IV

Special Morphisms and
Special Objects

Perhaps the purpose of categorical algebra is to show that which is trivial is
trivially trivial.
~———P. FrevyDp?t

In the category of sets, certain special types of functions play distinguished
roles; these are:

identity functions

injective functions

surjective functions

bijective functions

constant functions

In Chapter 111, we encountered the identity morphisms, which in arbitrary
categories are the obvious analogue of the identity functions in Set. For the
other classes of functions, which are usually defined in terms of elements of
their domains and codomains, we will now furnish “‘element-free™ characteriza-
tions and will investigate the corresponding categorical concepts. Likewise,
we will find suitable categorical analogues for some distinguished objects in
Set; namely, the cmpty sct and the singleton sets.

§5 SECTIONS, RETRACTIONS, AND ISOMORPHISMS

Sections

5.1 MOTIVATING PROPOSITION
If 1 A — B is a function from a non-empty set A to the set B, then the
Jollowing are equivalent:

+ From Proceedings of the Conference on Categorical Algehra.
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(1) f is injective (i.e., one-to-one).

(2) There exists some function g: B — A such that g o f = 1, (i.e., f has a “left
inverse” with respect to function composition). []

5.2 DEFINITION

A morphism A L.Bina category ¢ is said to be a section in € (or a
¢-section) provided that there exists some %-morphism B - A such that
gof = 1, (i.e., fhas a “left inverse” in ).

5.3 EXAMPLES

(1) A morphism in Set is a section if and only if it is injective and is not the
empty function from the empty set to a non-empty set.

(2) A morphism A L. Bin R-Mod is a section if and only if it is injective and
f[4] is a direct summand of B. In other words, the sections in R-Mod are (up
to isomorphism) the embeddings of direct summands.

(3) A morphism X L, Yin Top is a section if and only if f is a topological
embedding and f[X] is a retract of Y.t In other words, the sections in Top are
(up to homeomorphism) the embeddings of retracts.

(4) If X and Y are sets (resp. topological spaces) and if @ € Y then the function
f: X = X x Y defined by f(x) = (x, a) is a section in Set (resp. Top). (What
is its “natural” left inverse?) [ Note that the image of f is a *“‘slice” or “‘cross-
section” of the product, which is in one-to-one correspondence (resp. homeo-
morphic) to X. This motivates our use of the word “section” in Definition 5.2.]
(5) The sections described in (4) are just special cases of the following situation:
Let /: X = Y be a morphism in Set (resp. Top, Grp, R-Med). Consider the
graph of f as a subset (resp. subspace, subgroup, submodule) of the product
X x Y. Then the embedding of X into X x Y defined by x — (x, f(x)) is a
section in the category in question.

5.4 PROPOSITION
If A L. B and B> C are sections in a category G, then A “\ Cisa
section.

Proof: Let B 2idand CL Bbe morphisms such that /1 f = 1, and
k -g = 1, Then
(hol\‘)c(yof) = h(:(k v,-g):.f: ho Iﬂof= hof = ]A'
Thus (g = f) has a left inverse. [

5.5 PROPOSITION

If fand g are morphisms of a category ¢ and ¢ = [ is a section, then f is a
section.

t A subspace A of a topological space Y is called a retract of Y if and only if there is some
continuous function r: Y — A that leaves each point of A fixed. Such a function, r, is called a
topological retraction.
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Proof: By the definition of section we know that there is a morphism A
such that ho(g+f) is an identity. Thus, by the associativity of composition,
(h - g) = fis an identity; hence, fis a section. []

Retractions

5.6 MOTIVATING PROPOSITION
If f: A — B is a function, then the following are equivalent :

(1) fis surjective.
(2) There is some function g: B — A such that fog = lg (i.e., f has a “right
inverse™ with respect to function composition).

Proof: By the Axiom of Choice there is a function that assigns to each
b € B some member of the set f~'[{b}]. [J

5.7 DEFINITION

A €¢-morphism A L, B s said to be a retraction in € (or a ¢-retraction)
provided that there exists some %-morphism B2+ A such that fog = 1,
(i.e., f has a “right inverse” in €).
58 EXAMPLES

(1) A morphism in Set is a retraction if and only if it is surjective.

(2) A morphism /: 4 — Bin R-Mod is a retraction if and only if there exists a
projectiont p of A4 onto a submodule S of 4 and an isomorphism 4: S — B
such that f = hop. In other words, the retractions in R-Mod are (up to
isomorphism) exactly the projections of modules onto their direct summands.t+
(3) A morphism f in Top is a retraction if and only if there is a continuous
retraction r and a homeomorphism / such that f = Ao r. In other words, the
retractions in Top are (up to homeomorphism) exactly the topological retractions.
[This motivates our use of the word “retraction” in Definition 5.7.]

5.9 PROPOSITION
Section and retraction are dual notions.

Proof: Let S(%¥) be the statement:

f € Mor(6) and there exists some g € Mor(€) such that g -4 [ is a €-identity.
Then S(%°?) is the statement:

S € Mor(6°°) and there exists some g € Mor(%6°P) such that g og., fis a‘6°Eidentity.
Translating this into a statement about €, we obtain:

f € Mor(6) and there exists some g € Mor(€) such that [ -4 g is a 6-identity.
This is precisely the statement that f is a retraction in €. []

tIf S is a submodule of A, then a projection of 4 onto S is a surjective homomorphism
p: A - S that leaves each point of § fixed. Such a homomorphism exists if and only if Sis a
direct summand of A4.

