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Reflective Subcategories

Every theorem in category theory is either a pushover or its dual—a put-on.
W. E. ANON

In Chapter VII we claimed that adjoint situations are abundant throughout
mathematics and that adjoint functor theorems belong to the most useful
results of category theory. In Chapter VIII we concentrated our study on the
special case of set-valued functors and their adjoints. The results of Chapter 1X
concerning (&, .#) categories, (extremal) subobjects and factorizations now
enable us to study in more detail the special case of embedding functors and their
left and right adjoints.

§36 GENERAL REFLECTIVE SUBCATEGORIES

Definitions and General Properties

36.1 DEFINITION
Let o be a subcategory of 4 with embedding functor E: & & 2:

(1) An E-universal map (rg, Ap) for a #-object B is called an o -reflection of B.
(2) o is called reflective in & or a reflective subcategory of & if and only if there
exists an &7-reflection for each #-object; i.e., if and only if E has a left adjoint,
R: # - o . In this case, R is called a reflector for <.

(3) If & is a class of B-morphisms, then o is called &-reflective in # provided
that for each #-object B there exists an .«o/-reflection (rg, Ap) such that each
rg € 6. For the case that & is the class of all epimorphisms [resp. mono-
morphisms; extremal epimorphisms] of & we say that o/ is epireflective [resp.
monoreflective; (extremal epi)-reflective) in #.

275
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DUAL NOTIONS: (i.e., with respect to E co-universal maps and right adjoints to
E) «f-coreflection of B; coreflective in # (or a coreflective subcategory of %):
coreflector for s/; &-coreflective in &, especially monocoreflective [resp. epi-
coreflective, (extremal mono)-coreflective] in &.

36.2 EXAMPLES

Each of the examples of reflections given in 26.2(2) is in fact an epireflection.
Also each of the examples of co-universal maps given in 26.2(4) actually de-
scribes a mono-coreflective situation. In addition:

(1) If # is the category of ordered fields and order-preserving field homo-
morphisms, and & is the full subcategory of # consisting of all real-closed
fields, then & is reflective in 4.

(2) If # is the category Field of all fields and all field homomorphisms and
&/ is the full subcategory of & consisting of all algebraically closed fields, then
& is not a reflective in &. (Why not?)

(3) If @ is the category TopGrp of topological groups and continuous homo-
morphisms and & is the full subcategory of & consisting of all compact HausdorfT
groups, then o is reflective in #. (The reflector is called the Bohr compactification
functor.)

36.3 PROPOSITION
Each full monoreflective subcategory of a category is also epireflective.
Proof: Let &f be monoreflective in 4, let B 22, Ap be the o/-reflection of B
and let Ay .::, C be #-morphisms with the property serg = forg.
If C 2S5 A is the o -reflection of C, then
rceScrg =rectorg.

Since A belongs to &, this equation together with the uniqueness property in
the definition of universal maps implies that rc o s = r¢ o 2. Since r¢ is a mono-
morphism, it follows that s = 7. Hence r is an epimorphism. []

364 PROPOSITION
If o7 is a subcategory of %, then the following are equivalent:
(1) & is a full subcategory of 3.
(2) For each s-object A, the pair (1,, A) is an /-reflection of A. []

36.5 PROPOSITION

Let < be a full reflective subcategory of # with embedding E: sf & 9 and
reflector R: 48 — s/. Then

(1) R-E #1_, and
(Q (E-Ry-(E-RZE-R [

The last two propositions show that if & is a full reflective subcategory of
# with embedding E and reflector R, then £o R is *‘quasi idempotent” and
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“projects™ & onto &. Also if (r, A) is an o/-reflection of B, then A is an &/-object
that in a certain sense “‘best approximates” B in &/ (via the morphism r).
All of this is false for reflective subcategories that are not full. Because of these
and many other results that are true for full reflective subcategories but not for
reflective subcategories in general, and because of the fact that most reflective
subcategories “‘occurring in nature” are full and isomorphism-closed, we adopt
the following:

36.6 CONVENTION

Throughout the remainder of this chapter, all subcategories will be
assumed to be both full and isomorphism-closed. In particular, o will be
assumed to be a full, isomorphism-closed subcategory of £, with
embedding E: & & 3.

As will become evident in that which follows, relatively little is known
about general reflective subcategories. However, a satisfactory theory of
epireflective subcategories has emerged.

Relationship to Subobjects

36.7 PROPOSITION
Let B be a B-object, and let (r, A) be an o4 -reflection for B. Then the following
are equivalent:

(1) r is a monomorphism (resp. extremal monomorphism; section).
(2) B is a subobject (resp. extremal subobject; sect) of some sf-object.

