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Functors and Natural

Transformations

It should be observed first that the whole concept of a category is essentially an
auxiliary one; our basic concepts are essentially those of a functor and of a natural
transformation. . . .

——S8. EILENBERG AND S. Mac LANE}

One of our first notions of a category was that of a class of *‘structured sets’
(called objects) together with a class of “structure-preserving functions” (called
morphisms) between them. In Chapters IIf and IV we have seen that generally
it is not so much the objects and how they are constructed, as it is the morphisms
and how they are composed, that is the focal point of one’s attention when
investigating categories. In this chapter we step back and take a somewhat wider
view—considering categories themselves as structured classes and looking at
the “structure-preserving functions” (called functors) between them. Later we
will see that, analogously with the earlier situation, much of the importance of
the theory of categories lies not in the structure of the categories themselves, but
rather in the functors between them and how they are composed. Actually, we
can (and do) go one step further by defining and investigating “morphisms”
between functors. These are called natural transformations. As expected, the
study of natural transformations and how they are composed is the essence of
*“functor theory".

§9 FUNCTORS

9.1 DEFINITION

Let € and & be categories. A functor from ¢ to 2 is a triple (¥, F, Z)
where Fis a function from the class of morphisms of € to the class of morph-
isms of 2 (i.e., F: Mor(¥) » Mor(2)) satisfying the following conditions:

t From Transactions of the American Mathematical Society 58 (1945).
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54 Functors and Natural Transformations Chap. V

(1) F preserves identities; i.c., if ¢ is a 4-identity, then F(e) is a Z-identity.
(2) F preserves composition; F(f°g) = F(f) - F(g); i.e., whenever dom(f) =
cod(g), then dom(F(f)) = cod(F(g)) and the above equality holds.

Instead of writing (¢, F, 2) is a functor”, we usually write, more instruc-

tively, “F: € - 2, or € £, 2, or “Fis a functor from € to 2. Also, as with
functions, we usually abuse the notation and write F instead of (¥, F, 2). Hence,
we write, for example, that F has domain ¥ and codomain 2. A functor whose
domain is a small category is called a small functor.

Because for any category there is a one-to-one correspondence (4 « 1))
between objects and identities (3.2) and because functors preserve identities,
each functor F: € — 2 induces a unique function (also denoted “‘by abuse of
notation” by F) from the class of €-objects to the class of Z-objects, such that
for each ©-object 4

F(1,) = lgay
An immediate consequence is that for all ¢-objects A and B,
F[hom4(A, B)] = hom(F(A), F(B)).
Obviously, then, any functor F: % — £ can easily be recovered from its

““object-function” F: Ob(6) — Ob(2) and all of the restrictionst

hom(FA,FB
F Ihom%A.B) ).

Because of this, we shall often describe functors by means of their object
functions and their “*hom-set” restrictions.

9.2 EXAMPLES OF FUNCTORS

(1) For any category €, (%, 1o, €) is a functor, called the identity functor on €
and denoted by 1.

(2) If € is a subcategory of @2 and E: Mor(¥)~ Mor(2) is the inclusion
function, then ¢E 2isaf unctor, called the inclusion functor from € to 2.
(3) If € is a quotient category of €, and Q: Mor(6) — Mor(€) is the
canonical function that assigns to each morphism f its equivalence class f, then
¢ 2, & is a functor, called the canonical or natural functor from € to €.

tIf X' cX, Y cYand f: X — Y is a function such that f[X’] < Y, then the unique
function g: X" — Y’ for which the square

x>yt
x—L sy

commutes, is called the restriction of £ to (X, ¥’) and is denoted by f|}..
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4) If € and 2 are categories and F: Mor(¥) —» Mor(2) is a function

which takes every ¥-morphism to a single identity in Mor(2), then € £ 9isa
functor, called a constant functor from € to 2.

(5) If (6, F, 2) is a functor, then (¥°%, F, 2°%) is a functor, called the
opposite functor of F and denoted by F°?. Thus, F and F°?, when considered as
functions on morphism classes, are identical. (Recall that Mor(€) = Mor(€°%).)
However, considered as functors, they are different since they have different
domains and codomains.

(6) For any concrete category &, there is a functor U: ¢ — Set that assignstoany
object A, the underlying set U(4) and to any morphism, the corresponding
function on the underlying sets. U is called the forgetful functor (or underlying
functor) on €. One can also easily construct the forgetful functors: Rng — Ab
(which “‘forgets” multiplication); Rng — Mon (which “forgets” addition);
BanSp, — BanSp, (which *‘forgets™ the norm—but not the uniform topology);
BanSp, — NLinSp (which “forgets” completeness); etc.

(7) The function F: Set — Grp that assigns to any set A the free group
with set of generators A4, and to each set function f the induced homomorphism
that coincides with f on the generators, is a functor, called the free group functor.
One can similarly define the free semigroup functor, the free abelian group functor,
the free left R-module functor, the free ring functor, etc.

(8) For each group A4, let A’ be the commutator subgroup of A; i.e., the
subgroup generated by all elements of A of the form ghg~'h~".
Define F: Grp — Grp by:

FA) = A'

B
, J14
—_—

FAL. B =4 B

Then F is a functor, called the commutator subgroup functor.
Define H: Grp — Ab by:
H(A) = A|A’

H(A <, B) is the homomorphism from A/A’ to B/B’ induced by f; i.e., the
unique morphism for which the square

A ;.—hi / A
fl L)
h v
B——B/B’
commutes (where the horizontal arrows are natural projections). Then H is a
functor, called the abelianization functor.

(9) There is a functor f from the category CRegT, of completely regular
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HausdorfT spaces to the category CompT, of compact Hausdorff spaces that
assigns to each space X its Stone-Cech compactification fX and to each con-

tinuous function X L5 Y the unique continuous function f(f) which makes the
square

xC——px
|
f ! 3(f)
v
Yy ——gY
commute. B is called the Stone-Cech functor.

(10) For each pointed topological space X, let IT,(X) be the fundamental

group of X and for each morphism X Lvin pTop, let IT,(f) be the function
from IT,(X) to I1,(Y) that assigns to each equivalence class of closed paths [ p]
the equivalence class [ /o p]. For each such £, IT,(f) is a group homomorphism.
IT, is a functor from pTop to Grp, called the fundamental group functor.

(11) There is a functor /y: Top — Ab that assigns to each space X the free
abelian group generated by the set of components of X. If X -5 Y, then
ho(f): ho(X) — ho(Y) is determined by:

ho(S/NC) = the component of Y that contains f[C]

(where C is a component of X). I, is called the Oth homology functor.
(12) If € is the category of chain complexes of abelian groups (3.5(5)),
then for each integer n there is a homology-functor /,: € — Ab defined by:
H(G, d)icz) = Ker(d,)/Im(d, )
H((f)icz) = the induced homomorphism:
Ju: Ker(d)/Im(d, , ) = Ker(d,)/Im(d,.,)

Actually different “homology theories” of algebraic topology can essentially be
obtained by defining appropriate functors from the category of topological
spaces to the category of chain complexes and looking at the “‘compositions”
of each such functor with the homology functor H,.

9.3 PROPOSITION
If & 55 # and # 2+ & are functors, then & %5 & is a functor. O

9.4 DEFINITION
The functor G » F of the above proposition is called the composition of
Fand G.

The reader may have noticed that in Proposition 9.3 we regard F (inaccu-
rately) both as a function from Mor(s?) to Mor(%#) and as a functor from &
to #. A more precise statement of the proposition would be the following:
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If F= (o, F,®) and G = (8, G, €) are functors, then (o/,GoF, %) is a
functor (which is denoted by G o F).

Because it is more descriptive and instructive, we have used the less precise
“arrow-notation” for functors in Proposition 9.3. We will continue to use it
when no confusion seems likely.

9.5 DEFINITION
A triple (%, F, 2) is called a contravariant functor from € to 2 if and only
if (¥°*, F, 2)is a functor (or, equivalently, if and only if (¢, F, 2°P) is a functor).

Notice that a contravariant functor from € to 2 is usually not a functor from
% to 2. Nevertheless, we will occasionally use the notation F: € —» @ for a
contravariant functor from € to 2. For this reason, functors are sometimes called
“covariant functors™ when one wishes to distinguish them from contravariant
functors. Obscrve that the notion of a contravariant functor is for the most part
superfluous. The principal reason for its use is the fact that in many instances we
have a built-in preference for some categories over their opposites. For example,
we know just as much about Set’” and Top®” as we do about Set and Tep. But
we are psychologically more comfortable when working with the latter categories.

9.6 EXAMPLES OF CONTRAVARIANT FUNCTORS

(1) For any functor F = (%, F, 9) there are two associated contravariant
functors,

F*= (%" F,9) ad *F=(%F, 2%).

(2) The functor 2: Set*? — Set, which assigns to each set 4 the set #(4) of
all subsets of A and to each function A <5 B the function P(B) &N, P(A)
defined by 2(f)C) = f~[C], is a contravariant functor from Set to Set,
called the contravariant power-set functor.

(3) The functor F: Top°” — BooAlg that assigns to cach topological space
the boolean algebra of its clopen subsets and to each continuous function
f:X = Y, the boolean homomorphism F(f): F(Y) — F(X) defined by F(f)(A4) =
S ~'[4), is a contravariant functor from Top to BooAlg.

(4) If & is the category of finite dimensional vector spaces over the field F,
then the functor (7): #°7 — & that assigns to each vector space V, the space P of
linear functionals over F and to each linear transformation f: V — W, the
linear transformation f: W — P defined by f(g) = g, is a contravariant
functor from & to &, called the duality functor.

(5) The functor C: Top®® — VecLat that assigns to each topological space X

the vector lattice C(X, R) of all continuous real-valued functions is a contra-
variant functor from Top to VecLat.

(6) The functor C*: Top®® — C*-Alg that assigns to each topological space

X the C*-algebra C*(X, C) of all complex valued bounded continuous
functions is a contravariant functor from Top to C*-Alg.
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(7) Each of the cohomology functors of algebraic topology is a contravariant
functor from Top to Ab; i.e., a functor from Top®® to Ab.

9.7 DEFINITION

If the domain of a functor is the product of two categories, then the functor
is sometimes called a bifunctor. Similarly, one may define trifunctors and
functors of n-variables.

9.8 EXAMPLES OF BIFUNCTORS

(1) The cartesian product functor (— x _): Set x Set — Set, defined by:
(— x _)4,B)=A x B
(—x )fig)=fxg:AxB->CxD

where (f x g)(a, b) = (f(a), 9(b)).