+t Thus, an R-module Bis a “retract” of A if and oaly if it is a direct summand of 4. Also we
have seen that Bisa “sect” of A ifand only ifitis a direct summand of A (5.3(2)). Consequently,

in R-Mod an object B is a “‘retract” of the object A if and only if it is a “'sect™ of A. A corre-
sponding statement is true for every category. (Why?)



Sec. 5 Sections, Retractions, and Isomorphisms 35

5.10 PROPOSITION
IfA AN Band B2 C are €-retractions, then A LA C is a G-retraction.

Proof: If f and g are 6-retractions, then according to Proposition 5.9 they
are ¥ P-sections and thus their composition f 0., g in €°P is a ¥°P-section (5.4);
i.6, g og f = fogop g is @ G-retraction. []

From now on we will not always indicate the proofs of dual propositions or
theorems, since they are all an application of the duality principle (4.15). After
a while we will sometimes not even provide the dual statements for theorems,
leaving this task as an implied exercise for the reader.

5.11  PROPOSITION
If [ and g are 6-morphisms and g < f is a retraction, then g is a retraction.

Proof: Dualize Proposition 5.5. []

Isomorphisms

5.12 MOTIVATING PROPOSITION
If 1 A > B is a function, then the following are equivalent :
(1) fis bijective.
(2) There exists some functiong: B — Asuchthatgof = 1 andfog = 15 [
5.13 DEFINITION
A €-morphism is said to be an isomorphism in ¢ (or a ¥-isomorphism)

provided that it is both a ¥-section and a ¢-retraction (i.e., it has both a “left
inverse’ and a *‘right inverse” in %).

5.14 EXAMPLES

(1) In any category, every identity is an isomorphism.

(2) A morphism in Set is an isomorphism if and only if it is bijective.

(3) A morphism in Grp is an isomorphism if and only if it is a group-theoretic
isomorphism.

(4) A morphism in Top is an isomorphism if and only if it is a homeomorphism
(5) A morphism in BanSp, is an isomorphism if and only if it is a homeomorphic

linear isomorphism, and a morphism in BanSp, is an isomorphism if and only
if it is an isometric linear isomorphism.

(6) A monoid is a group if and only if, considered as a category (3.5(7)), each
of its morphisms is an isomorphism.

5.15 PROPOSITION
Isomorphism is a self-dual notion.

Proof: The notions of section and retraction are duals of each other
(59. M
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5.16 PROPOSITION
In any category, the composition of isomorphisms is an isomorphism.

Proof: Immediate from the fact that sections and retractions are closed
under composition (5.4 and 5.10). []

5.17 PROPOSITION
If f is a G-morphism, then the following are equivalent:

(1) fis a €-isomorphism.
(2) f has exactly one right inverse, h, and exactly one left inverse, k, and h = k.
Proof: Clearly (2) implies (1). To show that (1) implies (2), we know by

definition that f has some right inverse # and some left inverse k. We need only
show that i = k. Clearly

k=kol=ko(foh)=keoefNoh=1ch=h [J

Because of the above proposition, we may speak of the inverse of an isomorphism
/. It is usually denoted by f/~'.

5.18 PROPOSITION
If f is an isomorphism, then f =" is an isomorphism and f = (f~")"'.

5.19 DEFINITION
An object A of a category ¥ is said to be ¥-isomorphic with an object B of
% provided that there exists some ¥-isomorphism f/: 4 — B.

520 PROPOSITION
For any category €, *‘is isomorphic with” yields an equivalence relation on
Ob(%).

Proof: Reflexivity holds since identitics are isomorphisms. Symmetry
follows from the fact that if / is an isomorphism, then f~! is one also, and
transitivity holds since isomorphisms are closed under composition. []

§.21 DEFINITION
Let 2 be a subcategory of 4.

(1) 2 is said to be a dense subcategory of ¢ provided that for each €-object C,
there is some J#-object B such that B is 6-isomorphic with C.

(2) # is said to be an isomorphism-closed subcategory of % provided that
every €-object that is isomorphic with some #-object is itself a Z-object.

5.22 EXAMPLES

(1) The category of all cardinal numbers and functions between them is a dense
subcategory of Set.

(2) The category of all subgroups of permutation groups and homomorphisms
between them is a densc subcategory of Grp.
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(3) If Fis a field, then the full subcategory of all finite powers F” of Fis a dense
subcategory of the category of all finite dimensional vector spaces over F.

(4) If Fis a field, then the full subcategory of all powers F! of F is a dense
subcategory of F-Med.

(5) If X is a topological space with three points and exactly three open sets,
then the full subcategory of all subspaces of powers X of X is a dense subcategory
of Top.

(6) BanSp;, is both a dense and an isomorphism-closed subcategory of BanSp,.

(7) A full subcategory # of a category % is both dense and isomorphism-closed
in€ ifand only if # = €.

EXERCISES

5A. Show that if fand g are isomorphisms in a category €, then (f-g)~! =
g~ < f~! (i.e., when either side is defined, then so is the other and they are equal).