Proof: Clearly (1) implies (2). That (2) implies (1) follows from the fact that
whenever /= goh is a monomorphism (resp. extremal monomorphism;
section), then / is also a monomorphism (resp. extremal monomorphism;
section) (6.5, 17C, 5.5). [}

36.8 PROPOSITION
If (r, A) is an o/-reflection for B, then the following are equivalent:

(1) r is an isomorphism.
(2) r is a section.

Proof: If for = 1, then the diagram

Biff

r

A

commutes, so that by the uniqueness property in the definition of universal
map, r o = 1. Thus r is an isomorphism. []
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369 COROLLARY
If o is reflective in B, then o/ is closed under the formation of sects in B.

Proof: Immediate from the Propositions 36.7, 36.8, and the fact that & is
isomorphism-closed in 8. []

36.10 PROPOSITION

If o/ is epireflective in B, then of is closed under the formation of extremal
subobjects in A.

Proof: Let f: B —» A be an extremal monomorphism in %, where 4 is an
s/-object. If (r, A) is the o/-reflection of B, then there exists some morphism g
such that f = g - r. Since r is an epimorphism and f is extremal, r must be an
isomorphism. Thus, since & is isomorphism-closed, B must be an «/-object. [ ]

36.11 PROPOSITION
If B is an (8, M) category and sf is &-reflective in B, then of is closed under
the formation of ./ -subobjects in 3.

Proof: Let m: B — A be a morphism in .#, where 4 is an o/-object. If
(r, A) is the o/-reflection of B, then there exists some morphism g such that the
triangle

commutes.
Thus, since m € .# and r € &, r must be an isomorphism (33.6). [

Relationship to Limits

If of is reflective in 4, the embedding functor £: o/ 2 has a left adjoint,
so (among other things) it preserves limits. Le., if D: I — o has a limit (L, (/)),
then (L, (/,)) is also the limit of E- D: I - 2. Next we will see that F also
“detects” limits.

36.12 Recall that if E: &/ & 2 is a full embedding functor and /is a category,
then &/ is said to be closed under the formation of [limits in 2 provided that
for each functor D: I — &/ and each limit (L, (/})) of E- D, the following
equivalent conditions are fulfilled:

(1) L is an &/-object.
(2) (L, (1)) is a limit of D.

DUAL NOTION: closed under the formation of /°?-colimits in 2 (23.5).
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36.13 THEOREM
If o is reflective in B, then for each category I, 4 is closed under the
Jormation of Ilimits in 3.

Proof: Let D: 1 — & be a functor, (L, (/)) be the limit of E- D, and
r: L — A, be the o-reflection of L. By the definition of universal map, for each
1; there exists a unique I;: A, — D(i) such that /; = 1, < r. From the uniqueness
of the morphisms 1, it follows that (4,, (1)) is a natural source for E o D. Thus
there exists some &i: A, — L such that for each i, 1, = /; - h. Hence for each i,

I;°/l°r=1,~°r=l‘- = licl,

so that since (L, (/;)) is a mono-source (20.4), sior = 1. Consequently, r is a
section, hence an isomorphism (36.8), so that since &/ is isomorphism-closed,
L is an s/-object. [

36.14 COROLLARY
Each reflective subcategory of an I-complete category is I-complete. []

For epireflective subcategories we know even more. Even if a functor is
only “initially in .o/* then its limit object in # must belong to & (36.15). As we
will see later, this property actually characterizes the epireflective subcategories
of “nice” categories (37.2).

36.15 DEFINITION

A functor D: I — # is said to be initially in &/ provided that for each
I-object i there is an I-object j such that D(j) e Ob(«/) and hom(j,i) # &.
&f is said to be strongly closed under the formation of /-limits in & provided that
for each functor D: I — & that is initially in &/ and each limit (L, (/))) of D,
the object L is an &f-object.

DUAL NOTIONS: finally in &/ ; strongly closed under the formation of /°°-
colimits in &.

36.16 THEOREM

If o is epireflective in B, then for each category I, s is strongly closed under
the formation of I-limits in 3.

Proof: Suppose that D: I — & is initially in &, (L, (/))) is a limit of D and
r: L — A is the o/-reflection of L. Let J be the class of all I-objects j for
which D(j) is an /-object. Then for each j € J there exists a unique morphism
1;: Ay — D(j) such that ; = 1, - r. Since D is initially in o/, for each I-object i
there is some j; € J and some f;: j; — i. Now for each I-object i, let

1, = D(f)-1,,.

