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Convexity Theories II.
The Hahn-Banach Theorem for Real Convexity Theories

D. Pumplun, H. Réhrl

Convexity is the appropriate framework for theorems of Hahn-Banach type. Canonical generalizations of the
Theorem of Hahn-Banach can be proved for I'-convex modules for a positive or a real symmetric convexity theory
T'. For the Hahn-Banach Extension Theorem for I'-convex modules, for positive I', the notion of p-continuity, p
a [-convex functional, is essential.
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There are many different versions and generalizations of the classical Hahn-Banach Theorem. In
1978, Rodé proved in (7] an, what he called, abstract version of the Theorem of Hahn-Banach, which
contained all previously proved results of Hahn-Banach type as special cases. The surprising feature in
Rodé’s proof is the fact that he proves his theorem by using as a foundation the notion of an abstract,
equationally defined, universal algebra. which is commutative, i.e. for which all operations commute
pairwise.

1t is well known that all versions of the Hahn-Banach Theorem require some sort of local convexity.
If a topological vector space is not locally convex, then there may be no non-trivial, continuous,
linear functional on it. In [1], Day showed that this is e.g. the case for the p-Banach spaces LP for
0 < p < 1. Hence. in view of Rodé’s result, it is natural to look for commutative, universal algebras,
which are in some sense convex. in order to have an optimal framework for Hahn-Banach type
theorems. Universal algebras of this type, totally convez algebras. were introduced in [6] independently
from Hahn-Banach considerations. In [4] it was shown that Rodé’s idea led to a remarkable Hahn-
Banach Theorem for these algebras. In some aspects. Rodé’s proof had to be modified, but, with
respect to convexity, became even more canonical.

In recent years several other types of “conver” algebras have been introduced and investigated,
e.g. positively convex spaces, strictly positively convex spaces, convex and superconvex spaces (cp.
[5),[9].[10]).[11].[12]). In [10] it is shown that there are uncountably many (canonical) types of “convezr”
algebras. For all these types a Hahn-Banach Theorem would be very useful. Moreover, an analysis of
the proof in [4] showed. that it was actually a proof for positively convex spaces, an observation, which
led to the proof of the Hahn-Banach Theorem for positively convex spaces in [12]). In the following
we will show that a Hahn-Banach Theorem holds for any positive convezity theory T in the sense of
[9]), which constitutes a considerable strengthening of the previous results, and finally we will prove a
Hahn-Banach Theorem for a real symmetric convexity theory.

It should be pointed out that the introduction of totally and positively convex spaces ([5], [6])
and, more generally, of I'- convex modules ([9], [10]). i.e. of those theories, which are the appropriate
framework for canonical generalizations of the Hahn-Banach Theorem, is a direct consequence of a
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famous result in category theory. In 1965 Eilenberg and Moore introduced a construction in [2], which
later on led to the notion of so-called Eilenberg-Moore algebras (cp. [3]), which, for quite a number
of mathematical theories. describe what one could call their algebraic components. The category of
totally convex spaces is the category of Eilenberg-Moore algebras for the theory of Banach spaces and
linear contractions and describes the algebraic contents of the latter. Positively convex spaces play the
same role for the theory of regularly ordered Banach spaces and positive linear contractions.

Let T be a converity theory (in the sense of [9]) over the normed (resp. Banach) semi-ring R. Then T
consists of sequences a. = (a; | i € IN) with ¥_;[les]| < 1, contains the “unit vectors” & = (8§ | k € IN)
and is closed under “substitution”. i.e. {en.f”) = (T; @B |k € IN) e I for a..fi € T,i € IN. T
is called positive, if, for all a. € T and all i € IN,a; € IR and a; > 0 holds. Since the semi-ring of
definition of T, i.e. the sub semi-ring of R generated by {a; | a. € I'.7 € IN} (cp. [9]), is contained in
R* := {z | z € IR.z > 0}, we may assume R = IR*. T is said to be a convezity theory with zero, if
0.:=(0]7€IN)eT holds.