(2) The tensor product functor (__ ® __): Ab x Ab — Ab, defined by:
(—®_)A4,B)=40 B
—® )9 =/®g:A®B->CRD

U® g)(Z a;®b) = Z (f(a) ® g(b)).

where

(3) The disjoint union functor (— © __): Set x Set — Set defined by:
(—®_)A4,B)=A o B

(—v ) D=fDgASB->CuED
where

L i =1
U o g)x i) = [g(x) if Q=2

9.9 THEOREM
IfF: o x & — € is a bifunctor, then
(1) For each A € Ob(«f), there is an associated functor (denoted by)

F(4,_): B - @,

defined by :

F(A, _)(B) = F(A, B)
and

F(A4, )(h) = F(1,, /)
and

(2) for each B € Ob(B), there is an associated functor (denoted by)

F(_,B):o - €,
defined by :
F(—, B)(A) = F(4, B)
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“and
F(—; B)(g) = F(g' IB)'
Proof: We will prove (1). (2) follows analogously. Clearly, F(4, —)(1p) =

F(1,, 15) is an identity in % since F is a functor. Now, if B - B’ % B" are
morphisms in &, then

F(A, _Ygoh) = F(l,o1,,g°i) = F((l1,,9) (14, 1)
= F(ly g) o F(14, h) = F(4, _)(g) o F(4, )I).
Thus, F(A, ) preserves identities and compositions. [}

9.10 DEFINITION

The functor F(A4, ) of Theorem 9.9 is called the right associated functor
with respect to F and 4, and the functor F(—, B) is called the left associated
functor with respect to F and B.

The most important bifunctor and its associated functors will be studied separ-
ately in the next section.

EXERCISES
9A. Verify that the following are functors:
(a) The (covariant) power sct functor 2: Set — Set, defined by:
P(A) = the collection of all subsets of A
P4 Ly B) = P(f): P(A) - P(B)

where 2(f)(C) = f[C).
(b) The squaring functor ( )?: Set — Sct, defined by:

( )A) = A2
( YL By=r4 -8
where f3(ay, a;) = (f(a)), f(a3)).
(c) The ith projection functor for a product category

ﬂ(irgl X (gz X oere X @" -—»%’h
defined by:
nl(/l!fZ"--s.’,]) =j;.

(d) The ith injection functor for a sum category

[l‘:gg "%’x u(gz u"' ugm
defined by:
ulf) = i)
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9B. Show that if F: ¢ — & is a functor, then the image of € under F is not
necessarily a subcategory of . [Consider a functor from

¢ ——3 o s>

———>e 0 \Al ]

9C. Show that a function between the morphism classes of two categories, which
preserves compositions, is not necessarily a functor; ie., “identity preservation™ is
essential. [Cf. Exercise 4B.]

9D. Show that functors which coincide on objects (identities) are not necessarily
the same.

9E. Prove that if each of € and < is a category with just one object (i.e., a monoid
(3.5(7), then F: € — 2 is a functor if and only if it is a monoid homomorphism.

9F. Ina manner similar to that given in Example 9.2(8), define a tersion subgroup
functor 7: Ab — Ab which assigns to each abelian group A its torsion subgroup A,
and define a torsion-free functor F: Ab — Ab which assigns to each abelian group A the
group A/A.

9G. Define a functor from the category QOS of quasi-ordered sets to the category
POS, which assigns to any quasi-ordered set X, the partially-ordered set that is obtained
by identifying those members @ and b of X for whicha < hand b < a.

9H. Let F: Ob(NLinSp) — Ob(CompT,) be the function that assigns to each
normed linear space X the closed unit sphere in the space of all linear functionals on X
(furnished with the weak®*-topology). Is F the object function of some contravariant
functor from NLinSp to CompT,;?

91. Define a (bi)functor (— x _): Top x Top — Top whose value at any
pair of spaces is their topological product.

9J. Show that if (G, +) is an abelian group (considered as a category with one
object), then the direct product G x G is a product category and ©: G x G+ G
defined by O(f, 9) = f + g is a bifunctor.

9K. Prove thatif F:.of — & and G: € — £, then there exists a functor

FxG:of x4 x &,
defined by:
(F x GYh, k) = (F(In, G(k)).

9L. Prove that the product of two categories &/, x &/, together with the pro-
jection functors 7, : &/, x &/, —» &/, and 7,: 9/, x &/, — &/, has the property that
if € is any category and F: € — &/, and G: ¢ — &/, arc any functors, then there
exists a unique functor P: 6 — &/, x ./, such that the diagram

g

N

/s
T2

"'/l x .'-/g

L}

A

(<--_.-_--_-_

commutes.

9M. Prove that the sum category &/, L1 &/, together with the injection functors
pi: sy — &/ U, i = 1,2 has the property that if & is any category and H: o/, 2
and K: o/, = 2, then there exists a unique functor @: .o/, 11 &/, — £ such that the
diagram
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7N
/) EQ L

Q

N

N0 1 A

commutes.

§10 HOM-FUNCTORS

One naturally occurring (bi)functor is so important that we wish to consider it
separately.

10.1 PROPOSITION
If € is any category, then there is a functor (denoted by)

homyg: €°P x € — Set,

where homy(A, B) is the set of €-morphisms from A to B, and

homy(f, g)(x) = goxof.

hom,"(A,B) A .__._x—) B
lhom(f.y) f] lg

A (A' B’ Al _g_‘::‘fj-{i-_)B'

ot (A5 hom (£,9)(x)

Proof: Clearly
homyg(l 4, 1g)(x) = lgoxol, = x;
thus, flomg(1,, 1) is the identity function on the set hom (A, B). Also
hom((f, g) o (h, k)(x) = homg(hof, gok)x) = gokoxohof
= g o hom(h, k)(x) o f = homy(f, g)(homg(h, k)(x))
= homg(f, g) « homy(h, k)(x).
Hence, hom preserves identitics and composition. []
10.2 DEFINITION
The functor home: €°7 x € — Setiscalled the set-valued hom-functor (or
morphism functor) for the category €. The right associated functor with respect

to homy and A, i.e., homg(A, _): € — Set, is called the covariant hom-functor
of € with respect to A4; and the left associated functor, i.c.,

homy(—, A): €°° — Set,

is called the contravariant hom-functor of % with respect to A.
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Occasionally, for simplicity, the subscript ¢ naming the category is sup-
pressed when denoting the hom-functor. Notice that for a morphism f

hom(A, _)(f) = hom(A, f) = fo—; i.e., hom(A, f)(x) = fox,

whereas

hom(_, AXf) = hom(f, A) = —-<fiie., hom(f, A)x) = xf.

10.3 PROPOSITION
For any category € and any 6-object A, we have

homg(—, A) = homgo (A, ).

In other words, the contravariant hom-functor hom(—, A): €°% — Set of € with
respect to A is identical with the covariant hom-functor hom(A, ). €°? - Set
of €°F with respect to A. []

Since the contravariant hom-functors of 4 are exactly the covariant hom-
functors of €°P, in the sequel we will formally need to investigate only covariant
hom-functors.

Internal Hom-Functors

In some instances, the set flomg(A, B) can be supplied in a natural way
with a structure so that it itself can be considered as an object of a category
other than Set. For example, if A and B are objects in Ab, then fom(A, B) can
be regarded as an abelian group (if we define (f + g)(a) to be f(a) + g(a)).
Since, moreover, for all morphisms f and g of Ab, the function hom(f, g)
turns out to be an abelian group homomorphism, the hom-functor can in this
case be considered as a functor from Ab°? x Ab to Ab. In this instance and in
similar cases, we will use the notation **Hom" rather than “iom™. Note that if
Homy: 6" x € - 2 and if U:Z — Set is the forgetful functor, then
hom = U o Hom.

104 EXAMPLES

(1) Hom: Ab°? x Ab — Ab.
(2) Hom: R-Mod”? x R-Med — R-Mod (where R is commutative).
(3) Hom: Top°® x Top — Top (where Hom(A, B) has the compact-open
topology).
(4) Hom: NLinSp°® x NLinSp — NLinSp (where Hom(A, B) has the norm
defined by

I = sup{l L1 ixll = 1}).

10.5 DEFINITION

If # is a concrete category with forgetful functor U: # — Set, then a
contravariant functor & £, @ is called a hom-type functor provided that there
exists some A € Ob(«?) such that hom(—, A) = U F. In this case, F will
usually be denoted by Hom(_, A).
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Often hom-type functors arise when there is an object A4 that can be con-
sidered simultaneously as an object of each of the categories &/ and #. Many
duality theories hinge upon these hom-type functors.

10,6 EXAMPLES OF HOM-TYPE FUNCTORS
Le., contravariant functors of the form Hom(_, A): of — &, where the
triangle

Hom(_,A)

N4 4
hom(_,A4) lu
Set
commutes.
K-'4 B A Hom(X, A) is called:

(1) R-Mod Mod-R R The dual module of X or the module of all
linear functionals on X

(2) LinTop C-Mod C The adjoint (or dual, or conjugate)
module of the linear topological space X
(or the module of all linear functionals
on X)

(3) NLinSp BanSp, C The conjugate (or dual) Banach space of
the normed linear space X

(4) LCAbt LCADb R/Z The character group of the locally com-
pact abelian group X

) Ab CompAbtt R/Z The character group of the abelian
group X

(6) CompAb Ab R/Z The character group of the compact
abelian group X

¥) Top BooAlg 21ttt The dual algebra of X or the boolean

algebra of clopen subsets of X
(8) BooAlg BooSpttt 2ttft  The Stone space or dual space of the
boolean algebra X

9 Top Rng R The ring of real-valued continuous
functions on X
(10) CBanAlg CompT, C The carrier space (or maximal ideal space)

of the commutative Banach algebra X

t LCAD is the category of locally compact abelian groups and continuous homomorphisms.
tt CompAb is the category of compact abelian groups and continuous homomorphisms.

111 BooSp is the category of boolean spaces (i.e., totally disconnected compact Hausdorfl
spaces) and continuous functions.

tt11 2 is considered as cither the two-element discrete space or the two-element boolean
algebra.
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EXERCISES

10A. Show that there exist two natural (tri)functors

F, G: Set°? x Set®” x Set — Set
where
F(A, B, C) = hom(A x B, C),
and
G(A, B, C) = hom(A, honm(B, C)).

That is, describe how these functors act on morphisms.

10B. Every functor F: € — & has two associated set-valued bifunctors:
hom(F—, _):€°° x @ — Set

and
hom(__, F_): @°F x € — Set,
where
hom(F—, _)(C, D) = hom(F(C), D)
and

hom(_, F_)(D, C) = hom(D, F(C)).
Describe how these functors act on morphisms.

§11 CATEGORIES OF CATEGORIES

We have already seen that functors assume the role of **morphisms between
categories”, i.c., the composition of functors is a functor (9.3), and, since their
composition is the usual composition of functions, composition is associative
and identity functors behave like identities with respect to the composition. Be-
cause of this, one is tempted to form the “category of all categories”. However,
two technical difficulties arise. First, the “category of all categories™ would have
objects such as Set, Grp, and Top, which are not sets, so that the conglomerate
of all objects in the category would not be a class (1.2(1)). This violates part (i)
of the definition of a category (3.1). Secondly, given any two categories ¥ and 2,
it is not generally true that the conglomerate of all functors from ¥ to 2 forms
a set. This violates part (4) of the definition of a category. However, if we
restrict our attention to categories that are sefs, i.., to small categories, then the
above problems arc climinated.