5B. Show that in general a section may have several left inverses and a retraction
may have several right inverses.

5C. Let f be a morphism in the category of all sets which have at least two
elements. Show that the following arc equivalent:
(a) fis an isomorphism.
(b) f has exactly one right inverse.
(c) f has exactly one left inverse.

Do these same equivalences hold in the category of all topological spaces with at
least two members?

5D. Letfand g be %-morphisms. Show that if g < fis an isomorphism, then fis a
section and g is a retraction, but not conversely.

SE. Show that if the monoid of natural numbers under addition is considered as
a category (3.5(7)), then zero is the only section, the only retraction, and thus the
only isomorphism.

SF. Let @ be a subcategory of 4.
(a) Prove that any #-section (resp. .#-retraction, #-isomorphism) is a %-section
(resp. ©-retraction, €-isomorphism).
(b) If & is a full subcategory of €, show that every #-morphism that is a €-section
(resp. €¢-retraction, €-isomorphism) is necessarily a #-section (resp. #-retraction,
J-isomorphism).
(c) Show that without the requirement that # is full, (b) above is falsc.

5G. Prove that if ¢ is a quotient category for 4 and if f is a ¢-section (resp.
%-retraction, %-isomorphism), then the equivalence class f is a %-section (resp.
%-retraction, §-isomorphism).

5H. A %-morphism g is said to be a quasi-inverse for the €-morphism f if and
only if f-g<f = f. Prove that every %-morphism that has a quasi-inverse is itself
the quasi-inverse of some €-morphism.
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§6 MONOMORPHISMS, EPIMORPHISMS, AND
BIMORPHISMS

Monomorphisms

6.1 MOTIVATING PROPOSITION
If f: A - Bis a function on sets, then the following are equivalent:

(1) fis injective.
(2) For all functions h and k such that fo h = f< k, it follows that h = k (i.e.,
[ is “left-cancellable” with respect to function composition).

Proof: Clearly (1) implies (2). If fsatisfies (2) and a, b € 4 such that f(a) =
f(b), consider functions from a singleton set into A, one of which has image
{a} and the other of which has image {6}. [

6.2 DEFINITION

A %-morphism A 2, Bissaid tobe a monomorphism in € (or a €-mono-
morphism) provided that for all €-morphisms /t and k such that fo h = fok, it
follows that i = k (i.e., fis “left-cancellable” with respect to composition in €).

6.3 EXAMPLES

(1) Every morphism in a concrete category that is an injective function on the
underlying sets is a monomorphism.

(2) In Set, Grp, SGrp, Ab, R-Mod, Rng, POS, Top, Top,, CompT,, LinTop,
BanSp,, and BanSp,, the monomorphisms are precisely the morphisms which
are injective on the underlying sets. Notice that in Set, Grp, SGrp, Ab, R-Maed,
Rag, CompT,, and BanSp,, the monomorphisms are *‘essentially” the em-
beddings of substructures, but in POS, Top, Top,, LinTop, and BanSp,, there
are monomorphisms which are not embeddings. A satisfactory categorical
concept for “embeddings” will be discussed later (see 34G).

(3) In the category & of divisible abelian groups and group homomorphisms,
there are monomorphisms which are not injective on the underlying sets.
[Consider the natural quotient Q — Q/Z, where Q (= the rational numbers)
and Z (= the integers) are each considered as abelian groups under addition.]

(4) In the category ¢ of pointed connected spaces and continuous base-point-
preserving functions, there are monomorphisms that are not injective on the
underlying sets. [Consider the pointed space (R, 0) of the real numbers with
basc point 0 and the pointed space (X, 1) where X is the circle S* represented
as the space of all complex numbers with modulus 1. Then x +— ¢'* defines a
morphism p: (R, 0) - (X, 1) that is a €-monomorphism but not an injective
function. Notice that p is a covering projection and the “‘unique lifting property™
of covering projectionst is equivalent to the statement that each covering
projection in % is a ¥-monomorphism.]

+ Sce E. H. Spanier, Algebraic Topology, New York: McGraw-Hill, 1966, p. 67.
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(5) There is a monomorphism X L.vin Top such that the homotopy class

X 4, Y of f is not a monomorphism in hTop (the homotopy category of
topological spaces). [Consider the usual embedding of the bounding circle of
a disc into the disc.]

(6) In the category Field,t and in any category which is a quasi-ordered class
(in the sense of 3.5(6)), every morphism is a monomorphism.
6.4 PROPOSITION

If A L, Band B-%> C are @-monomorphisms, then A 2L, C is a 6-mono-
morphism.

Proof: If (gof)oh = (gof)ok, then go(foh) = go(fok). Since g
is a monomorphism fc h = fo k, and since fis a monomorphism & = k. [

6.5 PROPOSITION

If [ and g are G-morphisms and g« f is a monomorphism, then [ is a
monomorphism.

Proof: foh =fok =go(feh) = go(fok) = (gof)eh = (gof)ok
=>h=4k [

6.6 PROPOSITION
Every €-section is also a €-monomorphism.

Proof: If g is a left inverse for f, then
Soh=feck=>go(fohy=go(fok)
=(gef)eh=(gof)ok
=>leh=1<k=>h=%kk [

The converse of the above proposition does not hold since, for example, in
Top, the embedding of an open interval into a closed interval is a monomorphism
but not a section.

