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Pointed Categories

Virtually all algebraic notions in category theory are parodies of their parents in
the most “‘classical’ of categorics . . . the category of left A-modules.

H. Basst

The categories R-Mod (for various rings R) are without doubt the most
thoroughly investigated categories. Because of their nice properties, they provide
a useful tool for the study of other categorics as well. For example, algebraic
topology is essentially the study of topology by means of functors (homology,
cohomology, higher homotopy) from topological categories into categories of
R-modules. The reason that the categories R-Meod are so nice is surprisingly
simple. Besides the fact that they are (considered as concrete categories) finitary
algebraic (as are many other more complicated categories such as SGrp and
Mon), they are distinguished by the fact that they have finite “biproducts™;
i.e., finite products and finite coproducts whose corresponding object parts
coincide, and that they are (normal epi. normal mono) categories. (This latter
condition allows onc to definc the extremely uscful concept of “‘exact sequences™.)
In addition, for the categories R-Mad, each morphism set hom(A, B) can be
uniquely supplied with the structure of an abelian group in such a way that
morphism composition acts distributively on the left and on the right with respect
to the group addition. As we will see, the categorical properties mentioned above
are not independent. For example, the existence of a group structure on the
morphism sets is closely related to the existence of finite biproducts. The
relationship among the above properties will be studied in this chapter.
Categories of R-modules will be characterized and those categories that behave
“locally™ like categories of R-modules (called abelian categories) will be
ntroduced.

¥ From The Morita Theorems.
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As the title of this chapter indicates we will assume throughout it that
each category is non-empty and pointed. The zero morphisms will
usually be denoted by O (as will the zero objects, when they occur).

§39 NORMAL AND EXACT CATEGORIES

In this section we will investigate the question of when a pointed category
has especially nice factorization propertics. This will be seen to occur precisely
when the category is “‘exact” (Theorem 39.17).

Exact Categories

We begin by restating some results which have essentially already been
established (see 16B, 16L, and 27R).

39.1 PROPOSITION
If f: A > B is a monomorphism and k: K — A is any morphism, then the
Jollowing are equivalent :

(1) (K, k) = Ker(f).
(2) K is a zero object, 0. []

39.2 COROLLARY
Each category that has kernels or cokernels also has a zero object, 0. [}

393 PROPOSITION
Let f+ A — B be an s/-morphism and m: B — C be a monomorphism in /.
Then:

(D) (K, k) = Ker(f) if and only if (K, k) = Ker(mof).
@) Ker(Ker())) =0. O

39.4 PROPOSITION

Let A be an object of the category s/ that has kernels and cokernels. Let of
(resp. 2) be the quasi-ordered class of all subobjects (resp. quotient objects) of A.
Let G: of - 2 be the map that sends each subobject (S, m) of A to Cok(m), and
let F: 2 = of be the map which sends each quotient object (g, Q) of A to Ker(q).
Then (£, 2, G, F) is a Galois correspondence (see 27Q). [

395 COROLLARY
If o/ has kernels and cokernels, then

(1) For each sf-morphism f, Ker(f) = Ker(Cok(Ker(f))) and Cok(f} =
Cok{Ker(Cok(f))).

Q) An sf-morphism f is a normal monomorphism if and only if f = Ker(Cok(f)).
() An sZ-morphism f is a normal epimorphism if and only if f = Cok(Ker(f)).
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(4) For each sf-object A, the quasi-ordered class of all normal subobjects of A
is anti-isomorphic with the quasi-ordered class of all normal quotient objects

of A. []

39.6 DEFINITION
A category is called:

(1) normal provided that it has kernels and cokernels, is (epi, mono)-factor-
izable, and each of its monomorphisms is a normal monomorphism.
(2) conormal provided that it has kemels and cokernels, is (epi, mono)-
factorizable, and each of its epimorphisms is a normal epimorphism.

(3) exact provided that it is both normal and conormal.

Note that since for categorics normality and conormality are notions which
are duals of each other, exactness is a self-dual concept.

It should be pointed out that a category with kernels and cokernels that
has the property that cach monomorphism is a normal monomorphism and
each epimorphism is a normal epimorphism need not be exact (see Exercise 39B).
However, in case that the category also has equalizers or coequalizers, it must be
exact (see Proposition 39.19).

39.7 EXAMPLES
In the following table 4" means that the category has the property in
question and *‘—" means that it does not have it.

Category Normal Conormal
(1) R-Mod + +
(2) Grp - +
(3) pSet + -
(4) Mon - -

(5) The full subcategory of pTop consisting of all pointed compact Hausdorff
spaces is normal but not conormal.
(6) The full subcategory of Ab consisting of all abelian groups whose underlying
set has at most 27 elements is exact.

Notice that each of the categories (1), (2), (3), and (5) above has the
property that in it cach monomorphism is a regular monomorphism and each
cpimorphism is a regular epimorphism.

39.8 PROPOSITION
If & has kernels. then each pair of normal subobjects of any s/-object has an
intersection.
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Proof: If (4, m) and (B, n) are normal subobjects of C, then (4, m) =
Ker(f) for some morphism f. Let (D, ii) & Ker(f o n). Then there exists a unique
morphism iii: D — A such that the square

m
D——4

l 1,,,

B——c¢

commutes. The above square is a pullback square since if r and s are morphisms
such that mer = nos, then fonos = fomor = 0, so that there is a unique
morphism k such that s = i k. Thus (D, ne i) is an intersection of (4, m)
and (B, n). [

39.9 PROPOSITION
Every normal category has a zero object and has finite intersections.

Proof: Immediate from Corollary 39.2 and the above proposition (39.8). [

39.10 PROPOSITION

If of is exact, then for each s/-object A the quasi-ordered classes of all
subobjects and of all quotient objects of A are (up to equivalence) anti-isomorphic
laitices (possibly on a class) with smallest and largest members.

Proof: By Proposition 39.8, the class o/ of all subobjects of A has finite
infima (= intersections), and by its dual, the class of all quotient objects of A,
has finite infima (= cointersections). Thus since ~fand 2 are anti-isomorphic as
quasi-ordered classes (39.5(4)), 2 and o/ each must have finite suprema. [

39.11 COROLLARY

(1) An exact category is well-powered if and only if it is co-(well-powered).
(2) Erery concretizable exact category is well-powered and co-(well-powered).

Proof: Each concretizable category is regular co-(well-powered) (16N). [

Next we wish to demonstrate that exact categories are distinguished by
especially nice factorization properties. This will later enable us to define exact
sequences. For this purpose, consider first the category Grp that is conormal
but not normal. Here each morphism has a unique (normal epi, mono)-
factorization, f = m o g. Moreover g can be chosen as Cok(Ker(f)). Also the
congruence relation of f'is completely determined by Ker(f), and the question of
whether or not f is a monomorphism can be decided by knowing only Ker(f).
All of these facts are consequences of the fact that Grp is conormal. Indeed, it
can be shown that under certain conditions on a category &/, these are all
equivalent to each other and to the fact that & is conormal (see Theorem 39.13
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and Exercise 39C). In fact, the exact categories will be shown to be precisely the
(normal epi, normal mono) categories (sce Theorem 39.17).

39.12 LEMMA

If of has kernels and cokernels, f, g, and m are s/-morphisms such that
S = mo g, and g is a normal epimorphism, then there exists a unique sf-morphism
g such that Cok(Ker(f)) =~ gog.