11.1 PROPOSITION

There exists a category (0, ./, dom, cod, o) where 0 is the class of all small
categories, M is the class of all functors between small categories, dom and cod are
Junctions that assign to each F € . its domain and codomain, respectively, and o
is the usual composition of functors in A .

Proof: Every functor between small categories is a set (Exercise 11A).
Thus, the required classes and functions can be formed. Since the composition
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of functors is really function composition, the “matching”, “associativity”, and
“identity existence” conditions are easily verified (3.1). Thus, we need only show
the “smallness of the morphism class™ condition; i.e., if

¢ = (O, Vll@) dom‘&? COd%‘a °%’)
and
2 = (093 "/{9’ domg: COdQ: °9)

are small categories, then
{F| Fis a functor from € to &}

is a set. Now, since € and 9 are sets, .#, and .#, must be sets, so that F =
{g | gis a function from # 4 to .#,} is a set (1.1(3)). Hence, {€} x & x {D}is
a set (1.1(3)). By the definition of functor (9.1), each functor from % to 2 belongs
to {¥} x F x {2}. Thus, by 1.1(1),

{F| Fis a functor from ¥ to 2}
isaset. [

11.2 DEFINITION

The category given by the previous proposition is called the category of
small categories and is denoted by Cat.

Cat is actually quite large; for example, each of the categories Set, POS,
Mon, Grp, and Ab can be fully embedded in it (se¢ Exercise 12F). It is nevertheless
unfortunate that we cannot form the “category of all categories”. Also, as we
shall see later, other constructions lead to entities that would be categories
were it not for the two “smallness” conditions required for categories, namely:

(1) Ob(%¥) and Mor(¥) must be classes, and

(2) For each pair (4, B) of ¢-objects, homy(A, B) must be a set.
For this reason, we consider the following more general notion of a quasi-
category.

113 DEFINITION

A quasicategory is a quintuple ¥ = (¢, .#, dom, cod, °) where

(i) @ and .# are conglomerates,
(ii) dom and cod are functions from .# to €; and
(iii) < is a function from
D=Afig)eH x MH|dom(f) = cod(g)}

into ./ ;

such that:

(D If (fog) is defined (i.e., if (f; g)e D), then dom(fog) = dom(g) and
cod(f~ g) = cod(f);
(2) If fogand / o fare defined, then ko (fog) = (hof)og;
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(3) Foreach A4 e 0, there exists some e € 4 such that dom(e) = A = cod(e) and
(a) fo e = fwhenever f o e is defined, and
(b) e o g = g whenever e o g is defined.

{Compare this with Definition 3.1.)

114 PROPOSITION
Every category is a quasicategory. [ ]

11.5 PROPOSITION

There exists a quasicategory (€, &, dom, cod, o) where § is the conglomerate
of all categories, § is the conglomerate of all functors between categories, dom and
cod are functions that assign to each functor its domain and codomain, respectively ;
and o is the composition of functors. []

11.6 DEFINITION
The quasicategory described in the above proposition is called the quasi-
category of all categories and is denoted by €4 7.

One of the primary uses of the notion of a quasicategory (as opposed to
that of a category) is that it allows one to talk about “naturally” occurring
entities such as €/ 7. It should be noted that most of the notions associated
with categories, e.g., monomorphisms, terminal objects, functors, etc., can be
defined for quasicategories as well. (An exception, of course, is the fact that
quasicategories in general lack iom-functors into Set.) Actually, our main use
for quasicategories will be as a device that allows more convenient expression.
Thus, since quasicategories are not the main object of our study, we will not often
be concerned with their “internal workings™. Also, we will never have a need to
consider something like the “‘quasicategory of all quasicategories”. This is
fortunate since, if we did, our foundations-would have to be revised to handle
it—we would find ourselves in another Russell-like paradox (see Exercise 11B).
To keep our attention close to the motivating examples, i.e., Set, Grp, and Top,
in that which follows, we will only consider categories (in the restricted sense)
except in those instances where using quasicategories materially simplifies or
clarifies matters.

EXERCISES

11A. Prove that every functor between small categories is a set.

11B. Show that one may not form the “‘quasicategory of all quasicategories”
by obtaining a Russell-like paradox from the assumption that one can. [Consider the
full sub-quasicategory of all quasicategories that are not objects of themselves. ]

11C. Special Morphisms in €A T
(a) Show that the monomorphisms in €&/ 7 are precisely those functors whose
underlying functions between morphism classes are injective.
(b) Show that each functor whose underlying function on morphism classes is surjective
is an epimorphism in €4 J .
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(c) Let 2 be the category . <, ., let N be the monoid of natural numbers considered
as a category, and let F: 2 — N be the functor such that F(f) = 1. Show that Fis
an epimorphism in €/ 7 even though it is not surjective on the underlying morphism
classes.

(d) Determine the constant morphisms in €/ .

11D. Prove that Cat is well-powered, but that €/ F is not.

§12 PROPERTIES OF FUNCTORS

In this section, we will consider certain properties enjoyed by all functors
as well as other properties possessed by special functors.

12.1 DEFINITION

(1) A functor % £, 2 is said to preserve the categorical property P provided
that the image under F of each morphism (or object, or diagram) in € with
property P has property P in 2.

2 < £, 9 is said to reflect the categorical property P provided that whenever
the image under F of a morphism (or object, or diagram) in € has property P
in 9, then the morphism (or object, or diagram) must have property P in €.

12.2 PROPOSITION
Every functor preserves identities, isomorphisms, sections, retractions and
commutatice triangles.

Proof: That identities and commutative triangles are preserved follows from

the definition of functor (9.1). Suppose that ¥ Y5 2 and f, g e Mor(€) such
that fo g = 1,. Then,

lF(A) =F(,) = F(f-9) = F(f) -~ F(g).

Thus, F(g) must be a #-section and F(f) must be a #-retraction. Hence, F
preserves sections and retractions. Consequently, F must preserve iso-
morphisms. []

The fact that functors preserve isomorphisms implies that if X and Y are
topological spaces such that for some n, the homology groups H,(X) and H,(Y)
are not isomorphic, then X and Y are not homeomorphic. This fact provides a
relatively simple way of showing, for example, that the torus, S' x S!, is not
homeomorphic with the 2-sphere, S2. Being able to solve problems by such
techniques was one of the major reasons for the emergence of algebraic topology.

123 PROPOSITION
If € and D are connected categories, € has a terminal object X,and F: € — 9
is a functor, then the following are equivalent :

(1) F preserves constant morphisms.
(2) F preserves the terminal object.
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Proof:
]
(1) = (2). Suppose that D —3 F(X). Since X !X, X is a constant morphism
9

(8D), its image F(1y) = 1z, must be constant. Hence, 1y ol = lpyy og;
so that i = g. Thus, F(X) is a terminal object.

(2) = (1). Suppose that C 2, ¢’ is a constant morphism. Then f can be
factored through X (8.5); i.e.,

chc=cLxtc.
But this implies that
FC) 22 Fey = RO 2 Fn 28 Fe).
Thus, since F(X) is a terminal object, F(f) must be constant (8.5). []

124 DUALITY WITH FUNCTORS

As was pointed out earlicr, every categorical statement or property has a
dual that is obtained by replacing each category by its opposite and translating
this back into a statement or property involving the original categories. If such a
statement or property involves a functor F: € — 9, then in the dualization
process, we begin with the functor F°?: €°? — 2°?_(Notice in particular that the
direction of the functor is not reversed.) We now illustrate this process by
forming the dual of Proposition 12.3. Replacing each category by its opposite,
we have:

If €°° and 2°° are connected categories, €°F has a terminal object X, and
F°P: €°° — 2°F is a functor, then the following are equivalent :

(1) F°? preserves constant morphisms.
(2) F°? preserves the terminal object.

Translating this back into a statement about ¢ and 2, we have the dual of
Proposition 12.3:

If € and 2 are connected categories, € has an initial object X, and F: € — D isa
Junctor, then the following are equivalent :

(1) F preserves coconstant morphisms.
(2) F preserves the initial object.

Notice that from the duality principle, it follows that if all functors have a
certain property, then all have the dual property. For example, knowing that all
functors preserve sections, we could have concluded using duality alone that all
functors preserve retractions (cf. Proposition 12.2). It should be mentioned that
whenever a categorical statement or property involves just two categories and
one functor between them, other “‘dual’ statements may be formed by replacing
categories by their opposites one at a time and translating back into statements
about the original categorics. Since these statements involve contravariant
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functors, they are called *‘contravariant duals” of the original statement. For
example, the two contravariant duals of Proposition 12.3 are the following:

If € and @ are connected, X is a €-initial object and € — Z is a comtravariant
Junctor from € to 2, then the following are equivalent :

(1) F carries €-coconstants to Z-constants.
(2) F(X) is a Z-terminal object.

. . , F . ,
If € and & are connected, X is a €-terminal object and € — 2 is a contravariant
SJunctor from € to 2, then the following are equivalent :

(1) F carries €-constants to Z-coconstants.
(2) F(X) is a 2-initial object.

As before, the formation of duals will, for the most part, be left as a standard
implicit exercise for the reader. In the sequel, when we speak of “the’ dual of a
statement or property involving functors, we will mean the “covariant dual”.

12.5 DEFINITION
F o .
A functor && — A is said to be:

(1) full provided that each fom-set restriction

hom(FAFA")
F |hom(A.A')

of F is surjective.
(2) faithful provided that each /iom-set restriction of F is injective.
(3) (an) embedding provided that F: Mor(s/) — Mor($) is an injective function.

(4) denset provided that for cach Be Ob(B) there exists some A € Ob(H)
such that F(A) is isomorphic to B.

One should be careful to distinguish between embeddings and faithful
functors. For example, each of the forgetful functors from Grp, Mon, Top,
or R-Mod into Set is faithful, but none is an embedding. It is easily seen that a
functor is an embedding provided that it is both faithful and “one-to-one on
objects” (i.e., on identities).

Notice that a functor F is full (resp. faithful, (an) embedding, dense) if
and only if F°? has the same property. Thus, for example, if all faithful functors
preserve some property, they must also prescrve the dual property.

12.6 EXAMPLES

(1) Every canonical functor from a category to a quotient category is both
full and dense.

(2) Every inclusion functor of a subcategory into a category is an embedding.

(3) A category % is a quasi-ordered class (in the sense of 3.5(6)) if and only if
each functor with domain ¢ is faithful.

1 A functor with this property is sometimes called “representative”.
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(4) Every forgetful functor is faithful.

(5) The forgetful functor from Field to Set is not full and not dense. [There is
no field on a six-clement set.]

(6) The forgetful functors from Grp to Set and Ab to Set are dense, but not full.
(7 The inclusion functor from Top, to Top is full, but not dense.

