II

Categories

*The time has come,™ the Walrus said,
*To talk of many things:

Of shocs-and ships-and sealing-wax—
Of cabbages-and kings—""

Lewis CARROLLT

In this chapter, the general notion of a category is developed. Certain properties
of categories are introduced, as well as methods of obtaining new categories
from given ones.

§2 CONCRETE CATEGORIES

When deciding what a category ought to be, one should keep in mind the three
motivating examples from Chapter 1. That is, the notion of a category should be
sufficiently general to include as special cases:

(1) the class of all sets together with all functions between them,

(2) the class of all groups together with all homomorphisms between them,

(3) the class of all topological spaces together with all continuous functions
between them.

Keeping these examples in mind, one’s first vague notion of a category is that of a
class of structured sets together with a class of functions between these sets
which in some way preserve their structure. We now make this notion precise
by defining what is known as a “‘concrete category”. Later (§3), the more general
notion of ““abstract category”, will be introduced.

2.1 DEFINITION
A concrete category is a triple € = (¢, U, hom), where

(i) € is a class whose members are called ¢-objects;

tFrom Alice in Wonderland.
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14 Categories Chap. 111

(i) U: @ — % is a set-valued function,} where for each €-object 4, U(4)
is called the underlying set of A;

(iii) hom: @ x @ — % is a set-valued function, where for each pair (4, B)
of ©-objects, hom(A, B) is called the set of all €-morphisms with
domain 4 and codomain B;

such that the following conditions are satisfied:

(1) for each pair (4, B) of €-objects, hom(A, B) is a subset of the set U(B)V®
of all functions from U(A4) to U(B);

(2) for each €-object A, the identity function 1,4, on the set U(A) is a mem-
ber of hom(A, A);

(3) for cach triple (A4, B, C) of €-objects, f € hom(A, B) and g € hom(B, C)

6

implies that g < f € hom(A, C) (where “o”” denotes the composition of functions).

2.2 EXAMPLES OF CONCRETE CATEGORIES

(1) The category Set whose class of objects is the class % of all sets; U: # — ¥
is the identity function, i.e., U(4) = A for all 4e%; and for 4, Be ¥,
hom(A, B) is the set of all functions from A to B. Set is commonly called the
category of sets (1.2).

(2) The category Grp whose class of objects is the class of all groups. For any
group A, U(A) is the underlying set of A; and for groups 4 and B, hom(A, B)
is the set of all group homomorphisms from 4 to B. Grp is commonly called
the category of groups.

(3) The category Top whose class of objects is the class of all topological spaces;
for any topological space 4, U(A) is the underlying set of A, and for topological
spaces A and B, om(A4, B) is the set of all continuous functions from 4 to B.
Top is commonly called the category of topological spaces.

(4) For every ring R, the category R-Mod whose class of objects is the class of
all left R-modules; U(A) is the underlying set of A, and hom(A, B) is the set of all
module homomorphisms (i.e., R-linear transformations) from A4 to B. R-Mod is
commonly called the category of left R-modules.

(5) In a manner similar to that described above, one obtains the following
categories:

Mod-R—right R-modules and module homomorphisms;

POS—partially ordered sets and monotone functions;

Lat—Ilattices and lattice homomorphisms;

BooAlg—boolcan algebras and boolean homomorphisms;

Ab—abelian groups and group homomorphisms;

SGrp—semigroups and semigroup homomorphisms;

Mon—monoids (i.e., semigroups with identity) and identity-preserving
semigroup homomorphisms;