Proof: Since
So Ker(g) = mogo Ker(g) = 0,

there exists a unique «/-morphism / such that
Ker(g) = Ker(f) o 5.

h x:’r@)
o‘l > f >
Ker(/) ! 7
g m

Cok(Ker(f)) o Ker(g) = Cok(Ker(f)) o Ker(f}oh = 0.
Sinceg = Cok(Ker(g)) (39.5(3)), this implies the existence of a unique morphism
g with Cok(Ker(f)) = g-9. J

39.13 THEOREM (CHARACTERIZATION OF CONORMAL CATEGORIES)
If ¢ has kernels and cokernels and each sZ-epimorphism is a normal epi-
morphism, then the following are equivalent :

Hence

(1) & is conormal.
(2) If [ is an s/-morphism such that Ker(f) = 0, then f is a monomorphism.

(3) If [ is an sf-morphism such that f = m o Cok(Ker(f)), then m is a mono-
morphism.

(4) o is a (normal epi, mono) category.
(5) For each sf-morphism f, if either a congruence relation of f or a congruence
relation of Cok(Ker(f)) exists, then they both exist and coincide.

Proof: We will show that (1) = (2) = (3) = (4) = (1) and (3) = (5) = (2).
() = (2). Supposc that Ker(f) = 0. Let /' = m o e be an (epi, mono)-factor-

ization of f. Then according to the preceding lemma (39.12), there exists a
morphism g such that

goe x Cok(Ker(f)) = Cok(0) = 1.

Hence e is a section, so that £ = m e ¢ is a monomorphism.
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(2) = (3). Suppose that f = mo Cok(Ker(f)). Then let m be the unique
morphism such that m = i o Cok(Ker(m)).

f

Cok(Ker( f)) m ]i—n

Cok{Ker(m))

Now g = Cok(Ker(m)) o Cok(Ker(f)) is an epimorphism and so (by hypothesis)
a normal epimorphism. Thus according to the lemma (39.12), there exists a
unique morphism g such that

Cok(Ker(f)) = g o g = g < Cok(Ker(m)) o Cok(Ker(f)).

Since Cok(Ker(f)) is an epimorphism, this implies that 1 = g o Cok(Ker(m)).

Consequently, Cok(Ker(m)) is a section and, hence, an isomorphism. Thus

Ker(m) = 0 which by (2) implies that m is 2 monomorphism.

(3) = (4). Clearly by the definition of cokernel each morphism f has a factor-

ization /' = m o Cok(Ker(f)). By (3) m must be a monomorphism. Hence </

is (regular epi, mono)-factorizable, which implies it is.a (regular epi, mono)

category (33.4).

4) = (I). Immediate from the definition of a conormal category.

(3) = (8). Let f = mo Cok(Ker(f)) be the factorization of f induced by the

definition of cokernels. If (p, ) is a congruence relation of f; then the diagram
P

Cok(Ker( f)) 1
[f

q | Cok(Ker( ) '\L

2

commutes, so that the “inner square” is a pullback square (21.10(1)) and hence
(p, q) is a congruence relation for Cok(Ker(f)). Conversely if (p, q) is a con-
gruence relation for Cok(Ker(f)), then the above square commutes. By (3) misa
monomorphism. Thus the “outer square” is a pullback square (21.10(2)), so
that (p, q) is a congruence relation of f.

(5) = (2). If Ker(f) = 0, then Cok(Ker(f)) = 1. Hence (1, 1) is a congruence
relation of Cok(Ker(f)), so that by (5) it is a congruence relation of /. Con-
sequently fis a monomorphism (21.17). O

39.14 COROLLARY
If o/ has kernels and cokernels, then the following conditions are equivalent :

(1) & is conormal,
(2) & is a balanced (normal epi, mono) category. []
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39.15 THEOREM
If o is exact, then

(1) & is an (epi, mono) category, and for each <f-morphism f,
f = Ker(Cok(f)) = Cok(Ker(f))
is the unique (epi, mono)-factorization of f. Consequently,

Im(f) = Ker(Cok(f))
and
Coim(f) =~ Cok(Ker(f)).

(2) For each sf-morphism f,
[ is @ monomorphism <+ Ker(f) = 0 < f = Im(f) < Coim(f) = 1.
(3) For each sf-morphism f,
fis an epimorphism <= Cok(f) = 0 <> f = Coim(f) < Im(f) = L.
4) For each s -morphism f,
[ is an isomorphism <> Ker(f) = Cok(f) = 0.

Proof: ITmmediate from the above characterization theorem (39.13), its
dual, and the definition of exactness. [

39.16 LEMMA
If m is a normal monomorphism and g ~ Cok(m), then m =~ Ker(g).

Proof: Since m is normal, m = Ker(f) for some morphism f. Since fom = 0
and g & Cok(im), there exists some morphism fsuch that f = fog. Nowifrisa
morphism such that g o r = 0, then

fo r = fcg or =10
so that there exists a unique morphism / such that r = n1 o h. Thus

m = Ker(g).

39.17 THEOREM (CHARACTERIZATION OF EXACT CATEGORIES)
For any category, &, the following are equivalent:

(1) o is exact.

(2) o7 is (normal epi, normal mono)-factorizable.

(3) o is a (normal epi, normal mono) category.
Proof:

() = (2). Immediate from the above theorem (39.15).

(2) = (3). Immediate from the fact that every (regular epi, mono)-factorizable
category is a (regular epi, mono) category (33.4).
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(3) = (7). Since (3) is self-dual, we need only show that & has kernels and each
&/-monomorphism is normal. Let f be an &/-morphism and let f = m o e be its
(normal epi, normal mono)-factorization. Then ¢ & Cok(g) for some morphism
g. Let g = i < € be the (normal epi, normal mono)-factorization of g. We wish
to show that im =~ Ker(f).

VAV

Since ¢ is an epimorphism, it follows that

e =~ Cok(g) ~ Cok(m <€) = Cok(im) (39.3(1) dual).

Since m is a normal monomorphism, by the lemma
m = Ker(Cok(m)) = Ker(e) = Ker(moe) = Ker(f) (39.3(1)).

Consequently &/ has kernels.

If & is any &/-monomorphism and /1 = 1 - € is its (normal epi, normal
mono)-factorization, then € is a monomorphism and a normal epimorphism;
hence an isomorphism. Consequently, / is a normal monomorphism. []

39.18 PROPOSITION
If &/ has kernels and coequalizers and if each </-epimorphism is a normal
epimorphism, then &/ is a conormal category.

Proof: We will establish condition (2) of the above characterization for
conormality (39.13). Suppose that Ker(f) = 0 and let (r, 5) be a pair of mor-
phisms for which fo r = fos. Now let (g, C) = Coeq(r, s). Thus there exists a
morphism 4 such that f = & o g. Consequently, Lemma 39.12 implies that there
exists a unique morphism § such that G -g = Cok(Ker(f)) = Cok(0) = 1.
Hence g is a section and an epimorphism; thus an isomorphism, so that r = s.
Therefore f is a monomorphism. [ ]

39.19 PROPOSITION

Suppose that s/ has equalizers and coequalizers, each </-monomorphism is a
normal monomorphism, and each s/-epimorphism is a normal epimorphism. Then
& is exact.

Proof: Immediate from the above proposition (39.18) and its dual. [

Exact Sequences

39.20 DEFINITION

Let o be exact. A sequence (f,),.; of &/-morphisms indexed by a (finite or
infinite) interval of integers is said to be an exact sequence provided that for
eachmn+lel

M) cod(f,) = dom(f,, ), and
(2) Im(f,) = Ker(f,+1)-
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39.21 PROPOSITION
If. L% are morphisms in an exact category, then the following are
equivalent:
(1) (f g) is an exact sequence; i.e., Im(f) = Ker(g).
(2) Cok(f) = Coim(g).
3) gof = 0and Cok(f) - Ker(g) = 0.
Proof:
(1) = (2). By (1) and Theorem 39.15(1),

Ker(Cok(f)) = Im(f) =~ Ker(g).
Thus

Cok(f) =~ Cok(Ker(Cok(f))) ~ Cok(Ker(g)) ~ Coim(g) (39.5(1)).

