). To show that (2) implies (1), according to
Theorem 23.13, it is sufficient to show that € is strongly co-(well-powered). Let
(X; = X, X),

be an epi-sink in €. Then by the dual of Proposition 19.6, each X is a quotient
of hemSX0g et hom(SXog %, x. be the corresponding epimorphisms. Let
k=1 hom(S, X), and let (1, XS) be the coproduct of the family (*mS:X0g),,
Then there exists a morphism g: S — X such that the diagram

hom(S, X)o

i i g,
& g

commutes for each /. g is obviously an epimorphism and X is consequently a
quotient of XS. Since K does not depend on X and ¥ is co-(well-powered), the
assertion follows. [}
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EXERCISES

23A. Prove that the category CompT, has products and equalizers and conclude
that every inverse system of compact HausdorfT spaces has an inverse limit,

23B. Countably Complete Categories
A category € is called countably complete provided that ¥ is I-complete for each cate-
gory I whose class of morphisms is a countable set.
(a) State and prove a characterization theorem for countably complete categories
analogous to the characterization theorems for finite completeness (23.7) and com-
pleteness (23.8).
(b) Prove that the category of metrizable topological spaces and continuous functions
is countably complete, but is not complete.

23C. Subcategories Closed Under Certain Constructions I
(a) For each full subcategory &f of a category €, which has products, let P/ denote
the full subcategory of € whose objects are (the object part of) products of &Z-objects;
and let S/ denote the full subcategory of € whose objects are (the object part of)
subobjects of o/-objects. Prove the following:

(i) PP/ = P

(i) SSo = S

(i) PSof < SPA.

(iv) SPo/ is the smallest full subcategory of ¥ containing &/ and closed under

the formation of products and subobjects.
(b) Let o be the full subcategory of Top whose objects are the discrete spaces. Deter-
mine whether or not & is a complete category and whether or not it is a complete
subcategory of Top.
(c) Prove that if & is a full, isomorphism-closed subcategory of Ab, then the following
are equivalent:

(i) o is closed under the formation of products, coproducts, subobjects, and

quotient objects.
(i) There exists a natural number n such that Ob(s&7) consists of all abelian
groups G such that nG = 0.

23D. A Complete, Well-Powered, Co-(Well-Powered) Category Which is Not
Cocomplete
Let € be the category whose objects are those triples (4, 4, ) where A4 is a set and
i:A - Aand u: P(A)— {(J} - A are functions (recall that 22(A4) denotes the power
set of A), where a €-morphism from (A, 4, #) to (B, Z, ) is a function f: A -» B such
that the diagram

—>A < P(A)-D}
s Il e
B >Be——P (B2}

commutes.

(a) Verify that € is indeed a category.

(b) Show that ¥ has products and equalizers and is thus complete.

(¢) Show that the ¥-monomorphisms are precisely the ¥-morphisms that are injective
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functions, and conclude that € is well-powered. [Hint: If a straightforward proof
fails, show that the forgetful functor to Set preserves products and equalizers and so
by Proposition 21.12 must preserve monomorphisms. ]

(d) Show that the €¥-epimorphisms are precisely the €-morphisms that are surjective
functions, and conclude that € is co-(well-powered). [Hint: Make a construction
similar to that used to characterize the epimorphisms in Top, (6.10(4)).]

(e) Show that € is not strongly co-(well-powered), and conclude that it is not cocom-
plete. [Hint: Let X be the G-object (P, A, i) where P is a singleton set, and for each
ordinal number a, let 4, be the partially-ordered set formed by adjoining two non-
comparable minimal elements a; and x, to the set of all ordinals less than or equal to «.
Define A,: A, = A, and u,: P(A,)-{J} - A4, by:

the immediate successor of x if x¢ {«,a,, a}
\ 1 if x=a
A‘(x) - X if X = az

a if x==«

#,(B) = sup(B).