Since r is an epimorphism it can be shown without difficulty that /; is inde-
pendent of the choice of f; and j; and that (4, (1)) is a natural source for D.
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Hence there is a morphism 4: 4, — L such that for each lioh = 1,. Con-
sequently

licher=1lor=D(f)olor=>D(f)el, =1 =1lol,

so that since (L, (/;)) is a mono-source (20.4), 1o r = 1. It follows that r is an
isomorphism (36.8), so that since .« is issmorphism-closed, L is an f-object. [

Relationship to Colimits

36.17 PROPOSITION

If o/ is reflective in 7 (with embedding E: ¥ # and reflector R: % — s/ )
and if D: I - f is a functor, ((k;), K) is the colimit of E< D, and r: K — Ay is
the si-reflection of K, then ((r o k), A) is the colimit of D.

Proof: This is immediate since the sink

((r v ki)v AK)
is the sink
((R(k))). R(K)),

and R, having a right adjoint, must preserve colimits (27.7). [

36.18 COROLLARY
Each reflective subcategory of an I-cocomplete category is I-cocomplete. [ ]

We have seen that a reflective subcategory & of a complete and cocomplete
category 4 is both complete and cocomplete (36.14, 36.18) and that the limits
in & are formed in the same way as the limits in 3 (36.13). However, & is not
necessarily closed under the formation of colimits in 8; i.e., if ((k), K) is a
colimit of E = D forsome D: I — «of, ((k}), K) is not necessarily the colimit of D.
To sce this, let (4;), be an infinite family of compact Hausdorfl spaces. The
coproduct of this family in Top, is the disjoint topological sum, which is not
compact, even though CompT, is epireflective in Top,. The coproduct of the
family (A;), in CompT, is actually the Stone-Cech compactification of the
disjoint topological sum (as is evident from Proposition 36.17).

EXERCISES

36A. Non-Full Subcategories
Consider the following two (non-full) subcategories & and 4 of POS. Objects of
&/ (resp. A) are those partially ordered sets which have the property that each
subset (resp. non-empty subset) has a supremum. A monotone function between two
S/-objects (resp. B-objects) belongs 105/ (resp. #) if and only if it preserves suprema of
all subsets (resp. non-empty subsets). Prove the following:
(a) & and A are each (extremal mono)-reflective in POS, but neither is epireflective in
POS. (Does this contradict Proposition 36.3?7)
(b) For nos/-object A is the pair (1 4, A) ans/-reflection of A. (What is the.o/-reflection
of a complete lattice?)
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(c) (1g, B)is a B-reflection of the Z-object B if and only if B is inversely well-ordered.
36B. Prove that for a complete category & the following are equivalent:
(a) For each small category 7, o is strongly closed under the formation of /-limits in 8.
(b) & is closed under the formation of products in 4, and &/ is strongly closedunderthe
formation of equalizers in 4 (cf. Theorem 23.8).
36C. In the proof of Theorem 36.16 show that (4, (/;)) is a natural source for D.
36D. Let 6 be a category which has a subcategory &/ that is cocomplete as a
category in its own right. Let & be the full subcategory of € consisting of all those
%€ -objects for which there exists an &7-reflection. Show that 4 is a cocomplete subcate-
gory of € (23.5).

§37 CHARACTERIZATION AND GENERATION OF
&-REFLECTIVE SUBCATEGORIES

Even though we are not able to give a satisfactory characterization of reflective
subcategories of even such nice categories as Top, we will in this section
characterize the &-reflective (in particular the epireflective) subcategories
of *“nice” categories. This will naturally lead to the concept of the smallest
&-reflective subcategory of a category that contains a given class of objects of
the category (called the &-reflective hull of the class).

Recall that throughout this chapter & is considered to be a (full, isomor-
phism-closed) subcategory of the category 4. Also in this section & (resp. .#)
will denote a class of epimorphisms (resp. monomorphisms) that is closed under
composition with isomorphisms.

37.1 CHARACTERIZATION THEOREM I
If B is an &-co-(well-powered) (8, M) category that has products, then the
Jollowing are equivalent :

(1) o is &-reflective in #.
(2) o is closed under the formation of products and . #(-subobjects in 3.