2) = (3).
(i) g°f = (Im(g) - Coim(g)) o f = Im(g) > (Cok(f) o f) = Im(g) 0 = 0.
(ii) Cok(f) - Ker(g) = Coim(g) > Ker(g) = Cok(Ker(g)) o Ker(g) = 0.

(3) = (I). Sincegof =0, we have
g o (Im(f) e Coim(f)) = 0 = 00 Coim(f).
Hence g - Im(f) = 0, so that by the definition of kernels there exists a mor-
phism / such that Im(f) = Ker(g) - h. Hence Im(f) < Ker(g). Similarly since
Cok(f) - Ker(g) = 0, there exists a morphism & such that
Ker(g) = Ker(Cok(f)) ok = Im(f) ok (39.15(1)).
Thus Ker(g) < Im(f), so that Ker(g) =~ Im(f). []

39.22 PROPOSITION
If f and g are morphisms in an exact category, then

MHo-. L, . is exact if and only if f is a monomorphism.
(2) « 2> « — 0 is exact if and only if g is an epimorphism.
()0 « Lo sl isexactifand only if f ~ Ker(g).
@ L 2. S 0isexactifandonly ifg ~ Cok(f).
5)0- . L, o = 0is exact if and only if f is an isomorphism.
(6) The following are equivalent :
0 —oLse et 0isexact.
(if) [ is @a monomorphism and g ~ Cok(f).
(iit) g is an epimorphism and f =~ Ker(g).
(7) The following are equivalent:
()« L o 5 o is exact.
(i) « L. L L s exact.
@iy £ = 0.
(8) AL a5 4 isexact ifand only if A = 0. [
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Exact Functors

39.23 DEFINITION
A functor F: &/ — # between exact categories is called an exact functor

provided that it preserves exact sequences; i.e., whenever . I.8, is

Fi F .
exact, then » | fa, 1s exact.

39.24 PROPOSITION
Each exact functor preserves zero objects, zero morphisms, kernels, cokernels,
epimorphisms, monomorpiisms, images, coimages, and (epi, mono)-factorizations.

Proof: Immediate from Proposition 39.22. []

39.25 PROPOSITION
If F is a functor between exact categories, then the following are equivalent:

(1) Fis exact.

(2) F preserves exact sequences of the form 0 — . AN IR}
(3) F preserves kernels and epimorphisms.

(4) F preserves cokernels and monomorphisms.

(5) F preserves kernels and images.

Proof: Clearly (1) implies (2), and (5) implies (1). By Proposition 39.22(6),
(2), (3), and (4) are equivalent. Thus we need only show that (2) implies (5).

If (2) holds, then by the equivalence of (2), (3), and (4), F preserves kernels
and cokernels. Thus since for each morphism £, Im(f) ~ Ker(Cok((f)) (39.15(1)),
F must preserve images also. []

EXERCISES

39A. Prove that each normal category is balanced.

39B. Let.s be the full subcategory of the category pTop of pointed topological
spaces, whose only objects are:
(1) a pointed one-element space, and
(2) a pointed three-element space in which the following sets are open: ¢, the entire
set, the set consisting of the distinguished point, and the set consisting of the two
non-distinguished points.
Prove that &/ has kernels and cokernels, that each monomorphism in.o/ is normal, and
that each epimorphism in ./ is normal, but that &7 is not exact.

39C. Suppose that.s/ is a category that has kernels and cokernels and that in &/
the class of normal epimorphisms is closed under composition. Prove that if &/ either
has equalizers or is (epi, mono)-factorizable, then the following are equivalent:
(a) Each regular epimorphism in &/ is normal.
(b) For each &/-morphism f, fis a monomorphism if and only if Ker(f) = 0.
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(c¢) For each of-morphism £, the unique morphism m with f = m o Cok(Ker(f)), is a
monomorphism.

(d) & is (normal epi, mono)-factorizable.

(e) &/ is a (normal epi, mono) category.

(f) For eachs/-morphism f, if either a congruence relation of f or a congruence rela-
tion of Cok(Ker(f)) exists, then they both exist and coincide.

39D. Prove that if
q
C——>A
P ‘l/
B —g>D

is a pullback square in a normal category, then fis a monomorphism if and only if pisa
monomorphism.

39E. Prove that for any morphism fin an exact category, the sequence

Ker (f) f Cok (f) .
0 ) > o > o > o > 0 is exact.
39F. Suppose that in an exact category
0 > A > B > C >0

|

00— A4 ' —> B —>C—0
is a diagram with exact rows. Prove that the following are equivalent:

(a) There is a morphism 4 - A’ that makes the above diagram commute.
(b) There is a morphism C = C’ that makes the above diagram commute.

39G. Nine Lemma
Suppose that in an exact category

0 0 0
|l
A A A
Voo
00— 8 > B > B” >0
00— C’———>(l,‘——>g”———>0
|
0 0 0

is a diagram that commutes and has exact rows and columns. Prove that there is an
exact sequence
Qs A — A— A" — 0

which, inserted as the top row of the above diagram, makes the diagram commute.
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39H. First Noether Isomorphism Theorem
Supposec that
0—A-—B—C—0
and
0—sB—D—E—0

are exact sequences in an exact category. Prove that there is an object Q and exact
sequences
: 0—mA—D—Q—0
and
0—->C—oQ—E—?0
such that the diagram

(=}
v

h 4

o
A 4

SNt ye— 20O
v

O — QD2 0
tm
4
o

commutes.

391. Prove that every faithful functor between exact categories reflects exact
sequences.

39J. Show that if Fis an exact functor between exact categorics, then Fis faithful
if and only if it reflects exact sequences.

39K. Lets” be a full subcategory of an exact category @ with embedding functor
E: ¢S @. Prove that the following are equivalent:

(1) & and E are exact.
(2) &/ contains 0 and is closed under the formation of kernels and cokernels.
(3) &/ contains 0 and is closed under the formation of kernels and images.

39L. Half-Exact Functors
A functor F between exact categories is said to be:
() a left-exact functor provided that it preserves exact sequences of the form

0-»..£....i>._

(B) a right-exact functor provided that it preserves exact sequences of the form

RN I )

(7) a half-exact functor provided that whenever
S

0 - - e _G_) » - O
is exact, then
LR Fe)
is exact,
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(a) Prove that every half-exact functor preserves zero objects and zero morphisms.
(b) Prove that a functor between exact categories is
(i) left-exact if and only if it preserves kernels.
(ii) right-exact if and only if it preserves cokernels.
(iii) exact if and only if it is both left-exact and right-exact.
(c) Let A be an R-module. Prove that:
(i) Hom(A, _): R-Mod - Ab is left-exact.
(i) Hom(A, __): R-Mod - Ab is exact if and only if A is projective.
(iti) A ® —.: R-Mod - Ab is right-exact.
I9M. Let.of and & be exact categories. Determine whether or not
() [, B] is exact.
(ii) the full subcategory of [&. 4] consisting of all O-preserving functors is
exact. :
(i) the full subcategory of [/, #] consisting of all exact functors is exact.

§40 ADDITIVE CATEGORIES

As has been mentioned before, in any category of (left or right) R-modules,
the morphism sets iom(A, B) can be supplied with the structure of an abelian
group in such a way that morphism composition acts distributively from the
left and from the right. In addition, in these categories finite products (= direct
prdducts) coincide with finite coproducts (= direct sums). In this section we will
sce how these two seemingly unrelated properties are linked. In particular it will
be shown that a category &/ having finite products has biproducts if and only
if there is a (unique) semiadditive structure on .