Show that there is a proper class of non-isomorphic €-objects Y such that there is an
epi-sink from the pair (X, X) to Y.]

§24 FUNCTORS WHICH PRESERVE AND
REFLECT LIMITS

In this section we consider the notions of preservation and reflection of
limits and colimits. As it turns out, many of the important functors in math-
ematics (including many of the forgetful and inclusion functors) do preserve
limits. In the next chapter we will see that the concept of limit preservation is
intimately connected with the very important concepts of universal maps and
adjoint situations. ‘

24,1 DEFINITION
Let 7 be a category and F: & — % be a functor. F is said to

(1) preserve [-limits provided that whenever D: I — o is a functor and (L, (1))
is a limit of D, then (F(L), (F(/,))) is a limit of Fo D: I — 3.

(2) reflect I-limits provided that whenever D: [ — &/ is a functor and (L, (1,))
is a source in .o/ such that (F(L), (F(l,))) is a limit of F< D, then (L, ({))) is a
limit of D.

(3) preserve limits (resp. preserve finite limits) provided that F preserves I-limits
for every small category (resp. finite category) I.

(4) reflect limits (resp. reflect finite limits) provided that F reflects [-limits
for every small category (resp. finite category) /.

DUAL NOTIONS: preserve /°P-colimits, reflect /°P-colimits, preserve (finite)
colimits, reflect (finite) colimits.
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It should be noticed that the above definition is a general one which
automatically carries with it many translations to special cases. For example,
from the general definition one obtains the definitions:

F preserves equalizers provided that F preserves I-limits, where I is the category
« 3 + and

F preserves products provided that F preserves I-limits for each small discrete
category I.

Also from the proofs of the characterization theorems for finite completeness
and completeness (23.7 and 23.8), we immediately obtain the following theorems:

24.2 THEOREM
If o/ is finitely complete and F: of —» & is a functor, then the following are
equivalent :
(1) F preserves finite limits.
(2) F preserves pullbacks and terminal objects.
(3) F preserves finite products and pullbacks.
(4) F preserves finite products and inverse images.
(5) F preserves finite products and finite intersections.
(6) F preserves finite products and equalizers. [}

243 THEOREM
If of is complete and F:of — B is a functor, then the following are

equivalent :

(1) F preserves limits.

(2) F preserves multiple pullbacks and terminal objects.
(3) F preserves products and pullbacks.

(4) F preserves products and inverse images.

(8) F preserves products and finite intersections.

(6) F preserves products and equalizers.

(7) F preserves finite limits and inverse limits. ]

244 EXAMPLES

(1) The forgetful functors from Grp, R-Mod, SGrp, Mon, Rng, BooAlg, and
Lat to Set preserve and reflect limits and direct limits, but none of them preserves
or reflects arbitrary colimits.

(2) The forgetful functor from Top to Set preserves limits and colimits but
does not reflect either.

(3) The embedding functor from Ab to Grp preserves limits but not colimits.

(4) The forgetful functor from the category of finite abelian (resp. abelian
torsion) groups to Set preserves finite limits, but not arbitrary limits (see
Exercise 24F).
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(5) All covariant hom-functors lom(A, —) preserve limits (see Theorem 29.3).
(6) If o has (finite) products, then for each «/-object, A4, the functor

(A x ) -
preserves limits.
(7) If o has equalizers and [ is the category + 3 «, then the equalizer functor
E: o#'— of (see Exercise 16C) preserves limits.
(8) Examples (6) and (7) above can be derived as special cases of the general
fact that any two varieties of limits commute (see §25). Specifically if & is
I-complete, then the functor Lt;m:.d' — of preserves limits and if & is

I-cocomoplete, the functor Collim: o - of preserves colimits.

(9) Each “constant functor” functor C: &/ — of' (see 15.8) preserves both
limits and colimits.