(8) The abelianization functor from Grp to Ab (9.2(8)) is dense, but not full or
faithful.

We have seen that with any concrete category €, there can be associated in a
natural way a category & and a faithful functor U: o — Set. Conversely, every
pair (&, U) where o is a category and U: o/ — Set is a faithful functor, gives
rise to a concrete category. Thus, the two concepts are essentially the same. In
the future, we will use the term “concrete category” in the following sense:

12,7 SECOND DEFINITION OF CONCRETE CATEGORY

A concrete category is a pair (&, U) where o is a category and U: &/ — Set
is a faithful functor.
128 PROPOSITION

, F , ) .

Every faithful functor & — & reflects monomorphisms, epimorphisms,
bimorphisms, constant morphisms, coconstant morphisms, zero morphisms, and
commutative triangles.

Proof:
A
(1) Suppose that F(A) v F(A') is a #-monomorphism. If 4" ?t A are mor-

phisms such that foh = fok, then F(f)e F(h) = F(f)o° F(k). Since F(f) is
left-cancellable, F(h) = F(k). Thus, since

kom(FA", FA
F |hom4'.,1) )

is injective, k = h. Therefore, F reflects monomorphisms.

(2) If F(4) %K F(A’) is a #-constant morphism and if 4" —'_—; A, then

F(f)< F(r) = F(f)° F(s),

so that F(for) = F(f-s). Since

Aom(FA", FA’
F lhomii® )

is injective, f=r = fos; i.e., fis constant. Thus, F reflects constants.
(3) If the triangle

F(A)—F—U)>F(A')

m lF(y)

F(A4%)
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commutes, then F(h) = F(g) o F(f) = F(g < f). Since

hom(FA, FA”
F lremtatar®”

is injective, & = g o f. Thus, F reflects commutative triangles.

The remaining parts of the proposition follow from the fact that faithfulness is
a self-dual concept. [

129 PROPOSITION

F . . . ,
Every functor sf — 2 that is full and faithful reflects sections, retractions,
and isomorphisms.,

Proof: If F(A) 9 F(A') is a $-section, then there is some #-morphism
F(A) LN F(A) such that ho F(f) = g, Since F is full, there is some /-
morphism g: A’ —= A such that F(g) = h. Now F(gof) = F(g) F(f) =
ho F(f) = lg4 = F(1,). Thus, since F is faithful, gof = 1, and so fis an
s/-section. Hence, F reflects sections. That F reflects retractions follows from
the fact that fullness and faithfulness are both self-dual concepts. []

12,10 THEOREM

Every functor s L, B that is Jull, faithful, and dense preserves and reflects
monomorphisms, epimorphisms, bimorphisms, constant morphisms, coconstant
morphisms, zero morphisms, sections, retractions, isomorphisms, and com-
mutative triangles.

Proof: By the above two propositions and duality, we need only show that F
preserves monomorphisms and constant morphisms. To do this, we start with
the following:

Let 4’25 4 be an &/-morphism and let B::’., F(A") be any %-morphisms.

Since F is dense, there is an s/-object A” and a %-isomorphism F(4") - B.
Since F'is full, there are &/-morphisms ¢ and r such that F(q) = g o sand F(r) =
hos.

A F(4")
ql l, l“
B
A gl lh
F(A4")
lf lm)

A F(4)
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Monomorphism Preservation
If / is a monomorphism, then

F(f)eg = F(f)eh=

F(f)ogos = F(f)ohos=

F(f)> F(g) = F(f) » F(r) =

F(foq) = F(fer)=

foq = for(since Fis faithful) =

q = r (since f'is a monomorphism) =

Fg) = F(r) =

gos=hoes=

g = h (since s is an epimorphism)
Thus, F(f) is a monomorphism.

Constant Morphism Preservation
If fis a constant morphism, then

Jeq=fer=

F(f)* Flg) = F(f)  F(r) =

F(f)ogos = F(f)ohos=

F(f)og = F(f) o h (since s is an epimorphism).
Hence, F(f) is a constant morphism. ]

12.11 PROPOSITION
The composition of full (resp. faithful, embedding, dense) functors is full
(resp. faithful, embedding, dense). [}

12.52 PROPOSITION
A subcategory of a category is a full (resp. dense) subcategory if and only if
the inclusion functor is full (resp. dense). []

Properties of hom-Functors

12.13 PROPOSITION
Each covariant hom-functor, hom(A, ), preserves monomorphisms.

Proof: If B S, cisa monomorphism, then since f is left-cancellable,

(homA, Y IMNx) = (hom(A, YNQ) = fox =fey=x=p

Thus, hom(4, _)(f) is an injective function; i.e., a Set-monomorphism. []
(See also Corollary 29.4.)
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12.14 DEFINITION

A €-object P is called C-projective if and only if the functor

hom (P, _): € — Set
preserves epimorphisms. Dually, Q is called ¢-injective if and only if
homy(—_, Q): €°F - Set

preserves epimorphisms (see Proposition 10.3).
12.15 PROPOSITION (CHARACTERIZATION OF PROJECTIVE OBJECTS)

An object P is €-projective provided that for each G-epimorphism B Lc

. . . h
and each morphism P 2. C, there exists a morphism P — B such that the
triangle

commutes. [}

12.16 Notice that the above gives a completely “internal characterization™ of

projective objects in €. Using duality, it is then easy to form an internal char-

acterization of injective objects; namely:

An object Q is G-injective provided that for each €-monomorphism C 2, Band
. ) , b .

each morphism C 2 Q, there exists a morphism B — Q such that the triangle

commutles.

These internal characterizations are often easier to work with when deter-
mining the projectives and injectives in particular categories. Notice that some
categorical concepts that have been defined “‘internally” also have ‘‘external”
hom-functor characterizations and hence could have been defined externally;e.g.,

A L, B is a monomorphism if and only if hom(C, _)( f) is injective for each
€-object C.

12.17 EXAMPLES

(1) A left R-module is categorically (R-Mod)-projective if and only if it is a
projective R-module and is (R-Mod)-injective if and only if it is an injective
R-module. [This provides the motivation for our terminology.]
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(2) If R is a principal ideal domain, then A is (R-Med)-projective if and only
if it is free and is (R-Mod)-injective if and only if it is divisible.

(3) In Grp, BooAlg, and R-Maod, the projective objects are precisely the retracts
of free objects, i.e., of free groups, free Boolean algebras and free modules
(cf. 31.10).

(4) A boolean algebra is BooAlg-injective if and only if it is complete.

(5) A boolean space is BooSp-projective if and only if it is extremally dis-
connected and is BooSp-injective if and only if it is a retract of a Cantor space.}

(6) A topological space is Top-projective if and only if it is discrete and is Top-
injective if and only if it is indiscrete and non-empty.

12.18 DEFINITION
A €-object S is called a separator for € if and only if the functor

hom(S, __): € — Set
is faithful.

DUAL NOTION: coseparator for €.

12.19 PROPOSITION (CHARACTERIZATION OF SEPARATORS)
. . J
A €-object S is a separator for € if and only if whenever A —3 B are distinct
]

€-morphisms, there exists a €-morphism S _*, A such that
sSaLprsi a4t

Proof: If hom(S, ) is faithful and A4 é{ B are distinct, then hom(S, f) #

9
hom(S, g). But these are functions with domain hom(S, 4). Hence, there is some
x € hom(S, A) such that hom(S, f)(x) # hom(S, g)(x); i.e., fox # gox. The
converse can be obtained by reversing each of these implications. []

1220 The above characterization motivates our terminology and gives an
“internal’ description of separators. Dualizing it, we obtain the following:

J
A €-object C is a coseparator for € if and only if whenever A —3 B are distinct
g

G-morphisms, there exists a €-morphism B =5 C such that
AL.p S craSB L
12.21 EXAMPLES

(1) The separators for Set are precisely the non-empty sets.

(2) The separators for Top, Top, or CompT, are precisely the non-empty spaces
in these categories.

(3) The group of integers Z under addition is a separator for Grp and for Ab.
t A space is extremally disconnected provided that the closure of every open setisopenandisa

Cantor space if and only if it is homeomorphic with some power of the two-point discrete
space.
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(4) The monoid of natural numbers N under addition is a separator for Mon.
(5) For every ring R, R is a separator for R-Mod.

(6) The sets with at least two clements are precisely the coseparators for Set.
(7) The spaces with non-trivial indiscrete subspaces are precisely the coseparators
for Top.

(8) The two-element space that is not discrete and not indiscrete is a coseparator
for the category of T,-spaces.

(9) The two-element discrete space is a coseparator for the category of zero-
dimensional T,-spaces.

(10) The circle group R/Z is a coseparator for Ab, and considered as a compact
group, it is a coseparator for the category of locally compact abelian groups.
(11) The two-element boolean algebra is a coseparator for BooAlg.

(12) The closed unit interval is a coseparator for CompT, or for CRegT,.

(13) The complex numbers, C, regarded as a Banach space is a coseparator for
BanSp, and for BanSp, (Hahn-Banach theorem).

(14) None of the categories Top,, Rng, or SGrp has a coseparator.}

EXERCISES

12A. Give an example of a functor which does not preserve monomorphisms.

12B. Prove that if o and % have zero objects and &/ £, 2, then the following
are equivalent:
(a) F preserves constant morphisms.
(b) F preserves coconstant morphisms.
(¢) F preserves zero morphisms.
(d) F preserves zero objects.

12C. Give an example of a full functor which is not a surjection and a dense
functor which is not a surjection on objects.

12D. Prove that when the composition F~ G of functors is full, then Fis full
on the image of G ; and when it is faithful, then G is faithful.

12E. Let F: o/ — & be a functor that has one of the following properties:
(a) Fis full.
(b) F is one-to-one on objects.
Prove that the “image of o™ under F is a subcategory of & (cf. Exercise 9B).

12F. (a) Prove that the categories Set, POS, Mon, Grp, and Ab can be fully
embedded in Cat (i.c., for each of these categories, &7, there is a full embedding functor
F: sf — Cat). [Consider, ¢.g., the subcategory of all small discrete categories and the
subcategory of all small one-object categories. ]

1 To prove this, use the following facts:

(1) for each T,-space X there is a T,-space Y with more than one point such that every con-
tinuous map from Y to X is constant,

(2) There exist arbitrarily large fields and arbitrarily large simple groups.
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(b) Prove that a category is pointed if and only if it can be fully embedded in a category
with a zero object.

12G. Prove that f: A — B is an epimorphism in Mon if and only if f (considered
as a functor between one-object categories A and B) is an epimorphism in Cat.

12H. Prove that every functor that is full, faithful, and dense preserves and
reflects initial objects, terminal objects, projective objects, injective objects, separators,
and coseparators.

12I. Show that a full, faithful, and dense functor does not necessarily reflect
identities, but that every embedding does reflect identities.

12J. Show that a @-object A is a coseparator for € if and only if hom(__, A) is
faithful.