1 Recall that 77 is the class ol all sets (1.2).
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Rag—ringst and ring homomorphisms;
Field—fieldstt and field homomorphisms;
R-Alg—R-algebras and R-algebra homomorphisms (where R is a commuta-
tive ring):
Top,—Hausdorff spaces and continuous functions;
CRegT,—completely regular Hausdorfl spaces and continuous functions;
CompT,—compact HausdorfT spaces and continuous functions;
TopGrp—topological groups and continuous homomorphisins;
LinTop—Ilinear topological Hausdorfl spaces and continuous linear
transformations;
NLinSp—normed linear spaces and bounded (= continuous) lincar
transformations;
BanSp,—complex Banach spaces and bounded linear transformations:
BanSp,—complex Banach spaces and norm-decreasing linear trans-
formations;
CBanAlg—commutative complex Banach algebras (with unit) and norm-
decreasing algebra homomorphisms:
C*-Alg—commutative complex Banach algebras with involution =
satisfying flasal = [lajj?, and norm-decreasing, involution-preserving algebra
homomorphisms.
(6) The category of sets and injective (resp. surjective, bijective) functions, whose
class of ohjects is . U: # — ¥ is the identity function, and /lom(A, B) is the
set of all injective (resp. surjective, bijective) functions from A to B.
(7) The category of topological spaces and open functions. whose objects are
topological spaces, where, for spaces 4 and B, hom(A, B) is the set of all open
functions from 4 to B.
(8) The category pSet, the objects of which are all pairs of the form (A, a)
where 4 is a set and a € A; U((A, a)) = A and

hom((A, a), (B, D) = {f|[: A - B and fla) = b).

pSet is commonly called the category of sets with base point or the category of
pointed sets. Similarly, onc obtains pTep, the category of pointed topological
spaces, and the category of bi-pointed sets whose objects are triples (A, gq4. @)
where a,. @, € A and morphisms preserve both distinguished elements: i.e.,
flag) = by and fla)) = b,.

§3 ABSTRACT CATEGORIES

Just as it 1s useful 10 study abstract groups rather than transformation groups
or abstract topological spaces rather than metric spaces, so (oo it is often
desirable 10 study mathematical structures which are somewhat more general
than concrete categonies.  For example, we  will Jater consider certain

t In this book, all rings have identities, and ring homomorphisms preserve the identities.
t+ For liclds, we always require that ¢ 2 1.
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constructions which are useful tools for the investigation of categories and
which, when applied to (concrete) categories, yield entities that are similar to,
but more general than, concrete categories. They will be categories, however, if
we slightly broaden the definition of concrete category so as to no longer require
that morphisms be functions or that the composition law be composition of
functions.

First Definition of Category

3.1 DEFINITION
A category is a quintuple € = (0, .#, dom, cod, <) where

(i) € is a class whose members are called €-objects,
(ii) .# is a class whose members are called ¢-morphisms,
(iii) dom and cod are functions from .# to @ (dom(f) is called the domain
of fand cod(f) is called the codomain of f),
(iv) o is a function from

D = {(f,9)| f, g € # and dom(f) = cod(g)}

into .#, called the composition law of € (c(/, ¢) is usually written fo g
and we say that f o g is defined if, and only if, (/, g) € D),
such that the following conditions are satisfied :

(1) Matching Condition: If fog is defined, then dom(f°g) = dom(g) and
cod(f>g) = cod(f);

(2) Associativity Condition: If fog and hof are defined, then ho(fog) =
(hof)eg:

(3) Identity Existence Condition: For each %-object A there exists a
%¢-morphism ¢ such that dom(e) = A = cod(e) and

(a) foe = fwhenever f- e is defined, and
(b) e o g = g whenever e - g is defined;

(4) Smallness of Morphism Class Condition: For any pair (A. B) of %-
objects, the class

home(A, B) = {f|fe.#, dom(f) = A and cod(f) = B}
is a set.

For a given category, €. the class of %-objects will be denoted by Ob(%),
whereas, Mor(%) will stand for the class of €-morphisms. Morphisms will
usually be denoted by lower-case letters, with upper-case letters being reserved
for objects. Also, instead of homy(A, B), we often write rom(A, B) when no
confusion seems likely.

Although ¥-morphisms no longer need to be functions, we will continue to use
the notations: f € hom(A, B), A L B, and f: A — B, interchangeably. Likewise,
the composition law will usually be denoted by o, and we will sometimes use
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AL B2, C 10 denote the composition g o J- Thus, the statement that the
triangle

S/
A—8

g

commutes, is equivalent to the statement that 1/ = g < f or the statement that

AL B L =42 C. When morphisms f and g exist such that the above
triangle commutes, we say that /i factors through B. Similarly, the statement
that the square

S

A———B
h 9
TP

commutes, means that g o f = k o h. This order of writing the composition of
morphisms may sometimes seem to be backwards. However, it comes from
the fact that in many of the important examples (e.g., all concrete categories), the
composition law is the composition law for functions. Notice that because of the

. e . o . h . .
associativity of composition, the notation A LB pis unambiguous.