Proof: That (1) implies (2) is immediate from results of the last section
(36.13 and 36.11). To show the converse, suppose that (2) is satisfied and Bis a
&-object. We need only find an «/-reflection for B. Since & is &-co-(well-
powered), there is a representative set (f;, A,); of quotient objects of 2 of the
form (f, A) where fe & and A € Ob(s). Let (I1A,. ;) be the product in # of
the family (A4,),. By hypothesis 14, is an «/-object, and by the definition of
product there is a #-morphism /s: B — T1A; such that for each i, m; o h = f.
Now let

B2nA, = B A, 2114,

be the (&, .#)-factorization of i. We claim that (r. Ap) is the &/-reflection of B.
To see this, let g: B — A’ be a :B-morphism, where A’ is an .o/-object. If

BloAa =B A a
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is the (6, #)-factorization of g, then there is some j € / and some isomorphism
k: A; » Asuch that & = k o f;. Hence the diagram

AB m
, g,
h \Y:
f;
B . > A;
\ A
g A
AIK
m

commutes, and since r is an epimorphism, 11 o k o 7; o m is the unique morphism
x from Ay to A’ for which x o r = g. Thus (r, 4p) is an s/-reflection for B. []

37.2 CHARACTERIZATION THEOREM II
If B is complete, well-powered, and co-(well-powered), then the following are
equivalent :

(1) o is epireflective in B,

(2)  is strongly closed under the formation of Ilimits in @ for each small
category I

(3) & is strongly closed under the formation of products and pullbacks in 8.

(4) o is strongly closed under the formation of products and inverse images in 3.
(5) o is strongly closed under the formation of products and finite intersections
in 8.

(6)  is strongly closed under the formation of products and intersections in 8.
(7) & is strongly closed under the formation of products and inverse images of
extremal monomorphisms in 8.

(8) o is strongly closed under the formation of products and finite intersections of
extremal subobjects in 8.

(9) o is strongly closed under the formation of products and intersections of
extremal subobjects in 8.

(10) & is strongly closed under the formation of products and equalizers in 3.

(11) & is closed under the formation of (extremal mono)-sources; i.e., if (B, (f)
is an (extremal mono)-source such that the codomain of each f; is an sf-object,
then B is an sf-object.

(12) of is closed under the formation of products and extremal subobjects in 8.

Proof: The proof of the equivalence of conditions (2) through (10) is
left as an excrcise which can be accomplished in a manner analogous to the
proof for the characterizations of completeness (23.8). It remains to be shown
that (2) = (1) = (11) = (12) = (10).

(2) = (I). Let f: B—> A be a #-morphism with 4 € Ob(s/), and let .# be
the class of all &/-morphisms that are monomorphisms in #. Since & is strongly



Sec. 37 Characterization and Generation of &-Reflective Stubcategories 283

closed under the formation of equalizers and intersections, .# satisfies the
conditions for .# in the Factorization Lemma (34.3). Thus f has an (epi, .#)-
factorization. Now let (B — A;); be a set-indexed representative family of all
epimorphisms with domain B and codomain some /-object. By the factorization
property proved above, (e;, 4;); is a solution set for B. Also (by (2)) the inclusion
functor preserves limits. Hence by the First Adjoint Functor Theorem (28.3),
the inclusion has a left adjoint; i.e., & is reflective in 4. To show that it is
epireflective, suppose that r: B — Ay is the o/-reflection of B and

B Ay =BS540 4,

is its (epi, .#)-factorization. By the universality there exists some h: Ay > 4
such that 1o r = e. Hence

Mmohor=moe=r=1or

so that by the uniqueness condition for universal maps, mo/h = 1, Thus mis a
retract and a monomorphism, hence an isomorphism. Consequently, r is an
epimorphism.

(I)y=(11). Let(B, B EN A} be an (extremal mono)-source where each 4; is
an </-object. If B —— Ay is an s/-epireflection for B, then for each i there is a
morphism f;: Az — A;such that f; = f; - r. This then provides a factorization for
the source, so that since r is an epimorphism, it must be an isomorphism.
Hence B is an &/-object.

(1D = (12). This is trivial since products and extremal subobjects are special
cases of (extremal mono)-sources.

(12) = (10). This is immediate since every regular monomorphism is
extremal. []

The above characterization theorems guarantee the existence of most of the
reflections given in the examples 26.2(2) (independently of any special con-
structions). In particular, a subcategory of Grp (resp. Top, Top,, etc.) is epi-
reflective if and only if it is closed under the formation of products and subgroups
(resp. products and subspaces, products and closed subspaces, etc.).

In many cases (e.g., in Top) all coreflective subcategories are automatically
monocoreflective. The reason for this is shown in the following theorem.

37.3 CHARACTERIZATION THEOREM II1
If B is cocomplete, well-powered, and co-(well-powered) and if s¢ contains a
separator for B, then the following are equivalent :

(1) & is coreflective in 8.