12K. Generalize the notions of projective and injective objects and separators
and coseparators to quasicategories.

12L. Concretizable Categories and Subcategories of Set
A category & is said to be concretizable provided that there is some faithful functor
U: of — Set (i.c., provided that for some U, (&, U) is a concrete category). Prove the
following:

(a) Every subcategory of a concretizable category is concretizable.

(b) Every category with a separator is concretizable.

() Cat is concretizable.

(d) The category of sets and relations between them is concretizable.

(¢) If the category ¥ is concretizable, then so is the arrow category €2.

(f) If the category € is concretizable, then so is €°7. [The contravariant power set
functor 2: Set? — Set is faithful.]

() Every small category is concretizable. [If € is small, for each 4 € Ob(%), let

Uy = | J{homy(B, A) | Be 0b(%)}

and if f € Mor(%), let U(f) be defined by U(f)(g) = feg.]

(h) Not every category is concretizable, [Let @ be the class of all ordinal numbers,
for each a € @ let B, and C, be disjoint non-empty sets and let A be a set disjoint from
each B, and each C,. Let

O?) = {B,|aeOtu {A}u {C.|ae O}.
Let

hom (X, X) = {1y} for each X € Ob(¥);
hom(A, B,) = & = homy(C,, A) foralla e 0;
homy(B,, By) = & = homy(C,, Cp) if a # f;
homg(B,, A) = {fo};
hom(4, C;) = {hy, g;} (h; # g4);
hom(B,, C;) = {hyofa gz0fa} (hyofa # ga°Lo);
home(B,, Cp) = {ggofe} = {hgof}ifa # B;
hom(C,, By) = Jforallaec 0, fel.
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Verify that this determines a category € and that there is no faithful functor
U: € — Set.]

(i) A category % is concretizable if and only if it can be embedded in Set; i.e., if and
only if there is some embedding functor E: ¢ — Set.

§13 NATURAL TRANSFORMATIONS AND NATURAL
ISOMORPHISMS

Until now we have secn morphisms as a way of “‘getting from one object
to another” and functors as a way of “getting from one category to another”.
We are now able to define natural transformations as a way of “‘getting from
one functor to another”. In other words, functors can be regarded as morphisms
between categories (as has been made precise in §11) and natural transformations
can be regarded as morphisms between functors (as will be made precise in
Proposition 13.7). Recall that a motivation for the concept of natural trans-
formations has already been given in Chapter I, where it was shown that there
is a “natural way” to go from the identity functor on the category of finite
dimensional vector spaces over a field F to the second dual functor on the
same category, but that there is no **natural way"’ to go from the identity functor
to the first dual functor. Historically, category theory was developed in order
to study these and similar situations; i.e., to adequately deal with natural
transformations.

13.1 DEFINITION
Let F: o - & and G: &/ — 4 be functors.

(1) A natural transformation (or functer merphism) from F to G is a triple
(F, n, G) where n: Ob(s') — Mor(#) is a function satisfying the following
conditions:
(i) For each «/-object A, 3(A) (usually denoted by n,) is a #-morphism
N, F(A) - G(A).
(ii) For each «&/-morphism A N A’, the diagram

KV
F(A)——>G(4) A
F(f) G lf
F(4")—>G(4") A
Na’

commutes.

(2) A natural transformation (F, », G) is called a natural isomorphism provided
that for each &/-object A, 1, is a #-isomorphism.

(3) Fand G are said to be naturally isomerphic (denoted by F =~ G) if and only
if there exists a natural isomorphism from F to G.
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If (F, n, G) is a natural transformation, then F (resp. G) is sometimes called
the domain (resp. codomain) of (F, 5, G). Analogously to the situation with

functors, the notations (F, 1,G), n: F - G, F -2, Gand(n,): F - G are used
interchangeably and by abuse of notation one usually does not distinguish
between n and the triple (F, n, G).

13.2 EXAMPLES

(1) The identity natural transformation 15 from any functor F to itself, which
assigns to each object 4 the identity morphism on F(A), is a natural isomorphism.

(2) For each field F, there is a natural transformation n = (n,) from the
identity functor on F-Med to the second dual functor, which assigns to each
vector space A the linear transformation 5, defined by:

(n4(x))g) = g(x).
Note that the second dual functor is precisely

Hom(_—, F) <« Hom(_—, F)°®,
where
Hom(_, F): (F-Mod)*® —» F-Mod.
In exactly the same way, one can define a natural transformation from the
identity functor on the category of normed linear spaces to the second dual

functor and from the identity functor on the category of locally compact
abelian groups to the second dual functor. The latter is a natural isomorphism.

(3) Let 2 = {0, 1} be a two-element set. Then there is a natural isomorphism
n = (n,) from the contravariant hom-functor hom(—, 2) on Set to the contra-
variant power set functor 2, defined by:

na(9) = g7 '[{0}].
(4) For each set A4, there is a natural isomorphism # = (ng) from the “left
product by 4™ functor (4 x _): Set - Set to the “‘right product by A” functor
(— x A): Set — Set, defined by:

ns((a, b)) = (b, a).

(5) There is a natural transformation from the commutator subgroup functor
F: Grp — Grp (9.2(8)) to the identity functor 1g,,, whose value at each group A
is the inclusion homomorphism

A = FAOG A.

(6) Let H: Grp — Ab be the abelianization functor (9.2(8)) and K: Ab — Grp
the inclusion functor. There is a natural transformation from lg, to Ko H,
whose value at each group A is the canonical homomorphism

A5 44

(where A’ is the commutator subgroup of A).
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(7) There is a natural transformation from the ath homology functor H, to
the (n — 1)st homology functor H,_,, which assigns to 4 the connecting homo-
morphism é,: H,(A) — H,_(A).

(8) The assignment of the Hurewicz homomorphism n,(X) — H,(X) to each
topological space X is a natural transformation from the nth homotopy functor
n,: Top = Grp to the nth homology functor H,: Top — Grp.

(9) If € is any category and B Licisa %-morphism, then there is a natural
transformation

n: homy(C, ) = homy(B, )
defined by
nig) =g-f

(10) Let U be the underlying functor from Grp to Set and let F be the free
functor from Set to Grp. There exist natural transformations

=04 lsg > UcF
and
€= (gp): Fo U= lg,

where 1,: A -+ U(F(A)) is the insertion of the generators and &,: F(U(B)) -+ B
is the unique group homomorphism induced by the identity function on U(B).

(11) Let B: CRegT, — CompT, be the Stone-Cech compactification functor
and let T: CompT,— CRegT, be the inclusion functor. There exist natural
transformations

n = (nx): ICRest +Tof
and
e = (sy): BC T 4 ICOIHDTZ

where for each space X, 1y is the usual embedding of X into its compactification,
and for each Y, ¢y is the unique homeomorphism induced by the identity on Y.

(12) For each set A4, there is a natural transformation
n = (ns): (— x A)ohomg, (4, ) = lg,
where
ng: B x A - B
is defined by
ns(/, @) = f(a).

n is called the evaluation natural transformation.
(13) For each set A, there is a natural isomorphism # from the bifunctor

hom o ((— x AY'x lg,): Set® x Set — Set
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to the bifunctor
hom o (lgye, X hom(A, _)): Set’” x Set — Set
where
nec: CB*4 = (C4)*
is defined by
(n5c()ONa) = f(b, a).

(14) For each abelian group A, there is a natural isomorphism 5 from the
bifunctor

Hom o ((_ ® A)’x 1,,): Ab®® x Ab — Ab
to the bifunctor
Hom o (1 540, x Hom(A, _)): Ab°? x Ab — Ab
where
Npc: Hom((B ® A), C) —» Hom(B, Hom(4, C))
is defined by
(nec(NB)@) = f(b @ a)

13.3 DEFINITION

The composition of natural transformations F 2 Gand G-5 H is the
triple (F, &, H) where ¢ is that function that assigns to each object 4, the
morphism F(A) 2274, H(A). The composition is usually denoted by F 2% z.
13.4 PROPOSITION

The composition of natural transformations (resp. natural isomorphisms) is a
natural transformation (resp. natural isomorphism).

Proof: This follows immediately from the commutativity of the diagram:
£
F(A)—25G(A)—>H(4)
F(f) G(f) H(f )l

F(B)—"2>G(B)—2>H(B)

for each A 25 B in the domain of F, G, and H, and from the fact that the
composition of isomorphisms is an isomorphism. []

13.5 PROPOSITION

The composition of natural transformations is associative; i.e., if 6, n, and &
are natural transformations such that 6 - n and n < £ are defined, then (5o n) ¢
and & « () ¢ €) are defined and are equal. [
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13.6 THEOREM

A natural transformation y: F — G is a natural isomorphism if and only if
there exists some natural transformation 6: G > F such that o3 = 1 and
e 0= lG'

Proof: Assume that &/ L Bandw S B
(I} If 4: F — G is a natural isomorphism, define the function
8: Ob(sZ) —» Mor(8) by &(A) =35, = n3'.
Clearly, 6: G — F is a natural transformation, §on = lpand o6 = 1.

(2 Ifdoyy = lpandnod = 4, thenforeach 4 € Ob(F), 840, = (bon), =
lgyand i 08, = (08), = lg,, Hence, each 5, is an isomorphism. [

13.7 PROPOSITION

There exists a quasicategory (§, M, dom, cod, ©) where § is the conglomerate
of all functors, N is the conglomerate of all natural transformations, dom and cod
are functions that assign to each natural transformation its domain and codomain,
respectively, and o is the composition of natural transformations defined above

(13.3). O

13.8 DEFINITION

The quasicategory described in the above proposition is called the quasi-
category of all functors and is denoted by F¥.A"G.

Analogously to the situation with €</Z", when we restrict our attention
to functors between small categories and natural transformations between
them, we obtain a category, denoted by Func (see Exercise 13H).

Star Products

We next investigate another way of composing natural transformations.

139 PROPOSITION
F "
Let & %; %# and B ?‘ € be functors and let n: F - Gand é: H - K be
natural transformations. Then for each A € Ob(s#), the square

(HoFY AT (+.G)( 4)

Ora dga
(Ko F)(A) X >(KoG)(4)
(‘74)

comniutes.
Furthermore, if u: Ob(s#) — Mor(%) is the function that sends each s/-object
A to the diagonal of the above square, i.c.,

Ba = 0gq° H(1) = K014) © 054,
then (H o F, u, K o G) is a natural transformation.
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Proof: The square commutes because #,: F(4) = G(4) is a #-morphism
and ¢ is a natural transformation from H to X.

To see that y is a natural transformation, let 4 -5 4’ be an &/-morphism.
Since 5 is a natural transformation, the square

A
F(A) —G(A) A
F(f) G S
F(A") —G(4") A
LY

commutes.
Applying H to this, we see that the left square of the diagram

£a

(He FYA 8 (Ho G)(A) = (Ko GY )

(HeF)(f) (H~G)(f) (K-G)(f)
(HoFYAY g —>(Ho G A > (K 2G)(4)

“A"
commutes.