Recall that throughout this chapter, all categories are assumed to be
pointed.

Biproducts and Semiadditive Structures
40.1 DEFINITION

(1) An additive structure [resp. semiadditive structure] on a category & is a
function + that associates with each pair (/. g) of o/-morphisms with common
domain A and common codomain B, an &/-morphism / + g with domain 4 and
codomain B such that the following conditions (Al), (A2), and (A3) [resp.
(A1"), (A2), and (A3)] are satisfied:

(Al) For each pair (A, B) of «/-objects, + induces on fiom(A, B) the
structure of an abelian group.

(Al’) For each pair (A, B) of s/-objects. + induces on hom(A, B) the
structure of a commutative monoid.

(A2) Composition is left and right distributive over + : i.e., whenever

AL,B;_L:,CL»D
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are s7/-morphisms, it follows that

Je(g + 1) =(fog)+ (foh)
and
(g+ ok =(gek)+ (hok)

(A3) The zero morphisms of & act as monoid identities with respect to +;
i.e., for each &/-morphism f,

0+f=/+0=/

(2) If + is an additive structure (resp. semiadditive structure) on a category .,
then we call (&7, +) [and by an abuse of notation also /] an additive category
(resp. semiadditive category).

Concerning the above definitions. it should be noted that if & has finite
products or finite coproducts and («/, +) is semiadditive, then + is completely
determined by & (40.13). This tends to justify the above notational abuse.

It is also worth mentioning that (A3) above follows from (A1) and (A2) but
does not follow from (A1’) and (A2) (see 40A).

40.2 EXAMPLES

(1) R-Mod is additive (for every ring R).

(2) Grp is not additive.

(3) If Ris any ring,T then R can be regarded as an additive category with exactly
one object. Conversely, each additive category having only one object can be
regarded as a ring (cf. 3.5(7)).

(4) All full subcategories, all quotient categories, and all product categories of
(semi)additive categories are (semi)additive.

(5) If ¢ is (semi)additive, then so are o/°7 and &%, for any category €.

40.3 NOTATIONAL REMARK
If (4;), is a family of s/-objects, then for each j, k € 7 we let

Iy, if j=k
5,}2 Ai - A be OA' if j.# k.
40.4 DEFINITION

(1) Let (A;); be a family of «/-objects. Then the family (y;, B, n;), is called a
biproduct of (A4,); provided that the following conditions hold:

(i) (B, m;); 1s a product of (A4}),.
(i) (u;. B), is a coproduct of (A4;),.
(iti) myop = 6y foreach j, kel

+ Recall our convention that all rings have identitics and ring homomorphisms preserve
identities.
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(2) A catcgory & has (finite) biproducts provided that cach (finite) set-indexed
family of «/-objects has a biproduct.

The (object-part of a) biproduct is usually denoted by @A;. In particular
the biproduct of a pair of objects, (4, B), is often denoted by

(ﬂ/h My, A @ Bv Ty HB)-

40.5 EXAMPLE

The empty family of »/-objects has a biproduct if and only if &/ has a zero
object.

Recall that if (A; L, B;), is a family of morphisms and I'A4;, L14,, I1B;, and
LI B; are the products and coproducts of (A;), and (B;);, then we have defined
1f; and L f; to be the unique morphisms which for each j € 7 make the squares

ny; uy,
nA,- """" )HB,- UA' """ -?HB.-
rjl lp, “j[ Ivj
A; ———>B; Aj— B,
f; f;

commute; i.e., If; = (f;eon,) and Uf; = [v;=f;] (18.5 and 18.15). Since we
are now assuming that all categorics are pointed, we also have the following
naturally occurring morphism:

40.6 DEFINITION
If (A4; 5, B)), is a family of morphisms and (y;, 114;), and (I1B;, p;) are
the coproduct and product of (4;); and (B;),, respectively, then
@fi: UA; - B,

is the unique morphism from 114; to I1B; such that for each j, k € /, the square

commutes.

40.7 PROPOSITION

If (A, £/ B), is a family of morphisms and (p;, ®A;. n;) and (v;, @By, py)
are biproducts of (A}); and (B)),, respectively, then Tf;, 11/, and ®f; are all the
same; i.e.,

I, = Uf; = &f.
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Proof:
if j=
pooMfiopy = fiomott; = fiody = {fj if j‘# k
poolfioty=peoviof;=dpcf;= { i j#k
R _ f, if j=k
P ®fion; = {o i J# k.
Thus since products are mono-sources and coproducts are epi-sinks,

0

40.8 PROPOSITION
Let (¢, +) be a semiadditive category, let (4;), be a finite family of s#-objects
and let

A2 BN 4,
be of -morphisms. Then the following conditions are equivalen: :

(1) (u;, B, my), is a biproduct of (4),.
(2) (B, n)), is a product of (A)); and for all j, k € I, m; o pt; = .
(3) (uy, B), is a coproduct of (A)); and for j, k € I, my o p; = dj.
) Zl (om) = lgandforallj kel mop; = 6.

ic

Proof: Clearly each of (1) and (4) is self-dual, (2) and (3) are dual to each

other, and together are equivalent to (1). Thus we need only show that (2) and (4)
are equivalent.

(2) = (4). By distributivity of composition over addition (A2) it follows that
foreach k e/

"A°Z(l‘i°".') =Z(“x°ﬂi°”i) =Z(6ik°n|‘) =1 = Mol

Thus since products are mono-sources,
Z (u;om) = lg.

(#) = (2). Let (CZ5 4,), be a family of morphisms. Define f = Z (15 © ).
Then for each k& € I we have, by distributivity

nof = nk°Z(I‘1°f.') =Z_(7Tx°lli°fi) = Z(‘su"fz) = A

i.e., for each k € 7 the triangle
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commutes. Also f is unique with respect to this property since if for each &,
0 g = fi then

g=leg=Qumen)eg=Ymemog) =Y uf)=/.
Thus (B, n,), is a product of (4;);. [J

Notice that the above proposition remains valid in the case that / = &, if
we interpret E (1; < ©;) to be the zero morphism 0: B — B.
icl

409 PROPOSITION

If (o4, +) is a semiadditive category and (B, n;); is a product in s/ of the
Sinite family (A;),, then (B, ;) can be completed in a unique way to a biproduct
(i B, ), of (A),.

Proof: By the definition of product, for each j € I there exists a unique
morphism s;: A; — B such that for each k € I the triangle

commutes. But by the above proposition (40.8(2)) (1), is the unique family for
which (u;, B, n)) is a biproduct of (4;),. [

40.10 COROLLARY
If (¢, +) is a semiadditive category, then the following are equivalent :

(1) o has finite products.
(2) & has finite coproducts.
(3) o has finite biproducts. [

40.11 LEMMA
If (g, p2, Ay ® Ay, 7y, 7)) and (v, ¥4, By @ By, py, p,) are biproducts and
f: A, = B,, h: A, > B,, g: A, = B, and k: A; — B, are sf/-morphisms, then
the morphisms
x=[{fih),{g.k)]: 4, ® A, - B, @ B,,
and
y=L[f 9] [MK]D: 4, ® 4, > B, ® B,

are the same.