3.2 PROPOSITION

Let € be a category and A be a €-object. Then there exists exactly one
6-morphism e: A — A satisfying the properties 3(a) and 3(b) of Definition 3.1;
i.e., such that

(a) f - e = f, whenever f < ¢ is defined, and
(b) e o g = g, whenever e - g is defined.

Proof: Suppose that each of e and é is such a morphism. Then by (a),
éce=¢éand by (b),é-e = ¢:hence,e = é. [ ]

3.3 DEFINITION
For each object A of a category €, the unique ¢-morphism e: 4 —» A
satisfying (a) and (b) above is denoted by |, and is called the ¢-identity of A.F

3.4 DEFINITION
A category ¥ is said to be:

(1) small provided that % is a set;
(2) discrete provided that all of its morphisms arc identities;

t Occasionally (when the domain is well-known or unimportant) an identity is denoted
merely by 1.
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(3) connected provided that for each pair (A4, B) of %-objects,
homy(A, B) # .

Before a list of examples of categories is given, it should be pointed out
that a category ¥ = (O, .#, dom, cod, °) is usually presented in the form
(@, (hom(A, B))4 pyce x e» ©)- Note that if one is given the latter form for €, then
the original form can easily be recovered by letting .# be the disjoint union of the
morphism sets and by defining dom: .# — @ and cod: .« — C as follows:

dom(f) = the unique object A such that for some B, fe hom(A, B);
cod(f) = the unique object B such that for some A, fe€ hom(A, B).

Actually, categories could be defined in general by means of object classes ¢,
the families
(hom(A, B))upyce x ¢

of morphism sets, and the composition laws. If this is done, however, the
morphism sets must be required to be pairwise disjoint, for otherwise a mor-
phism would not necessarily have a unique domain and a unique codomain.
(Whether or not a given morphism f would be an identity might then depend
upon not falone, but also upon the chosen domain and cedomain of f.) However,
if such a triple

(0, (hom(A, B))4pyce x e+ °)

fails to be a category only because its morphism sets are not pairwise disjoint,
then the difficulty can easily be overcome by replacing each set om(A4, B) by
a set

hom(A, B) = {(A, f, B) | f € hom(A, B)}.

This *“disjointifying trick™ should be applied in several of the examples below as
well as in some constructions later on. Since the trick is “'standard™, the reader
will be expected to apply it himself, whenever its use is appropriate.

3.5 EXAMPLES OF ABSTRACT CATEGORIES

(1) The category naturally associated with any given concrete category
¢ = (0, U, hom): whose class of objects is ¢'; whose morphism sets homy(A, B)
are the sets fom(A, B); and whose composition law is the usual composition of
functions.t From now on if no confusion seems likely, we will not distinguish
between a given concrete category and the category naturally associated with it.
(2) The category of sets and relations: whose class of objects is the class of all
scts: whose morphisms sets hom(A, B) are the sets of all relations from A to B;
and whose composition law is the usual composition of relations.

(3) The category of topological bundles, TopBun: whose class of objects consists

+ Notice that for many concrete categories (¢.g., Top and Grp), the morphism sets iom(A, B)
arc not pairwise disjoint. Thus, the “trick’ mentioned above should be applied in these cases.
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of all triples (X, p, B) where X and B are topological spaces and p: X — Bisa
continuous map. The morphisms from (X, p, B) to (X’, p’, B') consist of all
pairs of the form (r, s) where r: X — X’ and s: B — B’ are continuous maps
and p' o r = 5 o p. For each topological space B there is an associated category
TopBung of all topological bundles with base space B, whose object class consists
of all pairs (X, p) where p: X — B is continuous. Morphisms in this category
from (X, p) to (X', p’) are all those continucus maps r: X - X' for which
p=p-r

(4) For a given commutative ring R, the category of R-matrices: whose objects
are the positive integers; and where each morphism set ilom(m, n) is the set of
all # x m matrices with coefficients in R. Composition is the usual multiplication
of matrices.