(10) Let & be a full subcategory of # with embedding functor E: & G 3.
E reflects both limits and colimits, and if &/ is complete, then E preserves limits
provided that &/ is a complete subcategory of 4.

245 PROPOSITION
If F preserves pullbacks, then F preserves monomorphisms.

Proof: Recall that fis a monomorphism if and only if

{

is a pullback square. []

24.6 PROPOSITION
If o has equalizers and F: sf — & preserves equalizers, then F is faithful if
and only if it reflects epimorphisms.

Proof: That faithful functors reflect epimorphisms has been shown
previously (12.8). P
To show the converse, let (E, €) be the equalizer of a pair X —3 Y. Then
9

(F(E), F(e)) = Equ(F(f), F(9)),
so that if F(f) = F(g), F(e) must be an epimorphism (16.7). Since F reflects
epimorphisms, ¢ must be an epimorphism; hence f = ¢ (16.7). []

247 THEOREM
If F:of - @ is faithful and reflects isomorphisms and sf has I-limits
(resp. I-colimits) and F preserves them, then F reflects them.

Proof: Suppose that D:J - o and (Q, (q)) is a source such that
(F(Q), (F(g))) is a limit of Fo D. Then (F(Q), (F(g)))) is a natural source for
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Fo D, so that since F is faithful (and hence reflects commutative triangles)
(9, (¢5)) must be a natural source for D. Since & is I-complete, D has a limit
(L, (/) and there is a morphism A: Q — L such that for each ie Ob(J),
g; = I; o h. Consequently, for each i the triangle

F(q.
FIO)—, r(D,)
F(h)l F)

F(L)

commutes, so that since both (F(Q), (F(q,))) and (F(L), (F(/)))) are limits of
F o D, the morphism F(/) must be an isomorphism. Since Freflects isomorphisms,
h: @ — L must be an isomorphism, so that (Q, (¢)) is a limit of D. The proof
for colimits is similar. [

248 THEOREM
If o is complete and F: sf — B preserves limits and reflects isomorphisms,
then F is faithful and reflects limits, monomorphisms, and epimorphisms.

Proof: To show that F is faithful, let -:’: * be of-morphisms with
F(r) = F(s). Let (E, e) =~ Equ(r, 5); then
(F(E), F(e)) ~ Equ(F(r), F(s)),

so that since F(r) = F(s), F(¢) must be an isomorphism (16.7). Since F reflects
isomorphisms, e must be an isomorphism. Thus r = 5 (16.7).

Since F is faithful, it must reflect limits (24.7), monomorphisms, and
epimorphisms (12.8). [

In §12 we have investigated the preservation and reflection properties of
functors that are full, faithful, or dense. We conclude this section with a
continuation of this study.

249 PROPOSITION
Every full faithful functor reflects I-limits and I-colimits for each category I.

Proof: We give a proof for limits. The proof for colimits is dual. Suppose

that 1 2 o £, #, Fis full and faithful, (L, (/,)) is a source in &, and that
(F(L), (F(L))) is a limit of F o D. Since F is faithful, (L, (/,)) must be a natural
source for D. Now suppose that (Q, (g)) is also a natural source for D. Then
(F(Q), (F(q)))) is a natural source for Fo D, so there is a unique morphism
h: F(Q) — F(L) such that for all i, F(g;)) = F(l) o h.

D; F(D)
q, F(q,) /'
7 [A h Fl)
Q=----1-- 1. Dimy  F(Q)Z---L>F(L) (F*D)(m)

! \F{II)
q, Flq))

D; F(D;)



170 Limits in Categories Chap. VI

Since Fis full, there is some f:Q — L such that F(f) = / and by the faithfulness
of F, f has the property that for all i, ¢; = /; o f and is the only morphism with
this property. Consequently (L, (1)) is a limit of D. []

Every full and faithful functor F: &/ — Set (where F(4) # & for at least
one A € Ob(s7)) not only reflects limits, but preserves them as well. Also, if
F(A) has at least two elements for some 4 € Ob(«f), then F preserves and reflects
colimits (see Exercise 24D). These are only some of the rather surprising facts
about set-valued functors. These functors will be treated more comprehensively
in Chapter VIII.