(2) o is both monocoreflective and epicoreflective in B.

(3) o is strongly closed under the formation of I-colimits in B for each small
category I.

(4) o is closed under the formation of colimits in 3.
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(5) o is closed under the formation of coproducts and coequalizers in %.
(6) < is strongly closed under the formation of coproducts and coequalizers in 3.
(7) o is closed under the formation of coproducts and extremal quotient objects
in 8.

Proof: We will show (1) = (2) = (3) = (4) = (5) = (6) = (7) = (1). That
(3) = (4) and (4) = (5) is immediate. Furthermore the implications (2) = (3),
(6) = (7), and (7) = (1) follow immediately from the dual statement of the
Characterization Theorem II (37.2). Thus we need only show that (1) = (2)
and (5) = (6).

(1) = (2). If Sis a separator for # that belongs to &/, then each #-object is a
quotient of some copower 'S of S (19.6 dual) that again belongs to o (37.2 dual).
Hence & must be epicoreflective in # (36.7 dual). Thus &/ must also be mono-
coreflective in 4 (36.3 dual).

f
(3) = (6). Let (c, C) be a coequalizer of B —3 A, where A is an &/-object. It
8

is sufficient to show that C is an &/-object. If S is an &/-object that is a separator
for 4, then there exists some copower 'S of S and an epimorphism e: 'S - B
(19.6 dual). Since e is an epimorphism, (¢, C) must be the coequalizer of

s 5 A (16B dual). Since 'S and 4 both belong to s (37.2 dual), the hypothesis
gec
(5) implies that C belongs to &/. [

We now turn our attention to the notion of generation of &-reflective
subcategories of “nice” categories.

374 THEOREM
If B is an (8, M) category that has products and is §-co-(well-powered), then

(1) The intersection of any class of &-reflective subcategories of B is also
&-reflective in B.

(2) Each subcategory ¥ of # can be embedded in a smallest &-reflective sub-
category (&) of B, the objects of which are precisely the .f{-subobjects of
products of sf-objects in 3.

Proof: The first assertion, the existence of &§(«&), and the fact that £(«)
contains all .#-subobjects of products of «7-objects in B follow immediately
from the Characterization Theorem 1 (37.1). The reverse containment follows
from the fact that under these circumstances the class .# is closed under the
formation of products and compositions (33F and 33.1). []

37.5 DEFINITION

If o7 is a subcategory of 4, & is a class of epimorphisms of &, and & is
contained in a smallest &-reflective subcategory &§(s#) of 2, then §(«) is called
the &-reflective hull of o7 in &. For the case that & is the class of a/l epimorphisms
of B, §(s¥) is called the epireflective hull of < in B.

DUAL NOTIONS: .//-coreflective hull of s in £2; monocoreflective hull of
&7 in .
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37.6 COROLLARY
If B is complete, well-powered and co-(well-powered), then

(1) The intersection of any class of epireflective subcategories of # is epi-
reflective in 3.

(2) Each subcategory si of 8 has an epireflective hull in 28 whose objects are pre-
cisely all extremal subobjects of products of sf-objects.

Proof: Immediate from the fact that under the given hypotheses, # is an
(epi, extremal mono) category (34.5). [

37.7 EXAMPLES

(1) CompT, is the epireflective hull of the closed unit interval [0, 1] in Top,.
(2) CRegT, is the epireflective hull of [0, 1] (or of R) in Top.

(3) If X is the topological space with two points and three open sets, then the
epireflective hull of X in Top is the category of all 7, spaces.

(4) The monocoreflective hull of Z, in Ab is the subcategory of all abelian
groups G with the property that nG = {0}.

(5) The monocoreflective hull of the category of all finite abelian groups in
Ab is the category of all abelian torsion groups.

37.8 DEFINITION

A #-morphism f: B — C is called «/-extendable provided that for each
Z#-morphism g: B — A, where A is an &/-object, there exists some g: C — 4
such that the triangle

commutes.

379 PROPOSITION

Let # be an (&, /) category that has products and is &-co-(well-powered), and
let £(F) be the &-reflective hull of /. Then any morphism f in & is o/ -extendable
if and only if it is &(&/)-extendable.

