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Introduction

How can you do *“‘new math™ problems with an *old math” mind?
Charlie Brownt

Much of the beauty of mathematics is derived from the fact that it affords
abstraction. Not only does it allow one to see the forest rather than the
individual trees, but it offers the possibility for study of the structure of the entire
forest, in preparation for the next stage of abstraction—comparing forests.

Consider the development of modern group theory and topology. Many
different groups and topological spaces were studied individually over long
periods of time before the general and abstract concepts of “group” or ‘“topo-
logical space” were defined. In these cases, by properly abstracting the “essence”
of what was common to objects under consideration and by making the proper
definitions, new, wider, and in a sense more beautiful, theories emerged.
Category theory involves the next level of abstraction—i.e., comparing forests.
It allows the comparison of the class of all groups and homomorphisms with
the class of all topological spaces and continuous functions, and further, the
comparison of these with other classes of structured sets and structure-pre-
serving functions.

Below we will present four main reasons for the study of categories. In so
doing, it is hoped that motivation will also be provided for some of the important
abstract notions to be encountered later in the book.

The first reason for studying categories is that, like other mathematical
abstractions, category theory provides a new language—a language that affords
economy of thought and expression as well as allowing easier communication
among investigators in different areas; a language that brings to the surface
the common basic ideas underlying various ostensibly unrelated theorems and
constructions; and, hence, a language that provides a new context in which to
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view old problems. Thus, it helps to determine and delineate what the deep,
powerful, classical results really are. The nced for such a new language can
readily be seen after considering the similarities among the following statements:

1. (a) The cartesian preduct A, x A, ofsets A, and A, (together with projection
functions 7,: 4, x A, —= A, and n,: A, x A, = A,) has the property that if
Cisanysetand f,: C —+ A, and f,: C — A, are functions, then there exists a
unique function /: C — A, x A, such that n, o f = f, and =, o f = f;, that is,
such that the diagram

c

Al

;:\i w3
Ay x A

commutes.

(b) Furthermore, if P is any set together with functions p,: P —+ A, and
p2: P - A, having the same universal property as that described in (a) for
A, x A, together with r; and =, then there exists a bijectiong: P —» A4, x 4,
suchthatn, g = p;andmy, o g = pz, that is, such that the diagram

/

Al)(Aﬂ

commutes.

2. (a) The direct product 4, x A, of groups A, and A, (together with pro-
jection homomorphisms n,: A, x A, » A, and m,: A, x A, - A,) has the
property that if C is any group and f;: C = 4, and f;: C — A, are¢ homo-
morphisms, then there exists a unique homomorphism f: C —» A, x A, such
that n, o f = fiand 7, o f = f;.

(b) Furthermore, if P is any group together with homomorphisms p,: P —+ 4,

and p,: P - A, having the same universal property as that described in
(a) for A, x A, together with n, and m,. then there exists an isomorphism
g:P— A, x A,suchthat m, o g = p,and ny 0 g = p,.
3. (a) The topological product A4, x A, of topological spaces 4, and A,
(with projection continuous functions 77, : A, x A, = Ayand m,: A, x A, = A3)
has the property that if C is any topological space and f,: C — A4,
and f,: C —» A, are continuous functions, then there cxists a unique continuous
function /: C - A, x A,suchthatn, of = fyand o f = f;.

{b) Furthermore, if P is any topological space together with continuous
functions p,: P —» A, and p,: P — A, having the same universal property as
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that described in (a) for 4, x A, together with n;, and r,, then there exists a
homeomorphism g: P — A, x A, suchthatn, g = p,and n, 0 g = p,.

One immediately notices the following correspondences:

set - group +« topological space
function < homomorphism « continuous function
bijection < isomorphism + homeomorphism

cartesian product « direct product « topological product
and is tempted to replace the above columns by a single “general’” column—

object
morphism
isomorphism
product

—which is what we are able to do after providing the proper foundations and
definitions. Thus, an adequate simultaneous description of all three types of
products (and, of course, many more) is made possible.

Moreover, we will be able not only to describe various products simul-
tancously, but will be able to prove things about them simultaneously as well.
For example, the *“‘uniqueness’ of the “product’™ (part (b) of each statement
above) is a categorical theorem, the proof of which goes somewhat as follows:

Since each of (4, x A,, ny, 7,) and (P, p,, p,) is ‘“‘universal”, there exist
morphisms f: P - A, x A, and g: A, x A, - P such that the diagrams

A\'/

Az Ay x A

Ay
.