24.10 LEMMA
If F and G are naturally isomorphic functors and I is a category, then F
preserves or reflects I-limits (resp. I-colimits) if and only if G does so. []

24.11 PROPOSITION
Each equivalence preserves and reflects both I-limits and I-colimits, for
every category 1.

Proof: That each equivalence reflects [-limits and /-colimits follows
immediately from the fact that it is full and faithful (24.9). We will show limit
preservation. The proof for colimits is dual.

Suppose that F: &/ — & is an equivalence, D: [ = &/, and (L, (/) is a
limit of D. Since F is an equivalence, there is an equivalence G: # — & such
that G o F is naturally isomorphic to 1, (14.11). Hence by the lemma,

(G« F)(L), (G = F)(4y))
is a limit of G Fo D. Now G, being an equivalence, is full and faithful; so it
reflects limits (24.9). Hence (F(L) , (F(1}))) is a limit of Fo D. []
Notice that the above proposition shows that completeness and cocom-

pleteness are categorical properties.

24.12 Some of the results of this section are summarized in the following
figure. (F is assumed to be a functor with domain «.)

F preserves
monomorphisms

I

+/ is complete and F refiects isomorphisms
F preserves limits

F 4

F reflects F reflects limits
epimorphisms

e

Fis faithful |——>|  F reflects monomorphisms
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EXERCISES

24A. Prove that if F:of - & preserves limits and &/ has an initial object P,
then Fhas a limit; namely (F(P), (F(f,))), where £, is the unique morphism from Pto A.

24B. Construct an example to show that the property: ** F preserves coequalizers™
is not the same as the property *‘F preserves regular epimorphisms™. [Consider the
forgetful functor U: Grp - Set.]

24C. Prove that if &/ is complete and F: o/ - & preserves limits and reflects
isomorphisms, then F reflects extremal epimorphisms.

24D. Suppose that F: &/ - Set is full and faithful.
(a) If F(A) #  for some &7-object A, prove that F preserves limits.
(b) If F(A) has at least two elements for some o/-object A, prove that F preserves
colimits.

24E. Suppose that F, G, and H are functors such that G - F = H. Show that if H
preserves limits and G reflects limits, then F preserves limits.

24F. Prove that the forgetful functor from the category of finite abelian groups
into Set preserves finite limits but not arbitrary limits. [Consider the limit of a functor
whose image is --- =+ Z/8Z —» Z[4Z - Z/2Z.]

24G. Let o be a full subcategory of & that contains a separator for 4. Prove
that the embedding functor E: o G B reflects regular epimorphisms.

§25 LIMITS IN FUNCTOR CATEGORIES

When considering particular limits, we have seen several instances where
certain types of limits can be *‘commuted™; for example, products can be
iterated (18.13), products of equalizers are equalizers of products (18.17),
pullback squares can be composed by “pasting their edges together” (21E),
and products of pullbacks are pullbacks of products (21F). In this section, we
will prove the general result that any two types of limits commute, obtaining in
the process the above results as special cases and also obtaining the consequence
that cach functor category #* inherits the completeness and cocompleteness
properties of . To do this we will begin by showing thatif D: I x J - €isa
functor and ¥ is I-complete and J-complete, then the limit of D can be con-
structed ‘“‘pointwise”, i.e., by first finding the limit of each of the right associated
functors D(i, ), where i is an object of 7, and then by finding the limit of the
functor “induced” by these limits (or, alternatively, by first finding the limits of
each of the functors D(__, j) and then the limit of the functor *“induced” by these
limits). We first illustrate the technique with a special case that has been
considered before:

25.1 EXAMPLE
Equalizers and products (of pairs) commute.

Let I be the discrete category + 7 andlet J be the category i é J-
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Then! x Jis

(1,m)
(L, H)=3(1,))

(1m)
@022, j)
£ (2'") ,.l .