Proof: Clearly since «/ is contained in §(&7), cach §(s/)-extendable mor-
phism is also &/-extendable. To show the converse, suppose that /2 B — Cisa
morphism in & that is .o/-extendable, X is an object of (o) and g: B — Xisa
A-morphism. According to Theorem 37.4, there is a set-indexed family (A,), of
«/-objects and a morphism m: X — T1A4; that belongs to .#. Since f is o/~
extendable, for each i e / there is a morphism g;: C — A, such that g; - f =
;o m o g. Now by the definition of product there is a morphism g': C — T14;
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such that g; = n; o g’ for each i. Since (I1A4;, n;) is a mono-source, the square in

the diagram
B
|
X

commutes. Hence by the (&, .#)-diagonalization property, there exists a mor-
phism g: C - X such that § o f = g. Consequently fis §(s#)-extendable. []

—/)C

L]

]

]
'g
:
v

>nA‘. > A.

m

37.10 COROLLARY

If B is complete, well-powered and co-(well-powered) and if € is the epi-
reflective hull of s/ in B, then a B-epimorphism is sf-extendable if and only if it
is €-extendable. [}

EXERCISES

37A. Prove the equivalence of items (2) through (10) in the Characterization
Theorem 11 (37.2).
37B. Prove that a full subcategory of CompT, is reflective in CompT, if and only
if it is cocomplete as a category in its own right.
37C. Fitting Properties
Let o/ & B € be full embeddings and let &/ be monoreflective in %.
(a) Prove that the following are equivalent:
(i) & is reflective in €.
(ii) & is monoreflective in €.
(iii) 4 is epireflective in €.
(b) Show that if € is finitely complete, then (1) and (2) below are equivalent:

mIf
P——4

-

B——C
is a puliback square, A4 is an o/-object, and B is a H-object, then P must be a #-
object.
(2) (2) If X -2 Bis a regular monomorphism and B is a #-object, then X must
be a #-object, and
(B) If A is an o/-object and B is a #-object, then 4 x B must be a &-object.
(If & has these properties, it is called s7-fitting.)
(c) Now let .# be some class of monomorphisms in € that is left-cancellable (i.e.,
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whenever f< g € .#, then g € .#) and assume that & is .¢-reflective in €. Prove that
(i), (ii), and (iii) above are equivalent to the following:
(iv) @ is M -reflective in €.
If, in addition, € is complete, well-powered, and co-(well-powered), and .# is closed
under the formation of intersections and pullbacks and has the property that whenever
JS e g is an epimorphism and f € .#, then g is an epimorphism; show that (i), (ii), (iii),
and (iv) above are equivalent to the following:
(v) & is closed under the formation of products and extremal subobjects.
(vi) & is -fitting and strongly closed under the formation of intersections.
(vii) & is &/-fitting and closed under the formation of intersections.
(viii) 4 is closed under the formation of finite products and arbitrary intersections.
(d) Assume that o/, €, and . have the above properties, & is & -fitting, and & is the
epireflective hull of & in €. Prove that the J-reflection of a %-object C can be obtained
as the intersection of all those -subobjects of the o7-reflection of C that belong to
2 and contain C.
(e) Apply the above results to the case where &/ = CompT,, € = CRegT,, and
A = the topological embeddings.

37D. (a) Prove that a full, isomorphism-closed subcategory of Top that is
simultaneously reflective and coreflective in Top coincides with Top.
(b) Characterize all full, isomorphism-closed subcategories of Ab that are simulta-
neously epireflective and monocoreflective in Ab [Cf. Exercise 23C(c)].

37E. Reflective Hulls
Let ¥ be complete, well-powered and co-(well-powered), &7 a full isomorphism-closed
subcategory of ¢, and & the epireflective hull of & in €.
Prove that:

(2) 4 is complete and well-powered.
(b) If & is co-(well-powered), then ./ has a “reflective hull” in ¢ that coincides with
the epireflective hull of &/ in 4.

37F. Let &/ be a reflective subcategory of a complete, well-powered, co-(well-
powered) category &, let R: B — & be the reflector, and let rz: B - R(B) be the
sf-reflection of B. Show that for any #-epimorphism f: B -+ C, the following are
equivalent:
(a) fis of-extendable.
(b) R(/f) is an isomorphism.
(¢) There exists a #-morphism g: C -» R(B) such that g f = r.
(d) There exists a #-morphism g: C - R(B) such that the diagram

!

B——.C

.
e
//
"n 9 re
,/
I

R(B) WR(C)

commutes.
37G. Let # be an (&, /) category that has products and is &-co-(well-powered),
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let £¢7) be the S-reflective hull of &7, and let B be a -object. Prove that the following
are equivalent:

(a) B is an object of &().

(b) B is an .#/-subobject of a product of &/-objects.

(c¢) Each.o/-extendable &-morphism in & is {B}-extendable.

(d) Each &/-extendable &-morphism f: B - C is an isomorphism.

(e) Each.o/-extendable morphism f: B - C is an .#-morphism.