A
commute.
Now because composition of morphisms is associative, each of the mor-
phisms f - g and the identity on A4, x A, makes the diagram

Ay X A»

7N

A ;
NE/’.’
v

.41 X A:
commute [7;°(f>g) = (n,<f)og = p;=g = =n;]. Hence, by the uniqueness
property in part (a). f= g is the identity on A, x A,. Similarly, g - f can be
shown to be the identity on P. Thus, g is an isomorphism (that is, a bijection for

sets, an isomorphism for groups, and a homcomorphism for topological
spaces).
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Note that this “proof” depends upon two properties that we will later
require in the definition of category—the associativity of morphism composition
and the existence of an identity morphism associated with every object (see 3.1
and 3.8). It should also be noted that in the definition of the categorical product
of two objects, not only the new object, but the attached projection morphisms
must be considered. In fact, the projections have a dominant role—how they
are composed with other morphisms is the essence of the term “product”. The
elements of the product objects have an even worse fate than the objects they
comprise. They are not considered at all—nor need they be. Similarly in general
category theory the main consideration is the morphisms and how they are
composed; the objects serve little purpose other than to remind us of the
domain and range of the morphisms; and elements of objects are not mentioned
at all.

Statements 1, 2, and 3 above can also serve to illustrate the second reason
for the study of category theory—the “two for the price of one™ or “duality”
principle (which will be discussed in more detail in §4). Briefly, it is this: for every
categorical concept, there is a dual concept that is obtained by reversing the
direction of all morphisms in the description of the original one. As a con-
sequence, every categorical statement or theorem has a dual which (because of
symmetry in the definition of category) is true, provided that the original is
true. Hence, for categories, every concept is two concepts; every theorem, two
theorems; and every proof, two proofs.

For example, the dual of the notion of “product” discussed above is
“coproduct”, and the concept of coproduct in the case of the category of sets
and functions is “disjoint union”. Thus, we have the following:

4. (a) The disjoint union 4, & A4, of sets 4, and A4, (together with injection
functions p,: A, > A, © A, and pu,: 4, » A, & A4,) has the property that
if Cisanysetand f;: A, - Candf,: 4, —» C are functions, then there exists a
unique function f: 4, & 4, — Csuchthat fo u, = f, and fo u, = f,, that s,

such that the diagram

/

commutes.

(b) Furthermore, if P is any set together with functions v,: 4, —» P
and v,: 4, —» P having the same universal property as that described m
(a) for Al ® A, together with u, and g,, then there exists a bijection g: 4,
A, —» Psuch that gou, = v, and g oy, = v,, that is, such that the diagram
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commutes.

Statement 4(b) is a special case of the dual of the uniqueness theorem for the
categorical product, which was proved above. Thus, by the duality principle,
we know that 4(b) is true. If we specialize the notion of coproduct to groups,
modules, or topological spaces, we obtain the concepts *‘free product™, *“direct
sum”, and “topological sum”, respectively. All of these are likewise essentially
unique by the dual of the categorical theorem given above.

The third reason for studying categories is that by using categorical tech-
niques, difficult problems in some areas of mathematics can in certain cases be
translated into easy problems in other areas. Consider, for example, the Brouwer
fixed-point thcorem, which states that every continuous function from the unit
disc into itself has a fixed point. The essential lemma for this theorem—and a
result that is difficult to prove in a purely topological setting—is the following:

There exists no continuous function from the unit disc D onto the unit
circle S that leaves each point of the circle fixed. Proving this lemma is equivalent
to answering the following question in the negative:

Does there exist a continuous function #: D — S such that the diagram

\oﬁ‘
&
=
&

S———S§
identity
commutes?

There exist suitable translation processes from the category of topological
spaces to the category of groups. These translations are special cases of what we
shall later call functors (see Chapter V). For a particular functor, the translation
of the above becomes the following:

Does there exist a group homomorphism ¢ from 0 into Z such that the
diagram

identity

commutes?
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(Where 0 is the trivial group and Z is the group of integers.) The answer to
the latter question is clearly no, from which we can conclude that the answer to
the former question is also no. Thus, the topological lemma can be established
via group theory.

Our fourth reason for the study of the theory of categories is that with it
one can make precise certain hitherto vague notions—such as the concepts of
“universality” and *‘naturality”.