Suppose that € has products (of pairs) and equalizers, andlet D: I x J — € be
a functor. Then in ¥ we have the diagram

. bim ]
D\, y—= D(1,))
b(1.m)
D(2.m)
D2, i) —= D(2, ).
D(2.m)

Now D(1, ) and D(2, ) are functors from J to ¥ whose limits are the
equalizers of the top and bottom pairs, respectively. Call them (£(1), e,) and
(E(2), e,). This then defines a functor E: I — €, and it is easy to verify that the
limit of this functor, namely (E(1) x E(2), ng), Tgzy) is such that when the
projection morphisms are composed with the other morphisms given, the result
is a limit of D, i.e.,
Lim D = (E(1) x E(2), e, o mg(yy, D(1, m) o ey o mgyy,
IxJ

ez e “5(2), D(Z, m) ° ez o nz(z)).

D(1,m)

€, >
EM
D(1,n)
E(1) x EQ2)
e e D(2,m)
W E(2) — = D2, T——3 D))
D(2,n)

Similarly, when we consider the functors D(_, i) and D(_, j) from I to &, we
see that they have limits which are products. Let

F()) = D(1,i) x D(2,i)
F(j) = D(1, j) x D(2,))
F(m) = D(1, m) x D(2, m)
F(n) = D(1, n) x D(2, n).

Then we have that F is a functor from J to € whose limit (namely the equalizer
(K, k) of F(m) and F(n)) is such that when k is composed with the other mor-
phisms given, a limit of D is obtained; i.e.,

LimD =~ (K, r;ok, D(l, m)omy ok, my;ek, D(2, m)o my;e k)

I1xJ
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D(1,m)
LI p— ) 1( )

D(1,n)
T"'n‘ I“'u
Fmy

K—F@i) ___3 F(j)

F(m)
l"zi 1’2;‘
D{(2,m)

D(2,i)———D(Q,))
D(2,n)
Notice that in the first case we took a product of equalizers to obtain a limit of D,
and in the second case we took the equalizer of products. Thus the product of
the equalizers of any two pairs of morphisms in % is essentially no different from
the equalizer of the product morphisms formed from the two pairs.

25.2 THEOREM (POINTWISE EVALUATION)

Suppose that I, J, and € are categories, D: I x J — € is a functor, and for
each object i in I, the right associated functor D(i, _): J — € has a limit, namely
(L, (lj‘)l)- Then

(1) there is a unique functor F. I — € such that for each object i in I, F(i) = L;
and for each morphism m: i — I in I and each object j in J, the diagram

[‘
F(i)=L; ———>D(i.j)

F(m) D(m, j)

-
v

F(i)=L; ——D(.j)
commutes.
(2) D has a limit if and only if F has a limit, and any source (L, (p),) is a limit of F
if and only if (L, (I} © p)1x ;) is a limit of D.
Proof:

(1) For each m: i — fin I, let F(m) be the morphism from L; to L; induced by
the fact that (L;, (l}) ) is a limit of D(f, ) and (L,, (D(m, j) o I}') ,) is a natural
source for D(i, ). Since D(m, _) is a natural transformation, F must clearly
preserve identities and compositions; hence it is a functor. By the uniqueness
condition in the definition of limit, it is evident that F can be defined on mor-
phisms in no other way.