(5) A chain complex of abelian groups is a family (G;, d});.; indexed by the
integers Z such that for each i€ Z, G; is an abelian group, Gii) G,_, is
a morphism in Ab, and d;_,+d; = 0. The class of all chain complexes of
abelian groups is the object class of a category €. A €-morphism f from the
chain complex (G;, d,);.z to the chain complex (G}, d});.7 is an indexed family
S = (f)iez such thatforeachie Z, G; L, G is a morphism in Ab and the square

l,
G, ——G

i=1
v

G 6
[{

fia

[
i=1

commutes.

Composition is defined in the obvious way: i.e., (/)< (g;) = (fi°g)
% is commonly called the category of chain complexes of abelian groups.
(6) If (4, <) is a quasi-ordered class (i.e., a class ¥ with a reflexive, transitive
relation < on %), then (%, <) gives rise to a category ¥ whose objects are the
elements of ¥ and such that a morphism set homy(A, B) contains exactly one
element if 4 < B, and is empty otherwise. Conversely, any category € with
the property that each morphism set slom(A, B) contains at most one member
can be obtained in this way. By abuse of the language, we also call these
categorics quasi-ordered classes. Likewise a category € is called a partially-
ordered class (resp. totally-ordered class) if and only if for each pair (A, B) of
€-objects homy(A, B) v hom,(B, A) contains at most (resp. exactly) one
member.
(7) If Gis any monoid (i.e., semigroup with identity), then G can be regarded as a
category with exactly one object, where the morphisms are precisely the members
of G, and the composition law is the semigroup composition operation. Con-
versely, any category having exactly one object can be regarded as a monoid.
(8) If a category has only a few morphisms, it is sometimes expressed in terms
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of a diagram that shows all of the objects as dots and the non-identity morphisms
as arrows. Thus

.e ——
and
cE———x

can be considered to be categories, but

neither

can be categories. (Why?)

(9) For each natural number », the set {0, 1, 2,..., n — 1} supplied with the
usual order can be considered (according to (6) above) to be a category n. Thus,
we have the special small categories:

0 = The empty category
1= -
= Qe—>1

3 = 0-—-).1

Ny

2

4=00—>2]

\2.7

|

3
ete.

It is interesting to observe that for each of the abstract categories ¥ given above,
there is some concrete category € such that the category naturally associated
with 2 (3.5(1)) is “isomorphic” with €. Such categories are called concretizable.
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(The relationship between concrete categories and concretizable categories is
roughly analogous to that between metric spaces and metrizable spaces.)
Most of the abstract categories that we will consider will be concretizable.
Indeed it is somewhat difficult to exhibit an example of a category that is not
concretizable (see Exercise 12L).

A Second Definition of Category

Because of the one-to-one correspondence A4 « I, between €-objects and
€-identity morphisms in any category ¢, we will be able below to provide an
*“object-free” definition of category which is equivalent to our earlier definition.

3.6 PROPOSITION (CHARACTERIZATION OF IDENTITIES)
For any morphism e of a category €, the following are equivalen: :

(1) e is a C-identity;
(2) fo e = fwhenever f - e is defined;
(3) e o g = g whenever e o g is defined.

Proof: By the definition of ¥-identity, (1) implies (2) and (3). Suppose that
(2) is true. By the definition of category, we know the existence of an identity
h: cod(e) - cod(e). Hence, by (2) and the fact that /4 is an identity, we have

e=hce = h.
Thus, (2) implies (1). Similarly (3) implies (1). [J

3.7 DEFINITION

A partial operation on a class .# is a function ¢ from a subset of .# x .#
into .#. a(g, f) isusuallydenoted by gaf. e € .# iscalled an identity with respect
to the operation provided that for all g € .#, whenever (g, €) is in the domain
of o (i.e.. whenever goe is defined) goe = ¢ and whenever eag is defined,
ecg = g.
Notice that for any category ¢ = (€, .#, dom, cod, <), the composition law o
is a partial operation on ./ and (by 3.6) the %-identities are precisely the
identities of .# with respect to <.

3.8 SECOND DEFINITION OF CATEGORY

A category is a pair (.#, <) where .# is a class and o is a partial operation
on .# satifying the following conditions:
(1) Matching Condition: For all f, g, he .#, if f- g and g < h are defined, then
S (g o h)is defined and (f - g) < & is defined.
(2) Associativity Condition: For all f, g, h € .#, [+ (g - /) is defined if and only
if (fog) e his defined, and when they are defined, they are equal.
(3) Identity Existence Condition: For every fe .#, there exist morphisms e
and e, which are identities with respect to o such that eco fand f - ¢, are defined.t

t Observe that (2) and (3) together imply that the identities of (3) are unique.
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(4) Smallness of Morphism Class Condition: For all identities ¢, and ¢, in .#,
the class

{fef|eof and foe;, are defined}
is a set.