Since G(f): G(A) - G(A’) is a #-morphism, and since § is a natural
transformation from H to K, the right square commutes. Thus, y is a natural
transformation from He Fto K- G. [}

13.10 DEFINITION

The natural transformation H < F £ K o G constructed in Proposition 13.9

is called the star product of 6 and » and is denoted by & * n.

13.11 PROPOSITION
The star product is associative; i.e., whenever 6 * 1 and 1 % ¢ are defined, then
(6 £ n) xeand 6 % (n * &) are defined and are equal.

Proof:: Either side is defined if and only if we have a situation such as:

j—> sy s 2 59
cl l" 16

¢ > 4 > >

R4 T @ G (A4 X D

Applying the definition of star product several times, we obtain
(G «xe)y = (KoG)(ey) o (6 * )54 = K(G(ey)) o (K(ypsy) © 5(&5).4)
= K(G(ey) o ng4) © 5(F°s),4 =©G*+Mm*e)), [
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13.12 THEOREM (INTERCHANGE LAW)
For any natural transformations v, p, n, and €

(vo)x (o) =(ven)o(u=e)
i.e., when the leftside is defined, then so is theright side and they are equal.

Proof: For the leftside to be defined, we must have a situation such as:

K4 >4 M_,%

Thus, if the leftside is defined, then so is the right. By the definition of star product
and composition of natural transformations;

((ve)s(mee))y = (vou)yso K((no £4) = Vya°Hlyao K(n,) © K(g,)-

But since p is a natural transformation and G(A) 24, H(A) is a morphism in &,
the square

KGAN—5 k(H(A)
K gia) LT 7Y
L(G(A)) TA))L(H(A»

commutes.
Thus, the two middle terms of the above expression can be replaced to
obtain
Via) © L("A) S Hgeay © K(SA).

But by the definition of star product, this is

{en)eo(ueg),. O

1313 For typographical reasons, instead of writing 1 for the identity natural
transformation on the functor F, we often use the symbol *“F” itself. Thus, for
example,

(n* F)y = ngay
and

(Fe o)y = F(e).
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13.14 COROLLARY (GODEMENT'S “FIVE” RULES)
Given the functors and natural transformations,

U

_—
e,

v—rsg—L e Y .9 lu &—S g

"=
w H

S LA

the following hold:

N (GoF)»xl =G (F=Q)

Q) E*x(KoL)y=(¢(*K)*« L

3) 1, «K = 1,4

@) Fxly,=1gy

B) Fr((xK)= (Fxd)*K

6) Fr(no&)+ K = (FsnxK)e(FsExK)
(7) The square

FoU—T28 s poy

wrlU urv
HeU ———>H»°V
Hx*¢

commutes. [

13.15 PROPOSITION

There exists a quasicategory (€, R, dom, cod, *) where & is the conglomerate
of all categories, M is the conglomerate of all natural transformations, dom is the
Jfunction that assigns to each natural transformation the category that is the domain
of its domain, cod is the function that assigns to each natural transformation the
codomain of its domain, and = is the star product of natural transformations. [

13.16 The above proposition together with Proposition 13.7 shows that the
conglomerate 9t of all natural transformations can be thought of as the
morphisms of a quasicategory in two different ways; i.e., with the “usual
composition™ o or with the “star product™ *. Also, these two types of com-
position are intimately linked by the “interchange law” (13.12). Thus, the triple
(RN, o, ») is sometimes called the “double quasicategory”, 4 s/F, of natural
transformations.

EXERCISES

13A. Show that in general none of the natural transformations of Example
13.2(5), (6), (D), (8), (9), (10), (11), or (12) is a natural isomorphism.
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13B. Prove that the trifunctors of Exercise 10A are naturally isomorphic.

13C. Show that if (G, #, F) is a natural transformation (resp. natural isomor-
phism), then (F°P, 4, G°?) is a natural transformation (resp. natural isomorphism).
[(F°*, n, G°®) is sometimes called the opposite of (G, », F).]

13D. Let 2 = {0, 1} be a two-element set. Prove that there is a natural iso-
morphism between the covariant hAom-functor hom(2, ) on Set and the squaring
functor ( )? (see Exercise 9A(b)).

F
13E. Show that if & :_'“G_t 4 are functors and #»: F — G is a natural trans-

formation, then 7 can be regarded as a functor from & to %% (where 82 is the arrow-
category for 2 (4.16)).

13F. Show that there are at least two natural transformations from the “free
group” functor F: Set » Grp to the “free abelian group’ functor G: Set — Grp.

13G. Let

Hompyesp(—, 2): BooSp°” — BooAlg
and

Hompoan(—, 2): BooAlg - BooSp®”?
(see Examples 10.6(7) and (8)). Show that

- Hompaogp(—, 2) © Hompoopig(—, 2) = Ipocats
and
Homggoa(—, 2) © Hompgogp{—, 2) = lpoospor.

13H. Let Func be the full subquasicategory of F 9/ A4"€ whose objects are the
functors between small categories. Prove that Func is a category.
131. In Example 13.2(10), show that

(Use)oe(n=U)= 1y
and that
(s F)e(Fsy) = I
13J. In Example 13.2(11), show that
(Tee)e(ysT) =17
and that
(e Bye(Beny) = lp

13K. Show that if F, G:&f — @ are functors and & is pointed, then there
exists a natural transformation »: F = G.

13L. Prove that a group endomorphism is an inner automorphism if and only
if, considered as a functor on a onc-object category, it is naturally isomorphic to the
identity functor.



86 Functors and Natural Transformations Chap. V

§14 ISOMORPHISMS AND EQUIVALENCES OF
CATEGORIES

In this section, we consider the problem of determining what it means for
two categories to be “‘essentially the same”. We begin by introducing the notion
of “isomorphism™ of categories, which seems appropriate at first glance, but
which is too strong. The weaker concept of “‘equivalence” of categories is
shown to be the proper notion for “essential sameness”.

14.1 DEFINITION

(1) A functor F: o — £ is said to be an isomorphism from &/ te # provided
that it is an isomorphism in the quasicategory €/ ; i.e., provided that there
exists a functor G: # —» & suchthat Go F = 1 and Fo G = lg.

(2) Categories o/ and & are said to be isomorphic (denoted by of = ) provided
that there is an isomorphism between them.

14.2 EXAMPLES

(1) Every identity functor is an isomorphism.

(2) There is an isomorphism from Rng to itself which sends each ring R to its
opposite ring R*.

(3) For every ring R, R-Mod is isomorphic with Mod-R*.

(4) The category Rng is isomorphic with the category Z-Alg (where Z is the
ring of integers).

(5) Ab and Z-Mod are isomorphic.

(6) The category BooAlg is isomorphic with the category of boolean ringst
together with ring homomorphisms.

(7) For any category €, (¢ x €)% = €°°? x €¢°*.

(8) Let A be a one-element (resp. two-element) set. Then the comma category
(A, Set) is isomorphic with the category of pointed sets (resp. the category of
bi-pointed sets) (see Exercise 45).

(9) TopBun = Top?, and for any topological space B, TopBung = (Top, B)
(see Exercise 4S).

(10) A category is concretizable if and only if it is isomorphic with some
subcategory of Set (see Exercise 12L).

14.3 PROPOSITION (CHARACTERIZATION OF ISOMORPHISMS)
If F: of — B is a functor, then the following are equivalent :

(1) F is an isomorphism.
(2) The function F: Mor(sf) — Mor(%) is a bijection.

(3) F is full and faithful and the associated object function F: Ob(sf) — Ob(%)
is a bijection.

t A beolean ring is a ring in which each element is idempotent with respect to multiplication.
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Proof: The equivalence of (1) and (2) follows from the fact that for any
category ¥, the identity function on Mor(%) is the identity functor on %.
The equivalence of (2) and (3) follows from the one-to-one correspondence
between objects and identities in any category. [

The category F-Mod of all vector spaces over a field Fand its full subcategory
% consisting of all objects of the form F! (i.e., all powers of the field F) are
obviously not the same nor even isomorphic. Yet, from a categorical point of
view, they are “‘essentially the same”, i.e., they have the same categorical
characteristics. The main difference between the two lies in the fact that in €
any two isomorphic objects are identical, whereas there exist many different
objects isomorphic to any given object in F-Mod. Below we will define “‘equiv-
alence of categories™ in such a way that two categories o/ and & will be equivalent
provided that the only difference between them lies in the fact that in one of
them some objects might be “counted” more times than in the other—in other
words, provided that the categories obtained from &/ and 4 by *“‘counting™ each
object just once, are isomorphic.

144 DEFINITION

(1) A category € is called skeletal provided that isomorphic €-objects are
identical.

(2) A skeleton of a category ¥ is a maximal full skeletal subcategory of €.
145 EXAMPLES

(1) The full subcategory of all cardinal numbers is a skeleton for Set.

(2) For any field F, the full subcategory of all powers F! is a skeleton for
F-Mod.

(3) For any field F, the full subcategory of all finite powers F" is a skeleton for
the category of all finite-dimensional vector spaces over F.

14.6 PROPOSITION
Every category € has a skeleton.

Proof: If we let A = B mean that there is a €-isomorphism from A4 to B,
then = is an equivalence relation on 0b(¥%). Hence, by the Axiom of Choice
(1.2(4)), it has a system of representatives of. Let & be the full subcategory of €
that is generated by of. Clearly, 4 is skeletal and is contained in no other full
skeletal subcategory of €. [

14.7 PROPOSITION
Any two skeletons of a category are isomorphic. [

14.8 DEFINITION

A category &/ is said to be equivalent to a category & (denoted by &/ ~ &)
if and only if o/ and # have isomorphic skeletons.
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149 PROPOSITION
The relation “is equivalent to™ is an equivalence relation on the conglomerate

of all categories. []

14.10 PROPOSITION
Skeletal categories are equivalent if and only if they are isomorphic. []

Categories & and & have been defined to be isomorphic provided that
there is an isomorphism F: &/ — 8. Likewise, we will define special functors
called *“‘equivalences” in such a way that &/ and 4 will be equivalent provided
that there is an equivalence F: &/ — 2.

14.11 THEOREM
If F:of - & is a functor, then the following are equivalent:
(1) Fis full, faithful, and dense.
(2) Thereis a functor G: B — of suchthat Fo G = lgand Go F = | .
(3) There is a functor G: B — o4 and natural isomorphisms n:1, - G F and
e:FoG — lgsuchthat Fen = (e« F) 'and G+»e = (n+G)~".
Proof: Clearly (3) implies (2). We will show that (2) implies (1) and (1)
implies (3).
(2) = (I). Suppose that G: B — & such that GoF = 1, and Fo G & lg.
Let n: 1, — G o F be a natural isomorphism.
QI A ﬁ A’ are s/-morphisms such that F(f) = F(g), and if
g
A ——-— A’ denotes either f or g, then the square
A—2 5GoF(4)
i lG°F(f)=G°F(g)
v

A'————>G o F(4)
A'

commutes. Thus, n,. o f = 1, g so that (since n,. is a monomorphism)
f = g. Thus, F is faithful. Likewise, G is faithful.
(ii) Since Fo G = 14, we know that for each B € Ob(%),

FoG(B) = 14(B) = B.
Thus, F is dense.