(2) Suppose that (L, (p)),) is a limit of F. Then
(L, (5o pdixy)
is a natural source for D. Let
(R, (‘]u):u)
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also be a natural source for D. Then for each object / in I and each morphism
j—jinlJ,

qi; = D(i, n) ° gy

Hence there is a morphism r;: R — L such that the diagram

D(i,j)
T .
r 4
R=""-T51] . |bm
!
P
9
D(i.J)

commutes.
Now for each object j in J and each morphism i —s f in I

lio Famyor, = Dim,j)olior, = D(m,j)oqy = qp; = llor;

so that since (L;, (/ f) ,) is a mono-source, F(m) o r; = r;. Hence since (L, (rdn)
is a limit of F, there is a unique morphism A: R — L such that the diagram

q

ij

L; /i D (‘;j)
3

RIS ">l F(m) D(m, j)
1 I,::Q v

q;:,.

commutes. ‘
Since each (L;, (/});) is a mono-source, / is thus unique with respect to the

property that for each i and j, g;; = (I} p;) o h. Consequently, (L, S e Pdixn)

is a limit of D.
The converse follows readily, as does the first part of (2). These are left as

exercises. []

253 COROLLARY
If € is I-complete and J-complete, then € is I x J-complete. []

254 COROLLARY (COMMUTATION OF LIMITS)
Suppose that € is I-complete and J-complete and D: I x J - € is a

JSinctor. Then
Lim(Lim D(i, j)) ~ Lim D =~ Lim(Lim D(i, ))). [
F 1%J J 1
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255 EXAMPLES
The above result yields the following previously considered special cases:

1 J Result
discrete discrete iteration of products (18.13)
discrete — . products of equalizers are equalizers of products
—_— (18.17)

c\) 0\)

S . pullback squares can be composed (21E)
discrete ft— . products of pullbacks are pullbacks of products

In §15 we have seen that functor categories #* often inherit the categorical
properties of &. That this is true for completeness and cocompleteness is a
consequence of the next theorem.

256 THEOREM

Limits in functor categories can be obtained by pointwise evaluation. Specif-
ically, suppose that D: I — #* is a functor and for each A € Ob(4), E: B — 3
is the evaluation functor relative to A (15.8). If for each A€ Ob(4), E, o D: 1 - &
has a limit (L,, (1#),), then D has a limit (F, (g)),), where F: &/ — & is a functor
such that F(A) = L, for each A € Ob(&), and for each i € Ob(I), q, is the natural
transformation (I{)4consy: F = D(Y).

Proof: Since the categories (#*)' and #'*“ are isomorphic, D can be
considered as a functor from 7 x &/ to # (15.9). Hence, the result is merely a
restatement of the Pointwise Evaluation Theorem (25.2). [

25.7 COROLLARY

If &, B, and I are categories, then if B is I-complete (resp. I-cocomplete),
then so is 3%. [

EXERCISES

25A. (a) Use the pointwise evaluation theorem to show that if 4 has pullbacks
and F and G are objects in 8%, then n: F -» G is a monomorphism in 44 if and only
if for each 4 € Ob(F), n4: F(A) = G(A) is a monomorphism in & (cf. 15.5).
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(b) Conclude that if £ has pullbacks and pushouts and is balanced, then 2 is
balanced, for each category 7.

25B. Commutation of limits and colimits
In this exercise set we are concerned with only the “object parts” of certain limits and
colimits; for example, here when we say that in € “direct limits and finite limits
commute” it means that for each upward directed set J, each finite category J, and
each functor D: I x J -+ €, the object parts of

Co{im(L-t;m D, j)) and L.t;m(Co,lim D(i, i)

are isomorphic.

(a) Show that coproducts and equalizers commute in the categories Set, Top, and
Cat.

(b) Show that direct limits and finite limits commute in the categories Set, R-Med,
Grp, BooAlg, and Lat. [First show that direct limits and pullbacks commute. ]

(c) Show that direct limits and (arbitrary) limits do not commute in Set. [Let 7 be the
natural numbers N with the usual order and let J be natural numbers N considered asa
discrete category. Define D: I x J - Set by:

D@, j) = (neN|n = i}
and if f: (i, j) = (i, ))
D(f)n) = supli, n}.]
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