The two definitions of a category are equivalent in the following sense: if
(0, ., dom, cod, °) is a category according to the first definition, then (.#, o)
is a category according to the second definition, and if (.#, <) is a category
according to the second definition, then there exists an “‘essentially unique”
category according to the first definition whose morphism class is .# and whose
composition law is o (see Exercise 3H). Here “essentially unique’ means that
any two categories satisfying the property are isomorphic in the sense of §14.
Because it seems closer to the motivating examples (and thus closer to one’s
intuition), the first definition of category will be used most often in the sequel.
However, since it can sometimes simplify matters, we will reserve the right to
use the alternate definition (3.8) when it seems appropriate. Also, from now on,
when the symbol f o g is written, it will usually mean that the composition makes
sense (i.e., dom(f) = cod(g) or “f o g is defined”) as well as standing for the
result of the composition.

EXERCISES

3A. Dectermine which of the following can be considered as categories and
which cannot:

@ - b) —e— .
() F——- (d) +—>
N/ I
¢ ————>e

SRS R —

AN I

* N~

(® 'g' (h) o—>e —.

3B. Show that there is essentially only one way to define compositions so that
8 N
V

will be a category.
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3C. Determine which of the categories of 2.2, 3.5, and 3A are small, which are
discrete, and which are connected.

3D. Prove that a category % is discrete if and only if for all 4, B € Ob%),

hom(A, B) = ’ﬂ .lf A4=# 8B
|1 a) if A= B.

3E. Determine all of the categories that are both connected and discrete.

3F. Let € = (0, .4, dom, cod, -) be a category. Prove that the following
statements are equivalent:

(a) € is small.
(b) O is a set.
(c) A is a set.
(d) dom is a set.
(¢) codis a set.
(f) o is a set.

3G. Give an example of a small category whose class of objects is not finite.

3H. Prove that if (0, .#, dom, cod, >) is a category according to Definition 3.1,
then (.#, <) is a category according to Definition 3.8, and if (.#, <) is a category
according to 3.8, then there exist functions dom and cod such that (&, .#, dom, cod, °)
is a category according to 3.1 (where & denotes the class of all identities with respect
to o).

3I. Let 4 be a set together with a binary operation o, Prove that (.#, o) is a
group if and only if it is a category (according to Definition 3.8) with exactly one
identity e such that for every €-morphism f, there exists a ¥-morphism g such that
gef=ce

3J. Show that the words ““and (f<g) - 4 is defined’” can be deleted from the
Matching Condition (3.8(1)) without changing the definition of category.

3K. Show that if A and B are distinct objects of a category €, then homy(A, B)
contains no identity morphisms (in the sense of 3.7).

3L. Construct two different categories ¢ and < such that the object class, the

morphism class, and the domain and codomain functions of % are the same as those
of &.

§4 NEW CATEGORIES FROM OLD

Subcategories

4.1 DEFINITION
A category 4 is said to be a subcategory of the category ¥ provided that
the following conditions are satisfied:
(1) Ob(#) = Ob(6).
(2) Mor(%) < Mor(%).
(3) The domain, codomain and composition functions of .# are restrictions of
the corresponding functions of €.
(4) Every #-identity is a €-identity.
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Notice that conditions (2) and (3) imply that for each pair (A4, B) of #-objects
homg(A, B) c hom(A, B).

Also observe that condition (4) does not follow from the other conditionst
(see Exercise 4B).

4.2 DEFINITION
A subcategory @ of a category ¢ is said to be a full subcategory of ¢
provided that for all A, B € O(#), homy(A, B) = homy(A, B).

4.3 EXAMPLES

(1) Each category is a full subcategory of itself.

(2) The category of finite sets is a full subcategory of Set.

(3) The category of sets and injective (resp. surjective, bijective) functions is a
subcategory of Set that is not full.

(4) The category of sets and relations is not a subcategory of Set.

(5) BooAlg is a subcategory of Lat and Lat is a subcategory of POS.{1 Neither
is full.