(iii) Suppose that F(4) 2> F(A’). Then f = y3' o G(g)  , is a morphism
from A to A’ such that the square

A—"A 5 GoF(A)
fl lG(g) or GoF(f)

A'———>G°F(4")
Nt
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commutes. Thus, G(g)en, = G- F(f)on, so that (since n, is an

epimorphism) G(g) = Go F(f). Since G is faithful, g = F(f). Con-

sequently, F is full.
(1) = (3). Let of be a system of representatives for the equivalence relation =
on Ob(s/). [Such exists by the Axiom of Choice (1.2(4)).] Since F is dense and
since full and faithful functors preserve and reflect isomorphisms, for each
B e Ob(2B) there is a unique member of of (which we will denote by G(B))
such that F(G(B)) = B. Thus, G: Ob(B) — Ob() is well-defined. Again using
the Axiom of Choice, for each Be Ob(#) choose one isomorphism
eg: F(G(B)) — B.

We will now define G on the morphisms of . If B %> B’ is a #-morphism,
then the square

F(G(B)) —2 > B
C.Bl, -3 g o CB g
FG(BY) —— B’

commutes. Since F is full and faithful, there is a unique &/-morphism
f: G(B) - G(B')
such that F(f) = ¢g' = g o £5. We let G(g) = fand in this manner establish a
well-defined function G: Mor(#8) — Mor(s/). For any B € Ob(3),
F(G(lp) = e5' c 155 = lpgay = Fllgam)

So that, since F is faithful, G(lg) = 15, Hence G preserves identities.

If B B’ 2 B’ then

F(Gh-g) = EE'-' chegeegg = (c;.l chogg)o (g;.l °go&p)
= F(G(M) > F(G(g)) = F(G(h) > G(g)).

Thus, since Fis faithful, G(h < g) = G(h) - G(g), so that G preserves composition.
Consequently, G is a functor. Clearly, by the definition of G, £ = (gg) is a
natural isomorphism from F o G 1o lg.

To establish a natural isomorphism from 1, to G < F, note that for each
A€ Ob(sY), egy: Fo G < F(A) > F(A) is a #-isomorphism. Thus, since F is full
and faithful, there is a unique «/-isomorphism #,: A — G o F(A) such that
F(n,) = €7} (12.9). Since ¢~ ' is natural, for any A L, A" the square

-1
tpq=Flny)

F(A) —————> F°G°F(A)
F(f)l F°G-F(f)

F(A') ——————>FG-F(A)
Epye=Fln )
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commutes. Thus, since faithful functors reflect commutativity (12.8), the square
A M, GoF(A)
S GeF(f)
A —r* GoF(4')

commutes. Hence, 5 = (1) is a natural isomorphism from 1, to G o F.

Clearly, by the definition of n, Fxn = (¢+ F)~'. Also by the definition
of n, Fliewm) = tram Hence, F(ngay) = erg@y By the definition of G,
FoGleg) = €5 o €50 ergwe = Erae Thus Flige) = F(G(eg), so that
since F is faithful, (5 « G)"'(B) = (G*&)(B). [

14.12 DEFINITION

(1) A functor F is called an equivalence provided that it fulfills the equivalent
conditions of the above theorem, i.e., provided that it is full, faithful, and dense.
(2) (F, G, n,¢) is called an equivalence situation provided that F and G are
functors and n: 1 — Go F and ¢: Fo G — | are natural isomorphisms such
that Fen =(+«F) 'and G+¢ = (n*G)™ .

1413 PROPOSITION

(1) The composition of equivalences is an equivalence.
(2) If F is an equivalence, then so is F°°.
(3) If (F, G, n, €) is an equitalence situation, then so is (G, F,e”',n™").

Proof: (1) and (2) follow from the fact that each of the properties—fullness,
faithfulness, and density—is closed under composition and is self-dual. (3)
follows from the fact that for any isomorphism f, (/""" ' = £ (O

14.14 PROPOSITION

If o is a skeleton of a category € and E: o/ < € is the inclusion functor,
then there exists a functor P: € — of (called the projection of € onto =f) such
that P- E = | s (e, E is a section in €4 F"). Furthermore, both E and P are
equivalences. [

14.15 THEOREM
Categories sf and 3 are equivalent if and only if there exists an equivalence
F.of - B.

Proof: If of ~ @, then there exist skeletons &/ and # of & and 3,
respectively, such that o/ =~ #. By (he above proposition, the projection
P: o — & and the inclusion E: #< @ are equivalences. By definition, there
exists an isomorphism J:.</ — # (which must be an equivalence). Thus
EoJo P:sf — % is an equivalence (14.13).

Conversely, if F: o/ — # is an equivalence, &/ and # are skeletons for
o and B, I, o is the inclusion and B 2 # is the projection, then
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Qo Fo K: s/ — # is an equivalence. Thus, Q o F o K is full and faithful, and
since &/ and & are skeletal, the associated object function for Q o Fo K must
be a bijection. Hence, it is an isomorphism (14.3), so that &/ and & are equiv-
alent. [

14.16 EXAMPLES OF EQUIVALENCES

(1) Every isomorphism is an equivalence.

(2) Every inclusion of a skeleton and every projection onto a skeleton is an
equivalence (14.14).

(3) If F: € — % is naturally isomorphic to I, then F is an equivalence, but not
conversely (see Exercise 14D).

(4) For any field F, the category of finite dimensional vector spaces over F is
equivalent to the category of F-matrices (3.5(4)). [Given a basis, consider the
matrix associated with each linear transformation.]

(5) For any field F, let o/ be the category of finite dimensional vector spaces
over F. Then the functor Hom(_, F): &/°” — &/ that sends each vector space
to its dual is an equivalence, but not an isomorphism.

(6) Let & be the category of reflexive locally convex Hausdorff linear topological
spaces. The functor Hom(—, C): #°? - & that sends each such space to its
adjoint (equipped with the strong topology), is an equivalence, but not an
isomorphism.

(7) Let 2 be the category of reflexive Banach spaces and norm-decreasing linear
transformations. The functor Hom(_, C): 9°? — A that sends each reflexive
Banach space to its conjugate space is an equivalence, but not an isomorphism.

(8) Let LCAb be the category of locally compact abelian groups. Then the
functor Hom{__, R/Z): LCAb*® — LCAb that sends each locally compact
abelian group to its group of characters is an equivalence, but not an iso-
morphism.

(9) Let CompAb be the category of compact abelian groups. Then the functor
Hom(—, R/Z): CompAb°” — Ab, that sends each compact abelian group to its
(discrete) group of characters is an equivalence, but not an isomorphism.

(10) The functor Hom(_, 2): BeoSp°’? — BooAlg that sends each boolean
space to the boolean algebra of its clopen subsets is an equivalence, but not an
isomorphism.

(11) The functor Hom(—, C): C*-Alg®® - CompT, that sends each C*-algebra
A to its carrier space; i.e., Hom(A, C) considered as a subspace of the space C4,
is an equivalence, but not an isomorphism.

The preceding examples indicate quite strongly that the concept of equiv-
alence is much more important categorically than the concept of isomorphism
of categories. Moreover, since equivalences preserve (and reflect) all “essential”
categorical properties (see Theorem 12.10 and Exercise 12H), one might even
define a property of categories to be ‘“‘categorical” provided that it is preserved
by equivalences.
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The last few of the preceding examples also motivate the following
definition.

14.17 DEFINITION

(1) Categories o and £ are called dually equivalent if and only if &/°” and # are
equivalent.
(2) A category & is called self-dual provided that it is dually equivalent to itself.

14.18 EXAMPLES

(1) For any category €6, % and %°? are dually equivalent.

(2) For any commutative ring R, the category of R-matrices (3.5(4)) is self-dual.
[Consider the functor that sends each matrix to its transpose. ]

(3) The category of finite dimensional vector spaces over any field is self-dual.
(4) The category of reflexive Banach spaces is self-dual.

(5) The category of locally compact abelian groups is self-dual.

(6) The category of compact abelian groups is dually equivalent to Ab.

(7) The category of boolean spaces is dually equivalent to BeoAlg.

(8) CompT, is dually equivalent to C*-Alg.

(9) Set is dually equivalent to the category of complete atomic boolean algebras
(see Exercise 14H).

EXERCISES

14A. Show that a category & is isomorphic with a subcategory of Z if and only
if there is an embedding F: &/ — #.

14B. Show that each of the categories Set, Grp, and Top is isomorphic to a
subcategory of each of the other two, but that no two of these categories are isomorphic
(or even equivalent) to cach other.

14C. Finitely Generated Spaces
A topological space is said to be finitely generated provided that it is a topological
quotient of a disjoint topological union of finite spaces.
(a) Prove that for any space X, the following are equivalent:

(i) X is finitely generated.
(ii) The intersection of any family of open sets in X is open.
(iii) If A < X, then
A== ta)”
acAd
(where ** ~” denotes closure).

(b) Prove that the full subcategory of Top consisting of all finitely generated spaces
(resp. finitely generated Ty-spaces) is isomorphic with the category QOS of quasi-
ordered sets (resp. POS of partially-ordered sets).

14D. Prove that an isomorphism F: &/ — &/ on a category is not necessarily
naturally isomorphic to 1,,. [See Exercise 13L.]
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14E. Prove that cardinality of small categories is not preserved by equivalences;
in fact, if a and B are any infinite cardinal numbers, then there are equivalent cate-
gories &f and & such that card (Mor(f)) = a and card (Mor(8))= B.

14F. Determine whether or not *“‘smallness’ is a “‘categorical property”, i.e.,
whether or not it is preserved by equivalences.

14G. Show that equivalences between categories preserve initial, terminal,
zero, projective, and injective objects, separators and coseparators, monomorphisms,
epimorphisms, constant morphisms, zero morphisms, connectedness, and pointedness.

14H. The Category Set°®
(a) Prove that Set is not self-dual.
(b) Prove that Set®” is equivalent to the category of complete, atomict boolean
algebras and complete boolean homomorphisms. [Hint: Each complete atomic
boolean algebra A is isomorphic to the complete boolean algebra of all subsets of the
set of atoms of A.]
(c) Prove that Set°” can be embedded in Set and that Set can be embedded in Set°?.

14I.  Show that if X is an initial object of a category €, then the comma category
(X, €) is isomorphic to €.