37H. If & is complete, well-powered, and co-(well-powered), and if € is the
epireflective hull of & in &, then show that for each #-object B, the following are
equivalent:
(@) Bis a €-object.
(b) B is an extremal subobject of a product of o/-objects.
(c) Each &f-extendable epimorphism in 4 is {B}-extendable.
(d) Each &/-extendable epimorphism f: B - C is an isomorphism.
(e) Each &/-extendable morphism f: B - C is an extremal monomorphism.

§38 ALGEBRAIC SUBCATEGORIES

In this section we concern ourselves with the question of when a subcategory
of an algebraic (or varietal (38.3)) category is itself algebraic (or varietal).
(Recall that in this chapter all subcategories are assumed to be both full and
isomorphism-closed.)

38.1 THEOREM
If (#, U) is an algebraic category and s/ is a subcategory of % with em-
bedding E: st < BB, then the following are equivalent :

(1) (&, U E) is algebraic.
(2) o is reflective in B and contains with each morphism its (regular epi, mono)-
Jfactorization in 4.

(3) o is reflective in # and contains each B-object that is simultaneously a
subobject of some sf-object and a regular quotient of some s-object.

Proof: Clearly (2) and (3) are equivalent since each algebraic category is
uniquely (regular epi, mono)-factorizable (32.13). To show that (1) implies (2),
assume that (&, U< E) is algebraic. Then E must be an algebraic functor
(32.20). Hence E has a left adjoint (so that .« is reflective in #) and E preserves
the (regular epi, mono)-factorizations in &/ (32.18). Thus & contains with each
morphism its (regular epi, mono)-factorization in #.

To show that (2) implies (1) it is sufficient (since the composition of
algebraic functors is algebraic) to show that &/ has coequalizers and that £ is
algebraic. By hypothesis E preserves regular epimorphisms and since &/
is reflective in 4, E has a left adjoint. Also %, being an algebraic category, is
cocomplete (32.14), so that since & is reflective in %, it must be cocomplete
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(36.18). Thus & has coequalizers. It remains to show that E reflects regular
epimorphisms. Let g: A — A be an &/-morphism that is a regular epimorphism
in 4. Since A is complete (32.12), we can form the congruence relation of g in .

4
B—>4

Il

i

Thus (g, A) is the coequalizer in & of p and ¢ (21.11). Now since & is
reflective in #, E must reflect limits (36.13). Thus the above pullback square
belongs to /. Consequently (g, A) is the coequalizer in o of p and q. Hence E
reflects regular epimorphisms. [7]

38.2 COROLLARY

If (#. U) is an algebraic category and o7 is a subcategory of B, with embed-
ding E: s> B, such that 54 is closed under the formation of subobjects in A,
then the following are equivalent :

() (&, U= E) is algebraic.

(2) o is reflective in B.

(3) o is a complete subcategory of .

(4) o is closed under the formation of products in 4.

Proof: By the theorem (1) and (2) are equivalent. The equivalence of (2),
(3), and (4) follows from the Characterization Theorem II (37.2). ]

It should be remarked that it is not always true that if .o/ is an epireflective
subcategory of an algebraic category (#, U), with embedding E: & 4,
then (&, U - E) is algebraic.

38.3 DEFINITION

An algebraic category (4, U) is called varietal provided that U reflects
congruence relations.

38.4 EXAMPLES

The following algebraic categories are varietal: Set, pSet, SGrp, Mon,
Grp, Rng, R-Mod, R-Alg, BooAlg, CompT,, compact abelian groups, and
(commutative) C*-algebras [together with the unit disc functor (30H)].

The following algebraic categories are not varietal: torsion-free abelian
groups, zero-dimensional compact Hausdorfl spaces.

385 THEOREM
If (B, U) is varietal and s/ is a subcategory of B with embedding E: of — 3,
then the following are equivalent :

(1) (&, U~ E) is varietal.



290 Reflective Subcategories Chap. X

A— 4

A—B
is a pullback square in B where f is a regular epimorphism and A and A are
S -objects, then B is an s/ -object.

Proof:

(/) = (2). Since(«, U o E)is varietal, and hence algebraic, &/ must be reflective
in 2 and E: ¢S 2 must preserve regular epimorphisms (38.1). If

(2)  is reflective in B and if

AL

T

Z-f_)B
is a pullback square in # and fis a regular epimorphism, then (p, ¢) is a con-
gruence relation for f and (f, B) is a coequalizer of (p, q) (21.16). Since U
preserves and U o E reflects congruence relations, (p, ¢) is a congruence relation
in s/ If (¢, C) = Coeq(p, q) in &, then

A— 7

A—c¢

is a pullback square in &/ (and hence in ) and c is a regular epimorphism in &/
(and hence in 8). Consequently (¢, C) is a cocqualizer of (p, ¢) in & (21.16).
Therefore B and C are isomorphic, which implies that B belongs to .of.