6.7 PROPOSITION
In any category, the following are equivalent :

(1) fis an isomorphism.

(2) f is a monomorphism and a retraction.

Proof: An isomorphism is a section and a retraction, so that by Proposition
6.6 it is both a monomorphism and retraction. Thus, (1) implies (2). Let fbe a
monomorphism and a retraction and let g be a right inverse of /.

feg=l=(feg)ef=1cf=fol=folgof)=[cl

so that since fis a monomorphism, g = f = 1. Hence, f'is a section, and therefore
an isomorphism. Thus, (2) implies (1). [

+ Recall that in each field 0 # 1.
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Epimorphisms

6.8 MOTIVATING PROPOSITION
If [+ A = B is a function on sets, then the following are equivalent :

(1) fis surjective.

(2) For all functions h and k such that ho f = k of, it follows that h = k (i.e.,
Jis “right-cancellable” with respect to function composition).

Proof: Clearly (1) implies (2). If f: A — Bis not surjective, define functions
h k: B— {1, 2} by:

WB] = {1},  kL/T4]] = (1},

and
KB - /T41] = ).
Then, hof =kof,buth £ k. [J

6.9 DEFINITION

A ¢-morphism A 2L, B is said to be an epimorphism in ¥ (or a %-epi-
morphism) provided that for all ¥-morphisms /1 and & such that o f = ko f it
follows that i = & (i.e., fis “right-cancellable” with respect to the composition
in €).

6.10 EXAMPLES

(1) Every morphism in a concrete category which is a surjective function on the
underlying sets is an epimorphism.

(2) In Set, Grp, Ab, R-Mod, POS, Top, and CompT,, the epimorphisms are
precisely the morphisms which are surjective on the underlying sets. [ The proof
for Grp is not immediate (sec Exercise 6H); if A <, Bisan epimorphism in Ab
or R-Mod, let i, k: B — Bjf[A] be the induced quotient map and the zero map,
respectively.]

(3) There is an epimorphism X Lyin Top such that the homotopy class

XL yof [ is not an epimorphism in hTop. [Consider the covering projection
of the real line onto the circle, defined by: x — e*.]

(4) In Top, the epimorphisms are precisely the continuous functions with
dense images, 1.e., the continuous functions f/: A — B for which the closure of
S[A] equals B. [If A L, B is an epimorphism, let C be the disjoint topological
union of two “copies™ of B where the corresponding points of the closure of
S[A] have been identified, and let 4 and k be the two natural maps from B
to C.] Likewise, in BanSp, and BanSp, the epimorphisms are precisely the
morphisms with densc images.

(5) In the category of torsion-free abelian groups, a morphism A L, Bis an
epimorphism if and only if the factor group BJ/f[ 4] is a torsion group. Thus, in
this category, epimorphisims need not be surjective.
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(6) In Rng and Sgp there are epimorphisms that are not surjective; e.g., if Z is
the integers and Q the rationals, then the usual embedding Z z, Q is an ¢pi-
morphism in Rng and in SGrp. [If /# and k& are homomorphisms such that
hef=kofandif nfme Q, then

h(njm) = h(n)- h(1jm) - h(1) = k(n)- h(1/m)- k(1)
k(n) - h(1/m) - k(m)-k(1/m) = k(n) - h(1/m) - h(m) - k(1/m)
k(n)-h(1) - k(1/m) = k(n)- k(1) - k(1/m) = k(n/m).]
(7 In the category of finite semigroups, there are epimorphisms that are not

surjective. [Consider the semigroups 4 = {0, a,,, a,,, a5, a5,} and B =
A — {a,,}, each with binary operation - defined by:

0 if g#m

P e, i g=m

With this operation, A and B are finite semigroups and the inclusion B — A is
an epimorphism (Howie and Isbell, 1967).]

6.11 PROPOSITION
Monomorphism and epimorphism are dual notions.

Proof: Let S(€) be the statement:
S Mor(6), and for all I, ke Mor(6), foh = fok = h =k
Then S(%°?) interpreted as a statement about € is:
S € Mor(6), and for all h, k € Mor(6), hof = k-f=h =k. []

6.12 PROPOSITION
The composition of €-epimorphisms is a €-epimorphism.

Proof: Dualize Proposition 6.4. [

6.13 PROPOSITION
If g < f is a €C-epimorphism, then g is a €-epimorphism.

Proof': Dualize Proposition 6.5. [

6.14 PROPOSITION
Every G-retraction is a €-epimorphism,

Proof: Dualize Proposition 6.6. [

6.15 PROPOSITION
In any category, the following are equivalent :

(1) fis an isomorphism.
(2) fis an epimorphism and a section.

Proof: Dualize Proposition 6.7. (]

Even though the notions of epimorphism and monomorphism are dual and can
thus always be handled symmetrically, in well-known categories their behavior
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often appears to be far from symmetric. For instance in most of the concrete
categories that we have considered, the monomorphisms are precisely those
morphisms that are monomorphisms (i.e., injective functions) on the underlying
sets. However, it is quite usual for epimorphisms in concrete categories not to
be epimorphisms (i.e., surjective functions) on the underlying sets (e.g., in
SGrp, Mon, Rng, Top,, BanSp,, and BanSp,). Actually, there is a good reason
for this, which will be explained later (see §30 and Proposition 24.5).