Proof:

proXepy =prolfily =f=[figlopy =pierop
proxcpy = pyolfily =h=[hk]op, =pyoyop
paoXopty = pyolg k) =k =[hk]leopy = proyon,
proxopy =p1oLg k> =g=[fig)op=pieoren
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Thus since products are mono-sources and coproducts are epi-sinks, it follows
thatx = y. []

40,12 PROPOSITION
If o has finite biproducts, then there exists a unique semiadditive structure
+ on &/, given by each of the following :

S
If A=3 B, then
9

ASA04% B
AL =) 49 g p ¥, B
A5 4042508 B

Proof: Let the biproducts be
(”ls ”2’ A @ A, nl: 7:2) a"d ("13 "Za B @ B, Pu Pz)-

First we show uniqueness; i.c., if + i5 a semiadditive structure on &/, then the
above equalities hold. From the distributivity of composition over sums and the
above characterization of biproducts (40.8(4)), we have:

[fig]leA=1[figleleA =[fg]le(Tpen)oh
=X ([fglemeonod)y =Y ([ fig)lor) =/ +g.
Volfigd) =Vololfig) =Ve(Xviep)o{f,9
=Y (Veviepolfig) =Y (pio i) =S +g
Ve(f@g)oA = V°(ZV;Op.-)°(f®g)°(2ll;°ﬂ;)°li
= » (Vovjopjo(f® g)opomoA)
1

k

2
L P/ @ e =/+0+g9+0=/+g
1,2

nn

k
Secondly we show that each of the above equalities actually does define a

semiadditive structure on &/. Denote the first two operations given above as
+ and =, respectively; i.e.,

S+g=[fig]l-A

and
Srg =V fi.
For any morphism f: 4 — B,
[fS0)epy =f=fomopu,

and
[/i0Jous =0=fom op,.
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Thus since coproducts are epi-sinks, [/, 0] = fo #,. Likewise it can be shown
that [0, /] = fo ;. Thus

S+ O0=[f,0]cA=FoncA=F=fomoA=[0,f]oA=0+f
Similarly, it can be shown that {f, 0> = v, o fand €0, /) = v, o f, so that
[0 =Volf,0) =Voviof =f=Veryof =Vo(0,f> =0xf.

Hence 0 acts as a left and right identity with respect to + and with respect to »,
so that (A3) is established for + and #. To show distributivity (A2), suppose
that p: C - Aand ¢: B —» D. Then

(frg)ep=Velfigpop=Velfop,gep)=[fop+gep
and

ge(f+9)=q°lfigloAd=1[g°fq°9]cA =g+ g~y
Now suppose that f, g, h, k: A - B. Then

S+@eh+k)=Velf+gh+k)=Vel[fg]leA[hk]eA)
= Vollfig) [h kD - A
But by the lemma (40.11), this is
Vo[Kfi 1, Kg. kD)o A = [V ([, ), Vo(g, k)] - A
=[fehgsk]lecA=(f*xh) + (g=*k).

S+ +k)=(+h)+ (g=*k)
Letting g = 0 = 4, and using (A3), we obtain
fxk=f+k

Thus = = +, so that distributivity (A2) is established. Letting g = 0 in the
above equation, we obtain

S+ =(+hH+k

so that + is associative. Letting f = 0 and & = 0, we obtain

Hence

gt+th=h+g

so that + is commutative. Thus + induces the structure of a commutative
monoid on hom(A, B), so that (A1’) holds. []

40.13 THEOREM
If o/ has finite products or finite coproducts, then the following conditions are
equivalent :
(1) There exists a semiadditive structure on .
(2) There exists a unique semiadditive structure on &4.
(3) & has finite biproducts. []
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Additive Functors

40.14 DEFINITION

If o and 4 are semiadditive categories, then F:of —» # is called an
additive functor provided that for each pair (4, B) of &/-objects, F induces a
monoid homomorphism from hom(A, B) to hom(F(A), F(B)).

40.15 EXAMPLES
(1) A function between two rings (considered as additive categories) is an
additive functor if and only if it is a ring homomorphism.

(2) For any ring R, the forgetful functor F: R-Meod — Z-Mod is additive.

40.16 THEOREM
If F: &/ — # is a functor between semiadditive categories and s/ has finite
products, then the following are equivalent :

(1) Fis additive.

(2) F preserves finite products.
(3) F preserves finite coproducts.
(4) F preserves finite biproducts.

Proof: The equivalence of (2), (3), and (4) follows immediately from
Propositions 40.8 and 40.9. That (1) implies (4) follows immediately from the
characterization of biproducts (40.8(4)) and the fact that each additive functor
must preserve zero morphisms. To see that (4) implies (1), note that since F
preserves empty biproducts, it preserves zero morphisms. Also by the uniqueness
of the semiadditive structure defined in terms of biproducts (40.12), F must
preserve addition. [

Maedule-Valued Functors

For any pair (&/, #) of additive categories one can define Add[«/, #] to
be the full subcategory of [, #] whose objects are the additive functors from
&/ to #. Likewise one can define the quasicategory of all additive categories and
additive functors, and the category of all small additive categories and additive
functors. Many of the results of general categories translate into analogous
results in the realm of additive categories. We leave the task of such translations
to the reader, and restrict ourselves to pointing out the important fact that the
role Set-valued functors play in the study of arbitrary categories is played by
Ab-valued (or more generally Mod-R-valued) functors in the study of additive
categories.

40.17 PROPOSITION
If o is an additive category and (Ab, U) is the concrete category of abelian
groups, then /°P x «f is additive and there exists an additive functor

Hom: o/°° x o/ — Ab
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such that the triangle

S X oy M Ab

ImN /

Set

commutes.
In fact, Hom preserves limits.

Proof: The verification that &/ x &#°? is additive is straightforward (40B).
(A1) enables us to supply each set hlom(A, B) with the structure of an abelian
group, and (A2) guarantees that the morphisms hom(f, g) can be considered
as group homomorphisms. Since iiom preserves limits and U reflects them (32.12),
Hom must preserve them (24E). [

40.18 COROLLARY
If o is additive and A is an sf-object, then there exists an additive functor
Hom(A, _): & — Ab such that the triangle

o Hom(A, ) Ab

Imm(A...x /

Set
comnutes. [

10.19 PROPOSITION

If o is additive and A is an sf-object, then the full subcategory of s/ whose
sole object is A can be considered as a ring R, and there exists an additive functor
Hom(A, _): o = Mod-R such that the triangle

Hom(A,_) _Hom(d. ) s 1od- R

Imm(A,_\‘ /

sommutes (where U denotes the forgetful functor).

Progf: That for each «/-object B, hom(A, B) can be considered as a right
R-module follows from the fact that it has the structure of an abelian group (A1)
ind from the associativity of composition and the distributivity of composition
sver addition (A2). The last two conditions also guarantee that the morphisms
1om(A, f) can be considered as linear transformations. Hom(4, ) is additive
since hom(A, ) preserves limits and U reflects them. [
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Next we would like to be able to characterize those s7-objects 4 for which
the above constructed functor Hom(A4, ) preserves coproducts. To accomplish
this, we first need the following lemma.