(@) = (I). We first will show that (&, U o E) is algebraic by showing that it
contains with each morphism, f, its (regular ¢pi, mono)-factorization in £
(38.1). To see this let

be a pullback square in 4. Since & is reflective in 2, P must be in &/ (36.13).
Now let (¢, C) be the cocqualizer of p and ¢ in & and let /1: C - B be the
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unique #-morphism with /' = /o c. Then f = Jt o ¢ is the (regular epi, mono)-
factorization of fin & (see the proof of Theorem 32.3) and the square

P
P——>4

ql lc

is a pullback square in 8 (21.16). Thus by (2) C is an &/-object, so that / and ¢
belong to «/. Consequently, (&, U o E) is algebraic. It remains to be shown
that E reflects congruence relations. Let (p, ¢) be a congruence relation in 2
where cach of p and g are &/-morphisms and let (¢, C) be the coequalizer of p
and q in 4. Then

A—p—>B

B——C

is a pullback square in & (21.16) so that by (2) it is a pullback square in &.
Hence (p, q) is a congruence relation in /. [

38.6 COROLLARY

If (B, U) is varietal and & is a subcategory of B with embedding E: o# & 3
and if s is closed under the formation of subobjects in B, then the following are
equivalent :
(1) (o, Ue E) is varietal.
(2) o is reflective in B and is closed under the formation of regular quotients in 8.
- (3) o is closed under the formation of products in % and regular quotients in %.

Proof:

(I) = (2). Clearly & must be reflective in #. Suppose that f: 4 — B is a
regular epimorphism in £ and A is an s/-object. Let

P—p>A

||

{———>B
Ty

be a pullback square in «/. Then by the canonical construction for pullbacks
(21.3), P is the object part of a subobject of 4 x A. Thus since &/ is reflective
in 8, P must be an s/-object (36.14). Hence by the thcorem, B must be an
£/-object.
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(2) = (3). This is immediate since reflective subcategories are closed under the
formation of Ilimits, for each discrete category 7 (36.13).

(3) = (). By Corollary 38.2 it is clear that (&, U o F) is algebraic. That it is
also varietal follows immediately from the theorem. []

A varietal subcategory of a varietal category is not necessarily closed
under the formation of subobjects of regular quotients. (See Exercise 38E.)

EXERCISES

38A. Prove that a varietal category is finitary if and only if it is strongly finitary
(see 22E and 32G).

38B. Show that in each finitary varietal category direct limits and finite limits
commute (cf. 25B and 32G).

38C. Show that CompT, is the only non-trivialt full epireflective subcategory of
Top, that (considered as a concrete category) is varietal.

38D. ldentities
s
For any category &, a pair of &/-morphisms 4 —3 B with common domain and

common codomain is called a quasi-identity in.</. It i; called an identity provided that B
is regular-projective. A quasi-identity is said to hold in an 2/-object C if and only if
k of = k o g for each morphism k: B - C. If & is a class of quasi-identities in <7,
then the full subcategory of &/ whose objects are precisely those </-objects for which
each quasi-identity in % holds, is denoted by &/(#). )
Now suppose that (&, U) is algebraic and & is a full subcategory of <.
(a) Prove that the following are equivalent:
(i) @ is closed under the formation of products and subobjects.
(i) There exists a class & of quasi-identities in & such that & = o/ (F).
{b) Prove that the following are equivalent:
(i) & is closed under the formation of products, subobjects, and regular quotient
objects.
(ii) There exists a class # of identities in &/ such that B = of(F).

38E. Let (&, U) be CompT, and let 4 be a compact Hausdorfl space with at
least two points and the property that the identity on A4 is the only non-constant
continuous self-map of 4. (Such a space is called strongly rigid.)
(a) Prove that the only non-constant continuous maps from a power A/ to A are the
projections.
(b) Show that the full subcategory s/ of # whose objects are the powers A’ of A4 satisfies
condition (2) of Theorem 38.5.
(c) Conclude that if E: oS 2 is the embedding, then (&7, U o E) is varietal.
(d) Show, however, that &7 is not closed under the formation of subobjects or regular
quotients in &.

+ A subcategory of CompT, is non-trivial if it has a space whose underlying sct has at least
two points.