Bimorphisms

6.16 DEFINITION
A €-morphism is said to be a bimorphism in € (or a2 ¢-bimorphism) provided
that it is both a monomorphism and an epimorphism.

6.17 EXAMPLES

(1) For every category €, each 6-isomorphism is a €-bimorphism.

(2) For the categories Set, Grp, Ab, R-Mod, POS, and Top, the bimorphisms
are precisely those morphisms that are bijective on the underlying sets. Note that
in Top and POS they need not be isomorphisms.

(3) In each quasi-ordered class considered as a category (3.5(6)), every morphism
is a bimorphism.

(4) A monoid is cancellative if and only if, considered as a category (3.5(7)),
each of its morphisms is a bimorphism.

6.18 DEFINITION
A category is said to be balanced provided that each of its bimorphisms is
an isomorphism.

6.19 EXAMPLES

(1) Set, Grp, Ab, R-Mod, and CompT, are balanced.

(2) Rog, Sgp, Top,, Top, LinTop, and POS are not balanced. (For the first
three, epimorphisms need not be surjective functions; for the last four, mono-
morphisms need not be embeddings.)

(3) A partially ordered class considered as a category is balanced if and only if
it is discrete.

6.20 PROPOSITION
The composition of €-bimorphisms is a €-bimorphism.

Proof: Monomorphisms and epimorphisms are closed under composition
(6.4 and 6.12). []

6.21 PROPOSITION
If g - fis a C-bimorphism, then f is a monomorphism and g is an epimorphism,
but not conversely. []
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Subobjects and Quotient Objects

6.22 DEFINITION

A subobject of an object B e Ob(%) is a pair (4, f) where 4 -5 Bis a

monomorphism. If f also happens to be a section, then (4, f) is sometimes
called a sect of B.

DUAL NOTION: quotient object; retract. [1.e., (f, A)T is a quotient object of B

provided that B L, 4isan epimorphism, and (f, A) is a retract of B provided
that f'is a retraction. ]

6.23 DEFINITION

(1) If (A, /) and (C, g) are subobjects of B, then (A, f) is said to be smaller
than (C, g)—denoted by (A4, f) < (C, g)—if and only if there exists some
morphism A 2, € such that the triangle

A
1 X
[}
|
!
v /
C
commutes.

) If (4, /) € (C, g) and (C, g) < (A, )), then (4, f) and (C, g) are said
to be isomorphic subobjects of B: denoted by (4, /) = (C, g).

h B

DUALLY: (1)* The quotient object (f, A) is larger than the quotient object
(g, C)—denoted by (f, A) = (g, C)—if and only if there exists some morphism
A 2 C such that the triangle

A

B

i
[}

i
v
C

e
X‘
commutes.
(2)* ([, A) and (g, C) are isomorphic quotient objects—denoted by (f, A) =
(g. C)—ifand only if (f; A) = (g, C) and (g, C) = (f, A).

Notice that even though one cannot formally take a subobject of a subobject
(since a subobject is a pair rather than an object), it is clear that if (B, /) is a

subobject of A and (C, g) is a subobject of B, then (C, /- g) is a subobject of A.
Hence, in this sense a subobject of a subobject is a subobject.

+ For quotient objects, we write the pair as (f, ) rather than (A, /) as a mnemonic device to
aid in recalling that A is the codomain of f rather than the domain of /.
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6.24 PROPOSITION
Subobjects (A, f) and (C, g) of B are isomorphic subobjects of B if and

. L . h
only if there exists a unique isomorphism A — C such that g - h = .

Proof: Suppose that (4, ) and (C, g) are isomorphic subobjects. Since
(A, f) < (C, g), there is a morphism 4 such that g - i = /. Since fis a mono-
morphism, /1 must be also (6.5). (C, g) < (A, f) implies that there is a morphism
k such that f < & = g. Now

go(hok)=(gol})ok=fok=g=go]c,

Thus since g is a monomorphism, /o k& = 1. Hence, / is a retraction and a
monomorphism, so it is an isomorphism (6.7). Uniqueness of /t follows from the

. . . h . . .
fact that g is a monomorphism. Conversely, if 4 — C is an isomorphism
such that g o h = f, then clearly (4, f) < (C, g). Similarly, fc h~' = g shows
that (C, g) < (4, f). Thus, the subobjects are isomorphic. []

6.25 COROLLARY
X is an equivalence relation on the class of all subobjects of any €-object

B.

6.26 Because of 6.25, we know that the class of all subobjects of an object B
is partitioned into equivalence classes of isomorphic subobjects. Thus, via the
Axiom of Choice (1.2(4)) for every €-object B there exists a system of repre-
sentatives for the equivalence relation = on the class of all subobjects of B.
Such a system of representatives will be called a representative class of subobjects
of B.

6.27 DEFINITION
A category % is said to be well-powered provided that each %-object has a
representative class of subobjects that is a ser.

DUAL NOTION: co-(well-powered). [l.c.. every object has a representative
class of quotient objects which is a set.]

6.28 EXAMPLES

(1) The categories Set, Grp, Top, Top,, BanSp,, and BanSp, arc well-powered
and co-(wcell-powered).

(2) The partially-ordered class of all ordinal numbers considered as a category
(3.5(6)) is well-powered but not co-(weli-powered).