4020 LEMMA
Let o/ be an additive category that has products and coproducts, let (A;);
be a set-indexed family of sf-objects, and let (y;, ]_[ Ay and (]'[ A, wy) be the

coproduct and product, respectively, of (A;);. Then jbr each morplnsm
f A - H Ai’
[
the following are equivalen: :

(1) f can be factored through a finite coproduct; i.e., there is a finite set K < I, a
coproduct (v, | | Ay) of (A, and a morphism J: A — LI As such that the triangle
K K

a—r 14,
7 /;,,l
14,

commutes.
(2) Z (Hiomy o @y, of) = f; ie., for all but finitely many i € I,
i

fiomio @l of =0,
and the remainder have a sum that is f.
Proof:
(/) = (2). Complete the finite coproduct (v, ]:?I A,) to a biproduct
(Vs 1_[ A = H Ax, Pr)
K K
(40.9 dual). Then for each 4, / € K, the diagram

A / >];IAt- @l,l'- ) I;IA..
By x:/
7 [s4] Ak—a,“_) A, (=)
Ve ‘h
oA, ] > }'{IA,‘

commutes.
Let j € /— K. Then for each k € K, we have

piomie @y olimdov = pjemjo @y opm = pyody
= ;0 =00y,
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Since coproducts are epi-sinks, this implies that for each je /- K,
Rjom;o @|A. ¢ [l‘k] =0,
so that
Biomie @l of = pjem;o @1.4.°[Fk]°j= 0-f=0.
Thus
;(1‘;"%‘ @l/l,°f) = ;(!‘x"“lﬂ @L«ﬁf)
= ; (o 7z 0 @l,«‘ ° [ﬂk] °j)-
Using the commutativity of the above diagram and 40.8, this becomes:
; (o pof) = ; Crdeviepod) = ]~ (; viep)eof

= (w]e1eT =1
2) = (I). Assuming (2), the set K = {iel|p;omo @l ,of # 0} is finite.
Using the notation above for this K, let f = Y (wom o @ 14,°f). Then
I3
I of = K ; (Wome®l, cf)= ; ([#Joviomeo @1y
= ;(I‘k"“k"@l.a."f) = ;(1‘i°”.’°®1,1.°f) =/ 0O

40.21 THEOREM
Let (&, hom(A, ) be an algebraic category. If f is additive, R is the ring

Honi(A, A), and Hom(A, _): s/ — Mod-R is the functor constructed in 40.19,
then the following conditions are equivalent:

(1) F = Hom(A, ) preserves coproducts.
(2) hom(A, ) is a finitary functor (see 22E and 32G).

Proof:
(1) = (2). Suppose thatf: A — ‘A. Then since F preserves coproducts we have
R = F() 22 Feay) = 'F4) = 'R,

so that since Mod-R is finitary, there exists a finite set K < / and a morphism
g: R — ¥ such that the triangle

F=rR—22 i o R4
\ /['ukl -—:Flvk/
KR - F(K/i)

commuies.
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Define § = g(1,): 4 —»vKA. Then
vl e g = [ e 9(L) = F([v)(g(1) = [mI(g(11)
= (1] 9)L) = F(f Y1) =Sfol, =1
Thus siom (A, —) must be finitary (32G(iv)).

(2) = (). Let (p;, 11 4;) be the coproduct of (4,); in & and let (v;, L1 F(A,)) be
the coproduct of (F(4))); in Med-R. Then there exists a unique linear trans-
formation f such that for each i/, the triangle

F(A) — > II(F(4))

Ly
1

Fls)
A4
F(U4,)

commutes.
If g; € F(A;)) = Hom(A, A)), then

Jvi(g)) = Fu)g) = #yo g

Since f'is a linear transformation, for each ¥ v,(g,) € L1F(4;) we have

f(Z vi(g)) = Zf("i(gt)) = Z (#t; © 9)-
Thus whenever fC v{g;)) = 0, we have

Y (to9)=0

so that for each i, g; = 0 (40J). Thus f is injective. If ke F(LI A4),
then by Exercise (32G) and the lemma (40.20) k = 3 (y; om0 D14, < k).
Define k = 3 (v(m, o @1,,0k). Then f(k) = k, so that f is surjective.
Thus f is bijective and so is an isomorphism. Consequently F preserves
coproducts. [}

EXERCISES

40A. Let. beacategory and let + be a function which associates with cach pair
(/, g) of s/-morphisms with common domain 4 and common codomain B, an &/-
morphism f + g with domain A4 and codomain B.
(a) Prove that for such a function +, conditions (A1) and (A2) of Definition 40.1
imply condition (A3).
(b) Prove that conditions (A1) and (A2) do not imply (A3). [Hinr: Consider the
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following category that has precisely one object X, with morphism set fom(X, X) =
{1y, 0, b} and composition defined by

Ix|1x10 | &
ojoiofo
bl|b|O]| b

Define a function + by:
+ 10|08

Ixi{b!o0]Iy

0{0 010

bli,lo]a

Show that (&, +) satisfies (A1) and (A2) but not (A3).]
40B. Show that for any categories &/ and &

(a) & is additive if and only if &/°% is additive.

(b) If & is additive, then so is /2.

(¢) If & and & are additive, then so issf/ x 2.

40C. Prove that if f, g: A - B are morphisms in an additive category, then
Ker(f — g) =~ Equ(/, 9); i.e., if either exists, then they both do, and are the same.

40D. Prove thatif 4 L5 B, A2 C, B, D, and C X Dare morphisms in a
semiadditive category, then
A2 3o Y p = hof+ kog.

40E. Using Lemma 40.11 and Exercise 40D, represent morphisms between
biproducts of pairs of objects in any category & as 2 x 2 matrices and show that if o/
is semiadditive, their composition is usual matrix multiplication; i.c.,

G’_n .}n (ml 713
Al e Az 21 S22 Bl @ Bz 221 922 Cl @ C2

(gu'h|+9|z'f:| g Li2va130022
of11+g33e of12¥gaye
= A, ® A4, gneSiitgaze s aansSiaton !23) Cl ® Cz

40F. Genceralize Exercise 40E by representing all morphisms between finite
biproducts of objects in any category &/ as finite matrices and showing that if .o is
semiadditive, their composition is usual matrix multiplication.
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40G. Let F— G: (&, %) be an adjoint situation, where & and & arc additive
categories.

(a) Show that F is additive if and only if G is additive.
(b) Show that if &/ has finite products, then F and G are both additive.

40H, Let o be additive, A an &7/-object, G: ./ =+ Ab an additive functor,
U: Ab - Set the forgetful functor, and #: hom(A, ) = U - G a natural transforma-
tion. Show that there exists a natural transformation 7: Hom(A, ) = G such that
Usij= 0.

401. Let s be additive, A4 an s/-object, and G: &/ — Ab an additive functor.
(a) Prove that the Yoneda functions (30.6) induce an isomorphism between the abelian
groups G(A) and [Hom(A, —), G].
(b) Show that the Yoneda embedding (30.8) induces a full additive ecmbedding
E: °% Add[s/, Ab].

40J. Let & be a semiadditive category that has products and coproducts, let

(1, LIA)) be a coproduct of (4,);, and let (4 25 A4,), be a family of s/-morphisms that
are 0 except for finitely many i/ € 1. Show that if Z (zt;cg;) = 0, then g; = 0 for all
iel !

§41 ABELIAN CATEGORIES

In this section we combine the notions of exactness and additivity of the
previous two sections to obtain the important concept of abelian category.
Recall that throughout this chapter all categories are assumed to be pointed.

Definition and General Properties

41.1 DEFINITION
A category is called an abelian category provided that it is exact and has
finite biproducts.

41.2 EXAMPLES
(1) R-Mod is abelian (for every ring R).
(2) The full subcategory of Ab consisting of finite abelian groups is abelian.

(3) The full subcategory of TopGrp consisting of compact abelian groups is
abelian.

(4) The full subcategory of Ab consisting of abelian groups whose underlying
set has at most 27 clements is not abelian (even though it is exact and additive).

(5) The opposite of any abelian category is abelian.
413 THEOREM

If o is exact and has finite products or finite coproducts, then the following
conditions are equivalent:

(1) There exists an additive structure on 7.
(2) There exists a unique additive structure on & .
(3) & is an abelian category.
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Proof: In view of Theorem 40.13, it is sufficient to show that if & has
finite biproducts, then the unique semiadditive structure on s (40.12) actually
induces the structure of an abelian group on each set hom(A4, B). That is, we
wish to show that each &/-morphism f: 4 — B has an additive inverse. Given
f: A = B, consider the morphism

A® B h={[14.0)/ 1)} A® B.
Let (K, k) = Ker(h). Then
0,00 =0=thok =([1,0]ck [f15]k)
= {[14, O} o Kmyo k, mpo kD, [f, 15] o {my o k, mp o k).
But since & is semiadditive (40.12), this is
{ryok + 0, fom,ok + mzok) (40D).