(6) Ab is a full subcategory of Grp, Grp is a full subcategory of Mon, and Mon
is a subcategory of SGrp, which is not full.

(7) BanSp, is a subcategory of BanSp,, which is not full, BanSp, is a full
subcategory of NLinSp, but NLinSp is not a subcategory of LinTop.

(8) None of the categories Grp, Top, pSet, POS, or Lat is a subcategory of Set.
(Why not?) [However, it is true that each concretizable category is *“‘isomorphic”
with some subcategory of Set (14.2(10)).]

Quotient Categories

4.4 DEFINITION
An equivalence relation ~ on the class of morphisms of a category ¢ is
called a congruence on ¥ provided that:

(1) every equivalence class under ~ is contained in hom(A, B) for some
A, B e Ob(%), and
(2) whenever f ~ f" and g ~ ¢’ it follows that g - f ~ g’ < f*, (whenever the
compositions are meaningful).
4.5 PROPOSITION

If ~ is a congruence on a category €, then the class & of equivalence classes
of morphisms together with the composition law 3 defined by :

R
gif=9°s
(where § denotes the equivalence class of g under ~) is a category (in the sense of
Definition 3.8). []

+ If we (as some authors do) would identify cach object A of a category with the corresponding
identity morphism 14, then conditions (1) and (4) would obviously be equivalent.

++ A caviling person might say that this is false (only because he has a different definition of
boolean algebras or of lattices).
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4.6 DEFINITION

If ~ is a congruence on a category 46, then the category (2, 5) described
above is called the quotient category of 6 with respect to ~, and is denoted by
€/~.

Observe that every quotient category of a category € has essentially the same
objects as €; in particular, a quotient category does not result when different
objects are identified by an equivalence relation.

4.7 EXAMPLES

(1) If € is a category and ~ is defined by: f ~g if and only if dom(f) = dom(g)
and cod(f) = cod(g), then €/~ is a quasi-ordered class (in the sense of
Example 3.5(6)).

(2) Let ¥ = Top and for all A, B e Ob(%¥) and f, g € hom(A, B) let f ~ g if
and only if f is homotopic to g. Then €/~ is called the homotopy category of
topological spaces and is denoted by hTop.

(3) If in the above example ¥ = pTop, and if / ~ g means that there is a base-
point-preserving homotopy between f and g, then €/~ is called the homotopy
category of topological spaces with base point.

(4) Let € = Grp and for all A, Be Obi6) and f, g € hom(A, B) let f ~ g if and
only if there is some b € B such that f(a) = bg(a)b™! for all a € A. Then €/~
is called the category of groups and conjugacy classes of homomorphisms.

Recall that we broadened the concept of categorics from concrete ones to
abstract ones mainly because some natural constructions applied to concrete
(resp. concretizable) categories yield *‘categories” that are not necessarily
concretizable. This is true for quotients. For example, Freyd has shown that
even though Top is concretizable, the quotient category hTop is not. Even more
surprising is the fact (due to Kucera) that every (abstract) category is actually
(isomorphic to) the quotient category of some suitable concretizable category.

Products of Categories

It happens occasionally that one wishes to consider pairs of objects and pairs
of morphisms from two given categories as the objects and morphisms of a new
category. Below it is seen that such a category can indeed be obtained.

4.8 DEFINITION
If6,,%,,...,%,are categorics, then the product of the morphism classes

Mor%, x Mor%. x ---x Mor%,
together with the composition operation defined by:

(SirSose o 3 D)o (GraGan oo W =g S G S )

(i.e., whenever the right side is defined (and only then), the left side is defined
and the two sides are equal) is called the product category of 4, €,,.... %, and
is denoted by

by x €y x X 6
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4.9 PROPOSITION
Every product category of categories is a category (in the sense of Definition

3.8). O
Sums of Categories

4.10 DEFINITION
If€,, €,,...,%,are categories, then the disjoint uniont of the morphism
classes

Mor €, & Mor€, &+ & Mor %,

together with the composition operation defined by:
;i) (g,)) = (fog,i) ifandonlyif i=j
is called the sum category of ¢,, ¥, ..., €, and is denoted by
¢, He,U---1%¢,.