Notice that to say that a category is well-powered is equivalent to saying that
for each %-object B, there can be only a set (X)), of pairwise non-isomorphic
%€-objects such that for each i there is some monomorphism f;: X; - B. This is
so because in any category ¥, there is only a set of morphisms between any pair
of objects.
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EXERCISES

6A. Show that in the category of commutative cancellative semigroups, A B
is an epimorphism if and only if for all b € B there exist @,, a, € A such that f(a,) + b
= fla,). [Hint: Embed each commutative cancellative semigroup in an abelian
group. There the epimorphisms are surjections. |

6B. For any ¢-morphism A L, B et
7 thom(x, A) | X € Ob(€)} — | {hom(X, B)| X € Ob(6))
be defined by: f(g) = fog; and let
1: U thom(B, X)| X € 0b(€); — |J thom(A, X) | X € Ob(%))
be defined by: f(g) = g < /.

Prove that fis a $-monomorphism if and only if f'is an injective function and that fisa
%-epimorphism if and only if £ is an injective function.

6C. Let & be a (full) subcategory of 6.
(a) Show that a #-monomorphism (resp. #-epimorphism, Z-bimorphism) is not
necessarily a €-monomorphism (resp. ¢-epimorphism, €-bimorphism).
(b) Prove that every #-morphism that is a €-monomorphism (resp. €-epimorphism,
%-bimorphism) is necessarily a Z-monomorphism (resp. %-epimorphism, %-bi-
morphism).
(¢) Compare these facts with those of Exercise SF.

6D. Let € be a quotient category of €.
(@ Iffisa %’-monomorphnsm (resp. ‘6’-ep|morphxsm %-bimorphism) then must fbe a
‘g-monomorphlsm (resp. - eplmorphlsm ¢- blmorphlsm)"
(b) If fis a €-monomorphism (resp. @ -epimorphism, ©-bimorphism) then must f be a
%-monomorphism (resp. 6-epimorphism, €-bimorphism)?

6E. Prove that if (f, ¢) is a monomorphism in the arrow category €2, then fis a
monomorphism in €.

6F. Prove that if f is a €-epimorphism and go f is a %-section, then g is a
€ -section.

6G. Form the dual of 6F.

6H. Group Morphisms
(a) Show that if K is a subgroup of the (finite) group H, then there exists a (finite)
group G and group homomorphisms f,, f;: H = G such that

K = the H|fi(h) = f,()}.

[Hint : Consider the set X obtained from the set {#K | h e H} of all left K-cosets of H,
by adjoining a single new element K. Let G be the permutation group of X, and let
p: X = X be the permutation which interchanges the elements eX (= X) and K, and
leaves all other elements of X fixed.

Define f,, f5: H —» G by:

WK it S = KK)
Si(h)(S) = P it S= R |

Ly = p< fihy=p~'.]
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(b) Use part (a) to show that the epimorphisms in Grp are precisely the surjective
homomorphisms; likewise in the category of finite groups.

6l. Induction Algebras
An induction algebra is a triple (4, 0, /) where Aisaset,0, e Aandf;: 4 —» Aisa
function such that the following holds:

IfDc Aand 0, € D and f,[D] = D,then D = A.

A homomorphism (A4, 0, £,) =~ (B, 0g, fp) between induction algebras is a function
g: A — B such that g(0,) = 0z and g(f(a)) = f3(g(a)) for each a € A.

(a) Show that in the category IndAlg of induction algebras and homomorphisms
between them, there are monomorphisms that are not injective functions on the

underlying sets.
(b) Show that IndAlg is a quasi-ordered class (3.5(6)), so that each of its morphisms is a

bimorphism.

6J. Show that if the monoid of natural numbers under addition is considered as a
category (3.5(7)), then every morphism is a bimorphism, but zero is the only iso-
morphism.

6K. Provethat if € is a category such that every €-epimorphism is a ¢-retraction,
then € is balanced.

6L. Form the dual of Exercise 6K.

\6M, Show that in a category ¥, it is possible for (X, f) and (Y, g) to be non-
isomorphic subobjects of an object Z, even though X and Y are 6-isomorphic objects.

6N. Form the dual statements of Proposition 6.24 and Corollary 6.25.
*60. Prove that the category of sets and relations (3.5(2)) is balanced.

§7 INITIAL, TERMINAL, AND ZERO OBJECTS

Initial Objects

7.1 MOTIVATING PROPOSITION
The set & has the property that for every set B, there exists one and only
one function from J to B.

Proof: It is the empty function from &F to B. []

7.2 DEFINITION
An object X in a category € is called an initial object for € (or a €-initial
object) provided that for all $-objects B, homy(X, B) has exactly one member.

7.3 EXAMPLES

(1) Each of Set, SGrp, and Top has a unique initial object (the empty set, the
empty semigroup and the empty space).

(2) Mon, Grp, Ab, and R-Moad each have initial objects (the trivial monoids,
groups and R-modules).

(3) The ring Z of integers is an initial object in Rng.
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(4) BooAlg has initial objects (the two-element boolean algebras).

(5) Field has no initial object.

(6) A quasi-ordered class considered as a category has an initial object if and
only if it has a smallest member.