14).  Equivalence of Concrete Categories
Let (&, U) and (8, V) be concrete categories. Discuss the relationships between the
following concepts:
(1) There exists an isomorphism H:of — Zsuchthat U = Vo H.
(2) There exists an equivalence H: & — Hsuchthat U = Vo H.
(3) There exist isomorphisms H: of —+ & and K: Set — Setsuchthat Ko U = Vo H.
(4) There exist equivalences H: of — B and K: Set — Setsuchthat Ko U = V- H.

(5) There exists an equivalence H: & — & and an isomorphism K: Set — Set such
that Ko U = Vo H.

(6) There exists an isomorphism H: .o/ — % and an equivalence K: Set —+ Set such
that Ko U= Vo H.

(7) There exists an isomorphism H:&f - @ such that U = Vo H.

(8) There exists an equivalence H: o/ - Zsuchthat U = Vo H,

Concrete categories which satisfy (8) above are called equivalent concrete categories.

§15 FUNCTOR CATEGORIES

15.1 DEFINITION

If of and & are categories, then the full subquasicategory of FYUN'E
whose objects are precisely the functors from &/ to & is denoted by [, £] or
by 2% and is called the (quasi)category of functors from < to & or the functor
(quasi)category [/, &].
t+ A complete boolean algebra is called atomic if and only if each of its elements x is the supre-

mum of all of the atoms a with @ < x. (g is called an atom provided that it is an immediate
successor of 0; i€, 0 # aand if 0 < y € g, theny = a.)
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15.2 EXAMPLES

(1) If the category with just one morphism is denoted by 1, then for any
category %, [1, €] is isomorphic to €.

(2) If the category +—+ is denoted by 2, then for any category %, the functor
category [2, €] is isomorphic to the arrow-category %? (4.16).

¢—>
(3) If the category \l, is denoted by 3, then for any category €,

the functor category [3, €] is isomorphic to the triangle-category € (4.17).

Notice that we now have an “internal Hom-functor” for €/ J, namely,
Hom: 64T ? x AT — 64T, where Hom(, #) = [, #] and
Hom(F, GYH) = GoHo F.

15.3 PROPOSITION
If o is small, then for any category B, the quasicategory [, &) is iso-
morphic to a category.

Proof: A functor F: &/ — @ is actually a triple F = (o, F, #) where Fisa
function from Mor & to Mor #. Associate with each such functor F, the graph
G(F) of F. Since Mor &/ is a set, so is Mor o/ x F[Mor /] (1.1(3) and (4)).
Hence, since

G(F) « Mor o x F[Mor /1],

it must be a set (1.1(1)). Similarly, to each natural transformation n = (F, %, H)
between abjects of [/, #] associate the graph G(7) of #. Since

G(7j) = Ob o x #[Ob ],
it must also be a set. Let € = (0, .#, dom, cod, o), where
0= {GF)| F-o - B}
M = {G) | n: F> H where F, He 0}
dom: # — O and cod: .# — O are defined by:
dom(G(n)) = G(dom n) and cod(G(n)) = G(cod n),
and
e: {(f;9) e M x M| dom(f) = cod(g)} — M
is defined by
G(n)  G(e) = G(n &)

Since all members of @ and .# are sets, @ and .# must be classes (1.2). It is
easily verified that € satisfies the matching, associativity, and identity existence
conditions (3.1). To show that each morphism class is a set, suppose that
F,H: o - 3. Let

S = |J{homgx(F(A), H(A)) | A € Ob o/}.
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Since S is a union of a family of sets indexed by a set, it is a set (1.1(4)). Thus,
POb o x S)is aset (1.1(2) and (3)). But

hom(G(F), G(H)) = {Gn) | n: F > H} ¢ P(0b o x §),
so that it must be a set (1.1(4)(1)).

154 PROPOSITION
F
If o —G_‘; R are functors and y: F - G is a natural transformation, then 3

is an isomorphism in 3 if and only if it is a natural isomorphism.
Proof: Immediate from Theorem 13.6. []

Next we will see that in general a morphism 5 in £ inherits the categorical
properties that are common to all of the u,, 4 € Ob(s7); whereas the category
24 itself often inherits the categorical properties of &.

155 PROPOSITION

A morphism n in (4, ] has one of the properties: *“isomorphism”, “‘mono-
morphism®’, “‘epimorphism”, “‘bimorphism™, *“‘constant morphism™, “coconstant
morphism®, or “‘zero morphism”, if for each A € Ob(s?), n, has the corresponding

property.

Proof: The proof for isomorphisms is immediate from Proposition 15.4.
If each 5, is a monomorphism and ¢ and é are morphisms in 2 such that
ne& = nod, then for each 4 € Ob(¥), n,° ¢, = n,°3,. Hence, for cach A,
¢a = 8458, ¢ = 8. The proofs for other cases are left as an exercise. []

15.6 PROPOSITION

If the category # has one of the properties: *“‘has an initial object, “has a
terminal object”, “‘has a zero object™, or “is pointed”, then for any category <,
[, B) has the corresponding property.

Proof: If # has an initial object X, consider the constant functor F: &f — &
defined by F(f) = 1, for all fe Mor(s/). Then for any G € OK(B®), n =
(n): F = G defined by: n, = “the unique morphism from X to G(A)”, is
clearly a natural transformation since for each 4 > 4’ the square

F(A)= X—2 G(A)

F(I)=l‘\l JGU)

F(A')= X T)G(A’)

must commute. (There is only one morphism from X to G(A’).) For the same
reason, it is clear that n is the only natural transformation from F to G. Thus,
2 has an initial object.
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The proof for terminal objects is similar. If 8 is pointed, let Cgp- denote
the unique zero morphism from B to B’ (8.8). For any pair of functors

F,G: o —» 3,
let CFG = (EFG)A: F — G be defined by (CFG)A = CF(A)G(A)' The square

CraGia
F(A)——> G(A)

Flf) 1 lG N

F(A)———>G(4")

CrianGian

commutes, by the uniqueness of the zero morphism from F(4) to G(4"). Since
each (Zg¢), is a zero morphism, so is &rg (15.5). Thus, 8 is pointed. []

Functor categories naturally give rise to a new type of bifunctor called the
evaluation functor, defined below.

15.7 PROPOSITION
For any categories s and B, there is a (bi)functor

EB¥ xod - B
defined by: B, 4) ”
, A) = F(A),

and foreachny: F - Gandf: A - A’
E('lr.f) = GU)° Ha = Ny ° F(f)r
called the evaluation functor for #<.
Proof' E is well-defined because G(f) ° i, = 1, © F(f), since y is a natural

transformation, i.e., since the square

F(A4) — G(A)

m)l 1Gm

F(4) —;—) G(A)
Al
commutes.

Consider the identity (1, 1) on (F, A).

E(lg, 1) = F(1,) o lpcay = Vreay © Lreay = ey = lgra

Thus, E preserves identities.
Suppose (F, 4) 23 (G, 4) &2 (H, 47).
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E( @ omSf)=ECengef)=H(gof)e(Com,
H(g)o (H(f) o8 ony = H(g) ol o G(f)) omy
(H(g) o 84) o (G(f) o ny) = EE, 9)° E(n, [).

Hence, E preserves compositions and is therefore a functor. [

158 IfE: #¥ x of — Zisthe evaluation bifunctor, then for each A € Ob(«),
the left associated functor E(__, A): 4% — & is called the evaluation functor
relative to 4. Clearly,

E(_, A)F) = F(A) foreach F: o — A,

and
E(_, A = n, for each n e Mor(%#*~).

Note that for each F: &/ — 4, the right associated functor E(F, __): &f — Zis
the functor F.

Also note that for any two categories # and &/, there is a. ‘‘constant functor”
functor C: @ — B defined by:

Jor each B-object, B, C(B) is the constant functor from f to B whose value at
each s7-object is B and whose value at each s/-morphism is 1g,

Jor each B-morphism, B LB, f) is the natural transformation from C(B) to
C(B) defined by :

(CUN.=F  foreach «f-object A.

159 THEOREM
If of, B, and € are categories, then the functor (quasi)categories (€*)? and
€2 gre isomorphic.

Proof’: Define
Ir:[«,[#,€]] - [« x 8, €]

by

(T(F))(A, B) = (F(A))B)
and if

(z, B): (4, B) » (4", B')

(C(F)Xa, f) = F(A')P) o Flw)g = F(%)g. o F(A)P).
Andifn: F- G
C(n)(A4, B) = (n4)s

By straightforward arguments, it can be shown that I'(F) is a functor from
& x B to € and that T'(y) is a natural transformation from I'(F) to I'(G).

Clearly,
I'(l,-)(A, B) = ((IF)A)B = ('F(A))B = lru)(mv
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so that T preserves identities. If F -2 G — A, then by the definition of com-
position of natural transformations (13.3), we have that for each

(A, B)e Ob(sy x &),
TEon)A, B) = (Eomas = (Caona)s = (Eds° (M)
= T(§)(4, B) - [(n)(4, B) = (I'(§) - ['(n))(4, B).

Hence, I'(¢ o ) = I'(£) o I'(y), so that I preserves compositions and is thus a
functor.
Now define
A: [ x #B,6] - [, [2, ¢]]

by
A(H)(A) = the right associated functor H(4, _): @ - ¢
and ifa: A — A’

(A(H)(@))s = H(, 1)

and ifo: H—- K
(A(0)4)s = O (4.8)

Again, straightforward arguments can be used to show that A(H) is a functor
from &/ to €® and that A(c) is a natural transformation from A(H) to A(K). Now

A8 = sy = sy = Lanwney
Thus, A preserves identities. If H -~ K -5 L, then

(A(to0),) = (10 0')(A.B) = T(1.8)° Ga.8) = ((A1 ° Ad),)p.

Hence, A preserves compositions, and so is a functor. If 5 is a morphism in
[+, [#, €]], then

(A TmMDs = (ATM)s = r(ﬂ)(A.B) = (nJs-

Hence,
A-T() =1,
so that
A o r = l[d.[a,"]]'
Likewise, if 6 is a morphism in [/ x &, €], then
(T o A(0))(4, B) = T(A(0))(4, B) = (A(0),)p = 4,8y
Hence,
o A(o) = o,
so that
ToA =l vae

Consequently, I is an isomorphism. ]
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EXERCISES

15A. Prove that for any categories s¢ and 8, [/, @] and [Z°?, $°?] are dually
equivalent.

15B. In the proof of Theorem 15.9, show that:
(a) For cach functor F: sf — €2, I'(F) is a functor from &/ x @ to@.

(b) For each morphism F—5 G in [, [#, €¢]), I'(4) is a natural transformation
from [(F) to I'(G).
(c) For each functor G: & x & — €, A(G) is a functor from &f to 2.

(d) For each morphism H 3 Kin [« x B,¥€], Alo) is a natural transformation
from A(H) to A(K).

15C. Prove that for any twonon-emptycategories, & and &, the “constant
functor” functor C: & — % is a section in €T, and for each s7/-object 4, the
evaluation functor relative to 4, E(—, 4): 8% — %, is a relraction in €I T .
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