4.11 PROPOSITION
Every sum category of categories is a category. []

Opposite Categories

4.12 DEFINITION

For any category € = (0, ., dom, cod, -), the opposite (or dual) category
of € is the category €° = (0, .#, cod, dom, =), where » is defined by f+ g =
g o f. (Thus, € and %°? have the same objects and morphisms, but the domain
and codomain functions are switched and the composition laws are the “oppo-
sites” of each other.)

4.13 PROPOSITION
The opposite category of any category is a category. ]

4.14 PROPOSITION
For any category €, (€°%)? = €. ]

4.15 THE DUALITY PRINCIPLE

The last proposition allows one to define for any *‘categorical concept” an
opposite or dual concept and for any *“‘categorical statement™ a dual statement.
We will not bother to explicitly define what categorical concepts and statements
arc. However, we will give an idea of dual concepts by means of examples. If P
is a property concerning morphisms and objects of a category %, the dual
property P°F is, roughly speaking, the corresponding property of $°7 phrased

1 The disjoint union
AlO Ao A,
of a family (4., A2, ..., Aa) of classes is the class

(Ar x {IHU A2 x 2D UV (4 x {n}.
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as a property of % ; in other words, the property obtained from P by reversing all
arrows.

Take for example the following property P(X) of an object X in €:
For any object Y of € there exists exactly one G-morphism f: Y — X.
The corresponding property for €°? would be:

For any object Y of 6°F there exists exactly one €*P-morphism Y - X.
Translating this into a property for ¢, we obtain P°P(X):
For any object Y of € there exists exactly one €-morphism - X - Y.

In the category Set, for example, the above property P(X) holds if and only
if X is a singleton set and P°?(X) holds if and only if X is the empty set. Quite
often, the dual concept P°? of a concept P is denoted by *‘co-P” (cf. constants
and coconstants (§8), separators and coseparators (§12), equalizers and co-
equalizers (§16), and products and coproducts (§18)).

A concept P is called self-dual if P = P°P. What makes duality so interesting
and important is the fact that one can “dualize” not only concepts, but also
statements. If S is a statement concerning the morphisms and objects of a
category, then by definition, the dual statement S$°7 holds in € if and only if S
holds in €°7. This, together with the fact that € = (¢°*)°", immediately implies
the so-called ‘“‘duality principle for categories™:

If S is a categorical statement which holds for all categories, then S°? also holds
Jor all categories.

We will have numerous occasions to use this principle.

Arrow Categories and Triangle Categories

4.16 DEFINITION
If € is any category, then the arrow category for € (denoted by €?) is the
category whose class of objects is precisely the class of morphisms of € and for

whlch a €*-morphism from A L. Bloa LS Bisa pair (a, b) where 4 = A’,
B2 B are %-morphisms such that the square

al lh
. ) ,
A'—B

commultes.
Composition in €2 is defined by:
(@,b)(a,b) =(a-a,bb);

i.e., by pasting the squares together and forgetting the middle arrow.
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4.17 DEFINITION

If € is any category, then the triangle category for € (denoted by %) is
the category whose class of objects is precisely the class of commutative triangles
of ¢ and for which a %’-morphism from

A ——>B’

\/ N, /-

is an ordered triple (a, b, ¢), where A = A4 B B, and CS C' are
@-morphisms such that each square in the diagram

N

<——>B,
commutes.

Composition in €? is defined by:
@ b,28)c(a, b c)=(doa,bob, 200);
i.e., by pasting prisms together and forgetting the middle face.

Arrow categories and triangle categories are both special cases of the
important and useful concept of “functor categories”, which will be defined
in §15.

Comma Categories

4.18 DEFINITION

If € is any category and A € Ob(%), then the comma category of A over ¥ is
the category (A4, €) whose objects are those ¥-morphisms that have domain A4,
and whose morphisms from A4 LB to 4L B are those %-morphisms
g: B = B’ for which the triangle

A
/ Xr
b ¥

commutes.
Composition in (A4, €) is defined according to the composition in €.
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4.19 DEFINITION

If € is any category and A € Ob(%¥), then the comma category of € over A is
the category (¢, A) whose objects are those (K-morphisms which have codomain
A, and whose morphisms from BLs 410 B’ LS 4 are those ¢-morphisms
g: B — B’ for which the triangle

B—> B

commutes.