7.4 PROPOSITION
Any two €-initial objects, X and Y, are isomorphic.

Proof: Let X 2, Y and Y 2~ X be the morphisms guaranteed by the
definition. By uniqueness
L x=x%x ad vSY=-vlhy

Thus, fand ¢ are sections and retractions, so isomorphisms. [

Terminal Objects

7.5 DEFINITION
An object X in a category € is called a terminal object for ¢ (or a ¢-terminal
object) provided that for all objects Bin €. hom (B, X) has exactly one member.

7.6 EXAMPLES

(1) Each of Set, SGrp, Mon, Grp, Ab, R-Mod, Rng, Top, LinTop, and BooAlgt
has terminal objects (the “singletons™).

(2) Fieldt7 has no terminal objects.

(3) A quasi-ordered class considered as a category has a terminal object if and
only if it has a largest member.

7.7 PROPOSITION
Initial object and terminal object are dual concepts. [

7.8 PROPOSITION
Any two €-terminal objects are isomorphic.

Proof: Dualize Proposition 7.4. [

Zero Objects

7.9 DEFINITION
A G-object is called a zero object for € (or a %-zero object) provided that it is
both a €-initial object and a ¢-terminal object.

7.10 EXAMPLES

(1) Grp, Mon, Ab, R-Mod, TopGrp, LinTop, BanSp,, BanSp,, pSet, and
pTop have zero objects.
(2) Set, Top, SGrp, Rng, R-Alg, BooAlg, POS, and Lat do not have zero objects.

+ For boolean algebras, we do #ot require that 0 # 1.
++ Recall that for each field, 0 # 1.
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7.11 PROPOSITION
Any two €-zero objects are isomorphic. [ ]

EXERCISES

7A. Determine the initial, terminal and zero objects (when they exist) of the
categories given in Examples 2.2 and 3.5.

7B. Prove that if X is a G-initial (resp. €-terminal, €-zero) object, then
homy(X, X) = {1y}

7C. LetXL, Abea %-morphism.
(a) Prove that if X is a terminal object, then fis a monomorphism.
(b) Prove that if € is connected and X is an initial object, then fis a monomorphism.
(c) Show that (b) is false if the condition that € is connected is deleted.

7D. Prove that if X is a €-initial object and Y is a €-terminal object, then the
following are equivalent:
(a) ¥ has a zero object.
(b) X and Y are isomorphic.
(©) homy (Y, X) # .
(d) € is connected.

7E. Let € be a category with an initial object. Prove that (f, g) is a mono-
morphism in the arrow category %2 if and only if both f and g are monomorphisms
in €. (Thus, for example, (/f, g) is a monomorphism in TopBun if and only if both
S and g are injective.)

§8 CONSTANT MORPHISMS, ZERO MORPHISMS,
AND POINTED CATEGORIES

8.1 MOTIVATING PROPOSITION
If f: A = B is a function from a non-empty set A to the set B, then the
Jollowing are equivalent :

(1) fis a constant function, i.e., f[A] is a singleton.
(2) For all sets C and for all functions r,s: C - A, for = fos,
(3) f can be “‘factored through’ a singleton set. []

8.2 DEFINITION
A ¢-morphism A4 2, Bis said to be

(1) A constant morphism in € (or a é-constant morphism) provided that for
each C € Ob(¥) and for all r, s € hom(C, A), for = fos.

(2) A coconstant morphism in ¥ (or a €-coconstant morphism) provided that
/ is a constant morphism in %°? (i.e., ““constant” and *‘coconstant” are dual
notions).
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(3) A zero morphism in € (or a ¥-zero morphism) provided that it is both a
%-constant morphism and a ¥-coconstant morphism.

8.3 EXAMPLES

(1) In Set or Top A 2L, B is a constant morphism if and only if 4 = & or
f[A] is a singleton. The only coconstants in these categories are functions with
empty domain; hence, these are the only zero morphisms.

(2) In Grp, R-Mod, Mon, LinTop, BanSp,, or BanSp,, 4 2L, Bis a constant
morphism (resp. coconstant morphism, zero morphism) if and only if f[A] is
the identity element of B.
(3) Let X and Y be distinct infinite sets, Ob(€) = {X, Y }, homyx(X, X) ={1},
homy(Y, Y) = {1}, hom(Y, X) = &, and homy(X, Y) = Y*. Then every
¢-morphism from X to Y is simultaneously a bimorphism and a zero morphism.
84 PROPOSITION

If f is a €-constant (resp. €-coconstant, €-zero) morphism, then whenever

the composition is defined, hofog is also a €-constant (resp. €-coconstant,
€-zero) morphism.

Proof: By duality we need only to give the proof for constants. If r and s
are ¢-morphisms with common domain such that g < r and g - s are defined,
then if fis constant, fo(gor) = fo(gos). Thus, (fofog)or = (hofog)os;
so that i fo gis a constant. []

8.5 PROPOSITION

Let AXs B be a G-morphism, and T be a €-terminal object. Then (1)
implies (2). If, furthermore, hom(T, A) # &, then (1) and (2) are equivalent.
(1) f can be factored through T.
(2) fis a constant morphism.