Thus nyok = 0 and az ok = 0, so that &k = 0. Hence Ker(#) = 0. Similarly
if (¢, C) = Cok(h), then

[0,0] =0=coh =[co{l, /D, =<0, 15)]
= [[mioc uroc]o 1D [0, pt2oc] <0, 15)]
=[pyec+ paocef, 0+ p,ocl.
Thus Cok(h) = 0. Consequently, # must be an isomorphism (39.15). Now
ly=myopy =myohoh™ opty =[1,,0]0h op,
But since 1,5 = #4° 7y + pp o ny (40.8), this is
[ 0] o (aomy + pponp)oh™ opg =myoh ™ oty + 0= myoh™ o gty
Letg = mgoh™' o p,. Then
0=rngopy=mgohoh™top, =[f,1)]oh  opu,
=[filpg]oleh ™ opy=[flp)e(ueomy + ppomg)oh™ opy
=fomqoeh ™ top, + mgohT o,
But by the above equality, this is
Jelu+g=S+yg.
Thus f + g = 0, so that fhas an additive inverse. [

41,4 COROLLARY
A category s/ is abelian if and only if the following conditions are satisfied:
(1) & is exact.
(2) & is (semi)additive.
(3) & has finite products (or finite coproducis).
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Proof: That every abelian category satisfies these conditions follows from
the definition (41.1) and the above theorem (41.3). Conversely, every semi-
additive category with finite products (or finite coproducts) must have finite
biproducts (40.10). [

41.5 PROPOSITION
Every abelian category s is finitely complete and finitely cocomplete.

Proof: By definition, & has finite products and finite coproducts, and since
& is exact it must have finite intersections and finite cointersections (39.9 and
its dual). Thus o/ must have all finite limits and finite colimits (23.7(5) and its
dual).

41.6 DEFINITION
A square

C——D

is called a pulation square (or, for minors, Doolittle diagram) provided that it is
both a pullback square and a pushout square.

41.7 LEMMA
Let sf be a category in which each section is a normal monomorphism, and let
(1, itas A, U A,) be a coproduct of the s#-objects A, and A,. Then

() A, U A, % 4, = Cok(4, £5 4, U 45).
(2) Al 'ﬂ‘) AI u Az = Ker(A, u AZLO'—”' Az).
(3) For each s/-object B, the square

0
B—— A4,

is a pulation square.
Proof:

(5). Clearly [0, 1]0 ¢, = 0. Suppose that fo yu; = 0. Since coproducts are
epi-sinks, the morphism f'o y, is such that

(foma)o[0, 1] = /.
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Also it is unique with respect to this property since if g o [0, 1] = f; then

g=g°[0,1Jop; = fop,

(2). Since[1,0]ep, = 1, u, is a section; and so by hypothesis it is a normal
monomorphism. Hence since [0, 1] & Cok(y,), we must have ¢, ~ Ker([0, 1])
(39.5(2)).
(3). From the definition of coproduct, it is clear that the square is a pushout
square.

Now suppose that f;: C — A4, and f5: C —» A, are morphisms such that
My ofy = pz o f>. Then

.fl = [l’o]°l‘l°fl = [],0]01120_/'2 = Oca_f2 =0= 0°.fl
=[0, Jopofy =[O, oepsofy = fa.
Hence the zero morphism from C to B is the unique morphism / for which
Och = f; and 0o i = f,. Thus the square is a pullback square. []

41.8 COROLLARY
If o is abelian and (u,, s, Ay @ A,, 7, n,) is a biproduct of A, and A,,
then
0 A, M 4, @ A4, 121077, 4, 50
and

Oquﬂ—z)AleAzx_l)Al-Vo

are exact seqiiences, and

-

0——> 4, A®A—— >4,

J j’p, and m, t l

Al _“)Al@Ag A| —_—s 0
1

are pulation squares. [}

419 THEOREM
For any category s, the following are equivalent :

(1)  is abelian.
(2) o has pullbacks, pushouts, and a zero object, and in s/ each monomorphism is a
normal monomorphism and each epimorphism is a normal epimorphism.

Proof: Clearly since abelian categories are finitely complete and finitely
cocomplete, (1) implies (2). Conversely, the conditions of (2) clearly imply that »/
is finitely complete and finitely cocomplete (23.7 and dual); and hence exact
(39.19). Let A; and A, be s/-objects. Consider the morphism

Ay U A, 12108l g x4,
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By part (2) of the lemma, (4, u,) = Ker(n,oh). Similarly (4,, p;) =
Ker(z, o h). Let (K, k) =~ Ker(h). Then since nyohok = 0 = m o hok, there
exist morphisms r, and r, such that the diagram

ry
K——— >4,

L4} 253
A '—“)Aquz
1
commutes.
Hence by part (3) of the lemma, k = 0.
Dually, it can be shown that Cok(h) = 0, so that /i is an isomorphism

(39.15). Hence & has finite biproducts. []
41.10 PROPOSITION

Let A, :’) B ‘:_z A, be morphisms in an abelian category. Then
(45 H2, B, 7, nz) 1s a biproduct if and only if the following conditions are
satisfied:
(D) myopy = 1, andazopy = ly,
(2) The sequences

A BB 4, and A, 55 BIH A4,

are exact.

Proof: That (1) and (2) are satisfied if we have a biproduct is immediate

from the definition of biproduct and Coroliary 41.8. Conversely, suppose that
(1) and (2) are satisfied. Then clearly, for k, j = I, 2,

oy °ﬂj = 61&.
Let
S=1p—(uom) — (pyom).

Then

myof=(moely) —(mopom)— (Mmeopmenm) =n —m —0=0,
and

mpof =mpelyg=(myepyom) — (mpopzom) =m, —0—m, =0.
By (1)-u, is a section, so that g, = Im(u,). Thus by exactness,

= Im(p,) = Ker(zm,).

Hence since 7, o f = 0, there exists a unique morphism /1 such that u, o h = f.

Now
h=leh=mopeh=m0of=0

Thus O = pyoh = f= lg — (3 0o m) — (5 ° @3).
Consequently, 1, = py o, + pj o @y, so that (uy, gy, B, my, m3) is a bi-
product (40.8). (]
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Exact Functors

41.11 THEOREM
Every (half') exact functor F: o — & between abelian categories is additive.
Proof: Let (P, m, m,) be a product in o/ of the &/-objects 4, and A4,.

Complete this to a biproduct (u,, p,, P, my, n;) (40.9). Then m op, = 1,
My e p; = 1,, and the sequences

0 A, 2 P53 4,50
and
0- A, 25 P 4, -0
are exact.
Therefore, since F is a functor

F(ry)o F(uy) = F(1,,)) = lgu,
F(my) o F(uy) = F(]A,) = ]r(A,)
and since F is (half) exact, the sequences

F(4,) 22 PPy 22, Fa,)
and
F(4;) 22 FP) 2 F(4,))

are exact.

Thus by the above proposition (41.10)

(F(uy), F(pa), F(P), F(m,), F(r,))
is a biproduct.

Hence F preserves finite products so that it is additive (40.16). []

41.12 THEOREM
Let F:of — & be a zero-preserving functor between abelian categories.
Then the following are equivalent :

(1) Fis exact.

(2) F preserves finite limits and finite colimits.
(3) F preserves pullbacks and epimorphisms.
(4) F preserves kernels and epimorphisms.