Composition in (€, A) is defined according to the composition in €.

EXERCISES

4A. Prove that if € is a category with exactly one object (i.e., if € is a monoid
(Example 3.5(7))), then & is a subcategory of ¥ if and only if & is a submonoid of
€ or 2 is the empty category.

4B. Let ¥ be a category with exactly one object A and morphism set
homy(A, A) = {a, b}, where composition is defined by: aca = a; ach = boa =
beb = b. Let # also be a category with exactly one object 4 and morphism set
homg(A, A) = {b}, where composition is defined by: b b = b. Determine whether
or not & is a subcategory of ©.

4C. Show that in the definition of subcategory, the condition that every identity
of & is an identity of € (4.1(4)) can be replaced by:

“For any $-object B, the identity in € associated with B is a Z-morphism.”

4D. Prove that:
(a) if @ is a subcategory of ¥, and ¥ is a subcategory of 8, then & = €.
(b) if B is a (full) subcategory of €, and € is a (full) subcategory of 2, then & is a
(full) subcategory of 2.

4E. Show thatifof is a quotient category of & and 4 is a quotient category of €,
then o can be regarded as a quotient category of €.

4F. Show that if ~ is a congruence on & and & is a full subcategory of &,
then ~ induces a congruence ~ ,, on & such that &//~ _, is a subcategory of &/~ .

4G. Prove that every category has a quotient category which is a quasi-ordered
class (in the sense of 3.5(6)).

4H. Let (%) bea set-indexed family of small categories. Prove that the product
of the morphism classes IT(Mor €,);; together with the composition operation defined
by:
n(Fe G) = (m;F) o (n,G)

is a category in the sense of Definition 3.8.
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41. For any categories ¢, and €,, show that
Ob(€, x 6>) = Ob(¥,) x OKE,)
and that if A,, B, € Ob(€,) and A,, B, € 0b(%,), then
homg, x¢,[(Ay, A2), (By, By)] = homy (Ay, B,) x homy (A3, B,).
4J). Show that if &; is a (full) subcategory of €, forcach i = 1, 2, ..., n, then
oy x oy x -0 x o,

is a (full) subcategory of €, x €5 x +-- x G,
4K. Prove thatif s/, &, s, and £’ are non-empty categories, then the product
categoriessf x B and sy’ x B areequalifand only if o/ = o/’ and B = &".
4L. Let (€,))ic; be a family of categories. Prove that the disjoint union of the
morphism classes
I (Mor €},
iel
together with the same composition operaiion as that given in 4.10, is a category in
the sense of Definition 3.8.

4M. Show that if &/, is a (full) subcategory of &, foreachi = 1, 2,..., n, then

S, Ut - 1A,
is a (full) subcategory of
g U6 U---U%,.

4N. Show that for each category €, homy(A, B) = homoy(B, A).

40. Form the duals of the following statements and determine which of them
are self-dual.

(a) € is connected.

(b) ¥ is a quasi-ordered class (in the sense of 3.5(6)).

(c) ¥ is a partially-ordered class.

(d) € is a totally-ordered class.

() € is a monoid (in the sense of 3.5(7)).

(f) € is a group.

(g) f'€ Mor € and therc is some g € Mor € such that g o fis an identity.

(h) f € Mor € and for all g, h € Mor € such that fo g and f /rare defined, fo g = fo h.

4P. Show that each condition of the second definition of category (3.8) is
self-dual.

4Q. Establish the following consequence of the duality principle:

If S is a categorical statement, then S holds for all categories satisfying property P
if and only if $° holds for all categories satisfying PP,

4R. Show that every category € can be considered to be a full subcategory of
%2, €2 can be considered to be a full subcategory of €3, and for each A € Ob(%),
(A, €) and (¥, A) can be considered to be subcategories of ¥2.
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4S. Show that the following pairs of categories are “*essentially the same”,
[This sort of “‘essential sameness™ will be defined more precisely later (cf. 14.1)].
(2) TopBun and the arrow category Top?;
(b) TopBung and the comma category (Top, B) (for any topological space B);
(c) pTop and (P, Top) (for any singleton space P);
(d) pSet and (P, Set) (for any singleton set P);
(e) The category of bi-pointed sets and (A, Set) (for any set A consisting of exactly
two elements).
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