Proof: Suppose that A LB=aX T B r, s: C - A, then since
there is only one morphism from C to T, gor = gos. Hence, hogor =
hogos,sothat for = fos. Thus, fis a constant morphism. Let / be a constant
morphism and g € hom(T, A). Since T is a terminal object, there is a morphism
u: A = T. Because f'is a constant, we have

f=Joly=fo(geu)=(fog)ou

Thus, f can be factored through T. []
8.6 PROPOSITION

If [ is a €-morphism and X is a zero object for €, then the following are
equivalent :
(1) fis a zero morphism.
(2) fis a constant morphism.
(3) fis a coconstant morphism.
(4) [ can be factored through X.
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Proof: By definition, (1) is equivalent to ((2) and (3)). Also, since € has a
zero object, € is connected. Hence, since X is a terminal object, (2) is equivalent
to (4) (8.5). Likewise, since X is an initial object, (3) is equivalent to (4) (dual of
85). O
8.7 LEMMA

If f,9: A — B, where [ is a €-constant morphism, g is a €-coconstant
morphism and hom(B, A) # &, then f = g.

Proof: Let h: B — A. Then, by the definitions of constant and coconstant
morphisms

f=foly=folhog)=(foh)eg=1lgeg=9g [

8.8 THEOREM

In any category, €, the following are equivalent:
(1) For all A, B € Ob(€), homy(A, B) contains a zero morphism.
(2) For all A, B € Ob(¥), hom4(A, B) contains exactly one zero morphism.
(3) For all A, B € Ob(€), hom(A, B) contains exactly one constant morphism.
(4) For all A, B € Ob(€), hom (A, B) contains exactly one coconstant morphism.
(5) For all A, B € Ob(€), homy(A, B) contains at least one constant morphism
and at least one coconstant morphism.
(6) There exists a “‘choice function” selecting exactly one element out of each

set homy(A, B) such that the composition ( from the left or the right) of a selected

morphism with any morphism is again a selected morphism (if the composition
is defined).

Proof: We will show (1) = (2) = (6) = (5) = (3) = (1).
Since (1) is self-dual and (3) is dual to (4), this will imply that all of the conditions
are equivalent.

(1) = (2). Immediate from the lemma, since by (1), homy(B, A) # .

(2) = (6). Let the *selected” morphism be the unique zero morphism. By
Proposition 8.4, the composition of a zero morphism with any morphism is a
zero morphism.

(6) = (5). Let A L. B be the “selected” morphism, and let r,s: C — A.
Then f - rand f o s are “‘selected”” morphisms in hom,(C, A). By the uniqueness
of selection, fo r = fos. Hence, fis a constant morphism. By a dual argument,
[ is a coconstant morphism.

(5) = (3). Letf, g € hom(A, B)be constant morphisms. By (5), ¥ is connected
and there is a coconstant morphism /si: A — B. Hence, by the lemma, f = A
andg = h.

(3) = (I). Let f: A > B be a constant morphism. If Bé; C is a pair of

%-morphisms, then rof and s o f are constant morphisms from A4 to C and
consequently are identical. Hence, f is a coconstant and so is a zero mor-
phism. []
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8.9 DEFINITION
A category ¥ is said to be pointed provided that it satisfies one of the
equivalent conditions of Theorem 8.8.

8.10 PROPOSITION

(1) Every category which has a zero object is pointed.
(2) Every full subcategory of a pointed category is pointed. [ ]

As it turns out, the pointed categories are “‘essentially” the full subcategories of
categories with a zero object (see Exercise 12F).

8.1 EXAMPLES

(1) Grp, R-Mod, Mon, LinTop, pSet, pTop, and the category of infinite groups
are pointed.

(2) Set, Top, SGrp, POS, Lat, and the category of bipointed sets are not
pointed.

EXERCISES

8A. Show that in a concrete category €, every morphism that is a constant
function on the underlying sets is a constant morphism in ¢, but that the converse
need not be true.

8B. Prove that A L, B is a coconstant morphism in BooAlg if and only if f[4]
is a boolean algebra with one or two members.

8C. Suppose that A £, B %, C are -morphisms.
(a) Show that if g is a monomorphism and g - f is a constant morphism, then fis a
constant morphism.
(b) Show that if € is pointed, g is a monomorphism, and g - fis a zero morphism, then
/is a zero morphism,
(c) Form the duals of (a) and (b).

8D. Prove that in a connected category the following are equivalent:
(a) There exists a constant monomorphism with domain A.
(b) Every morphism with domain A is a constant monomorphism.
(¢) A is a terminal object.

8E. Let% be connected and Z 2, X f:," Y. Prove that if fand g are €-constant
morphisms such that / # g, then fo.1 # g -gh.

8F. Show that if X J, ¥ is a constant morphism in a connected category,
then there exists a unique constant morphism Y X, Y such that & » f=r

8G. Establish the fact that if € is a connected category and W, X, Y € Ob(¥),
then there exists a one-to-one correspondence between the collection of €-constant
morphisms in hom(3¥, V) and the collection of €-constant morphisms in hom (X, Y).

8H. Form the dual of Proposition 8.5.
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81. Prove that in a pointed category, the *choice function™ of 8.8(6) is uniquely
determined and that it selects exactly the zero morphisms.

8). If¢ is a pointed category, prove that the following are equivalent:
(a) A is a zero object for €.

(b) home(d, A) = {1,).

8K. Prove that “¥ is pointed” is a self-dual statement.
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