Proof:

(I) = (2). By the above theorem (41.11) each exact functor is additive, and so
preserves finite products and finite coproducts (40.16). However, exact functors
also preserve kernels and cokernels (39.24); and hence, in this case, also equalizers
and coequalizers (40C and its dual). Consequently F preserves finite limits and
finite colimits (23.7 and its dual).

(2) = (3). Immediate since pullbacks are particular finite limits and in an
exact category f is an epimorphism if and only if /' = Cok(Ker 1) (39.15).
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(3) = (4). Since F preserves pullbacks and the zero object, it must preserve

finite limits (23.7) and, hence, kernels.
(4) = (1). Immediate from Proposition 39.25. []

Module-Valued Functors

For the next three propositions assume that & is an abelian category with
object A. Hom(A, A) is considered to be thering R and Hom(A, _): of — Mod-R
to be the functor introduced in Proposition 40.19.

41.13 PROPOSITION
Hom(A, __) is left-exact (39L).

Proof: Suppose that 0 - B 2L, ¢4 Dis an exact sequence in &; i.e.,
J = Ker(g). We wish to show that

Hom(A, ) =~ Ker(Hom(A, g));
i.e., that
Hom(A,f)

0 — Hom(A, B) 22"4, Hom(A, C) 2249, Hom(A, D)

is exact.

Let 1 € Hom(A, B). Then Hom(A, g) < Hom(A, f)(h) = gof+h = 0, since
gof = 0. Thus Hom(A, g) o Hom(A4, f) = 0. Also Hom(A4, f) is a mono-
morphism since f is. Now suppose that k: M — Hom(A, C) such that
Hom(A, g)k = 0;i.e., foreach x e M, go (k(x)) = 0. Then since f = Ker(g),
for each x € M there exists a unique morphism y.: A ~ B such that foy =
k(x). Since k is a linear transformation and f is a monomorphism, it is easy to
see that y: M — Hom(A, B) defined by y(x) = y, is a linear transformation
such that Hom(A, f) oy = k, and is unique with respect to this property. []

41.14 PROPOSITION
Hom(A, _) is faithful if and only if A is a separator for . []

41.15 PROPOSITION
The following are equivalent:

(1) Hom(A, ) is exact.
(2) Hom(A, ) preserves epimorphisms.
(3) A is a projective object in s .

Proof:

(1) <= (2). Since Hom(A, ) preserves kernels (41.13), it is exact if and only
if it preserves epimorphisms (39.25).

2) < (3). Since the forgetful functor U: Mod-R — Set obviously preserves
and reflects epimorphisms, Hom(A, _) preserves epimorphisms if and only if
hom(A, ) = U o Hom(A, ) does; i.., if and only if A is projective
(2.14). O
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It should be remarked that the small abelian categories can be characterized
as precisely those categories & for which there exists an exact embedding
E: sf G Ab; or, equivalently, preciscly those categories o/ for which there is
some ring R and a full, exact embedding E: &/ R-Mod. The proofs of these
assertions are not within the scope of this presentation. However, we are now
able to give a categorical characterization for the categories of R-modules.

41.16 THEOREM
Let (£, U) be a concrete category. Then the following are equivalent :

(1) (¥, U) is equivalentt to (Mod-R, U) for some ring R.
(2) (&, U) is a finitary algebraic abelian category.

Proof:
() = (2). Clear.

(2) = (1). Since (&, U) is algebraic, U = hom(A, ) for some =/-object A
(30.20). Let R be the ring of morphisms Hom(A, A) (40.19). Then the triangle

H=Hom(A,_)
K4 —> Mod-R
hom(/&‘ /
Set

commutes (where U is the usual forgetful functor for Mod-R). It remains to be
shown that H = Hom(A, _) is an equivalence. Since (s, hom(A, _)) and
(Mod-R, U) are algebraic, H must be algebraic (32.20); in particular, it is
faithful (32.17) and preserves (regular) epimorphisms; i.e., is exact (41.13).
Also, since (&, U) is finitary, / must preserve coproducts (40.21).

To show that H is full, let X be any »/-object and let 8B, be the class of all
s/-objects Y for which the restriction of H to

hom (Y, X) — homyy, g(H(Y), H(X))
is surjective.

First of all, 4 € #y. To sce this, let f* H(A) - H(X) be a linear trans-
formation. Consider f(1,): A — X. Then foreach /i: 4 = A,

HANW) = f()oh = f(Lyo ) = f(h).

Thus H(f(1,)) = f. Therefore A € #y. Next let I be an index set and (u;, '4)
be the 7th copower of A. Then /4 belongs to By. To sce this, let

g: H('A) = H(X)

be a linear transformation. Since H preserves coproducts, (H(u;), H(*4))
is the Ith copower of H(A). Now since 4 € &y it follows that for each ie 7/

t Le., there cxists an cquivalence H: s/ — Med-R such that U and O ¢ H arc naturally
isomorphic (14J).
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there exists a morphism g;: A — X such that H(g;) = g - H(u;). Since (y, 14)
is a coproduct, there exists a unique morphism g: '4 - Xsuchthatgopy, = g,
for each i € I. Hence, for each i€ /,

H@G) - H(p) = H(@G - 1)) = H(g)) = g H(n)

so that since coproducts are epi-sinks, H(g) = g. Therefore ‘A € By. Finally
if (g, Q) is a regular quotient of some element Y of #y, then Q belongs to By.
To see this, suppose that g: H(Q) - H(X) is a linear transformation. Since
Y € @By, there is some morphism §: Y — X such that H(§) = g o H(g). Thus,
since H is faithful, there exists a morphism g: Q — X such that H(g) =
H(g) - H(q). Conscquently, since H preserves epimorphisms, H(g) = g.

Now since A4 represents U, A4 is free over a singleton set (31.4), so that the
objects of the form /4 are exactly the free objects of o (31C). Thus the members
of Ay are precisely the o/-objects (31.9). Hence Hom(A, __) is full.

It remains to be shown that H is dense; i.c., that each right R-module M
is isomorphic to H(X) for some &/-object X. To see this, observe that there
exist linear transformations

RS KR M
9
where (g, M) = Coeq(f, g). Furthermore, since H is full and preserves co-
products, there are &/-morphisms

A ﬁ K4
§
such that H(f) = fand H(G) = g. Let (g, Q) be the coequalizer of fand § in /.

Since H is exact, it preserves coequalizers (41.12) so that H(Q) must be iso-
morphic to M. [

EXERCISES
41A. Prove that a category & is abelian if and only if it is exact and has finite

products.
41B. In any abelian category &/, consider the square

and the sequence
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Prove the following:
@) [—s, r)o {/, g) = 0if and only if the square commutes.
(b)o—+ A4 9—"’—’» B C =2, p s exact if and only if the square is a pullback square.
) A <9, p ® ¢ 12, p . 0is exact if and only if the square is a pushout square.
@o- 4 DAY (5] ¢ 2% p & 0 isexact if and only if the square is a pulation
square.

41C. Prove that in abelian categories the pullback of an epimorphism is an
epimorphism (cf. 21.13 and 2IN). [Hinz: Use 41B and 39D dual. ]

41D. Prove that if (&, U) is an algebraic abelian category and 4 is a small full,
exact subcategory of &7, then there is some ring R and a full, cxact embedding
E: #% Mod-R.

[Hint: There is some s7-object A such that U = hom(A, ), and there is some set /
such that cach @-object is a quotient of 'A. Let R = Hom(’A, '4), and let E be the
restriction of Hom(*4, ) 10 8.]

41E. Prove that if of is semiadditive, then Add[./, Ab] is abelian.

41F. Prove that for any ring R, considered as a one object semiadditive category,
Add[R, Ab] = R-Mod,

41G. Show that the (concrete) category of compact abelian groups is algebraic
and abelian but not finitary.
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