Consider, for example, the following four similar ‘*‘universal” type
theorems:

THEOREM A

For any set X, there exists a group X (called the free group generated by X)
and a function f: X — X such that for any group Y and any function g: X - Y,
there exists a unique group homomorphism §: X — Y such that § o f = g, that is,
such that the diagram

P

Xx——X
:
: -~
AN
S
Y
comnitiles.
THEOREM B

For any completely regular Hausdorff space X, there exists a compact
Hausdorff space £ (called the Stone-Cech compactification of X) and a continuous
Sunction f: X — X such that for any compact Hausdorff space Y and any continuous
Junction g: X — Y, there exists a unique continuous function §: X — Y such that
g of = g, that is, such that the diagram of Theorem A comnutes.

THEOREM C

For any group X, there exists an abelian group X (which is the factor group of
X by its commutator subgroup) and a homomorphism f: X — X such that for any
abelian group Y and any homomorphism g: X — Y, there exists a unique homo-
morphism §:X = Y such that §of = g, that is, such that the diagram of
Theorem A commutes.

THEOREM D

Let A and B be modules over a commutative ring R and let X denote their set
cartesian product. Then there exists an R-module X (called the tensor product of A
and B) and a bilinear function f: X — X such that for any R-module Y and any
bilinear function g: X — Y there exists a unique linear transformation §: £ - Y
such that § o f = g, that is, such that the diagram of Theorem A comnuites.

To explain exactly what these theorems have in common requires a precise
definition of universality. Category theory allows this (see Chapter VII); in fact,
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we will see that all of the above theorems are merely special cases of one very
general, yet very powerful, theorem—the adjoint functor theorem.

Making precise the notion of **naturality” was actually the original reason
for the definition of a category by Eilenberg and Mac Lane.

Consider the following example that motivated their work:

Let V be a finite dimensional vector space over the real numbers R. From V
we can form the set P of all linear functionals from V into R. Using the usual
pointwise definition of addition of functionals and multiplication by constant
functionals, P also becomes a vector space with the same dimension as V.
Thus, from the theory of finite dimensional vector spaces, we know that V and P
are isomorphic. Likewise, since 14 (that is, the vector space of R-linear functionals
over P) has the same dimension as P and V, we know that V and V are iso-
morphic. However, there is a fundamental difference between these two situa-
tions. There is a *““natural” isomorphism between V and P, but there is no
ratural isomorphism between V and P. What is meant by natural? Recall that if
V and V' are finite dimensional vector spaces over Rand F: V — V' is a linear
transformation between them, then there is an induced linear transformation
F: P’ - P defined by F(g) = g F; likewise, there is an induced linear
transformation F: ¥ — V. We will now define the natural isomorphism
V> P:foreach x e V, let #v(x) be that linear functional on P whose value
at any g € P is g(x); that is, (3,(x)}(g) = g(x). Notice the following:

(1) ny is defined without resorting to choosing a basis for V.

(2) There is simultaneously defined an entire class of isomorphisms, one for
each finite dimensional vector space, which are *‘connected™ in the following
way: if F: V — V'is any linear transformation, then the diagram

!

Ty Ny

I

-

F
—_

I3
_F 5

Vpe— X

commutes.

For vector spaces, conditions (1) or (2) or both could be chosen as the
definition of “natural”. However, it is evident that (1) is a special condition for
vector spaces, which cannot be casily abstracted to a categorical situation,
whereas (2) is a condition that can be generalized without difficulty. The
abstraction of (2) is what is actually used, then, as the definition of *“natural”
(see §13).

It is now easy to show that there is no “natural™ isomorphism between each
finite dimensional vector space and its space of linear functionals; for if g,.: V — P
were such an isomorphism (for each space V) and F: U - U’ a linear
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transformation taking all of the vector space U onto the 0 in U’, then the
commutativity of the diagram

U_F..—>U'

&y Eye
A 4 A

U——-10"

would force the isomorphism &, to take all of U onto the 0 of U.

A situation analogous to that which has been described above for vector
spaces occurs in the case of finite abelian groups. Each such group is isomorphic
in a “non-natural” way with its group of characters, but is “naturally” iso-
morphic with the character group of its character group.

“Natural” isomorphisms also arise in analyzing each of the *‘universal”
Theorems A, B, C, and D above. Properly defining and describing “natural”
and “universal” and the relationship between these concepts is one major
accomplishment of category theory.