Following [9] we have the concept of a I'-conver module, which is a (non-empty) I-algebra X. i.e.
a set, on which the elements of T' operate, and which fulfills two sets of equations

(TC1) S 6ka = 2k,

=1

(rcz2) Za (Zﬂﬂ") = Z(Za Bi)zt,

1=1 k=1 i=1

fora.,Bi e,z =(z*[keIN) ¢ XN, The above sums are a convenient way to denote the action
of a. € T on the I'-algebra X, i.e. they are defined by the operation e.(X): XN x:

0 .
Za;z’ = ol (X)(z")
i=1

Sometimes, the shorter notation

{a..z27): = Za;m‘.

is used. which stresses the “bilinearity” of the mapping (0,0) : T x XN —, X. It should be noted
that in previous papers on “convex” algebras. e.g. [4]. [5]. [6). [11], [12], the term T-convex “space”
was used instead of “module”.

For a positive convexity theory I', O(IR) ={zlz € R,|z| £ 1}isaT- convex module with T operating
canonically on O(IR). i.e. the formal sum ¥; a;z’ has its usual meaning in IR. In general, O(IR) will
have numerous I'- convex submodules. One of them is S(T): = {p| p € IR and (/:»15l | i € IN) € T}, the
set of scalars of T. One verifies easily that, for every T- convex submodule H of O(IR) the closure H
(in the usual sense) of H in IR is again a I'- convex submodule of O(IR).

I T is a convexity theory with zero and X is a I'- convex module, then Ox : = (0..z") is independent
of z € XN and called the zero of X (cf. [6]. (2.4), [10)). It follows easily from the axioms in [9] that a
convexity theory with zero has the following property: If a. €T and T CIN, then ol : = ; forie T
and af : = 0 else, defines a sequence a? € I'. Analogously, for z* € XN we define T by 27 : = 2
forie T and z'T : = Oy else.

(1) DEFINITION: Let I be a positive convexity theory, X a I'- convex module and H a I'- convex
submodule of O(IR). Then a mapping p: X — H is called



D. Pumpliin, H. Rohrl: The Hahn-Banach Theorem for Real Convexity Theories 389

(i) T-convez. if p(T; aiz’) < T aip(z'), a. €T, z* € XN,
(ii) P-concave. if p (T; a;iz) > T a;p(z’). a. € T. z* € XN,
(iii) T-homogeneous. if p{pz) = pp(z). p€ S(T). z € X.

(iv) T-sublinear, if it is [-convex and I'-homogeneous.

We need the following result, that first appeared in [12}, (7.1).

(2) LEMMA: Let I' be a converity theory and let X be a T'-convezr module. Let furthermore be
a.. B €T, and 27 € X. Sup_pose that two set mappings f.g : IN — IN induce a bijection (f.g) :
IN — IN x IN. Then (ay(;81) | i € IN) € T and

oo

oo (=]

i ) g
Y YoBis = Y eyl R,
=1 k=1

=1

Proof. The simple proof in [12] carries over to the general case (see also [10}).

If X is a I'- convex module. the set of mappings from X to ()(IR) is ordered by the pointwise order,
ie. for f,g: X — O(IR) we put f < g, if f(z) < g(z) for all z € X. This is the order used in all
subsequent statements.

(3) THEOREM (HAHN-BANACH): Let T be a positive converity theory, X a I'- conver
module and H a connected, closed, T- conver submodule of ()(IR). If g : X — H is T- concave,
p:X — H isT- convezx and ¢ < p holds, then there ezists a morphism f : X — H of T- convez
modules with ¢ < f < p.

Proof: The proof proceeds in the same way as the proof of (2.2) in [4], with some modifications.
One shows that the set {r | ¥ : X — H,r I'-convex and ¢ < = < p} is inductively ordered from
below. For this, one needs that H is closed and connected. Let f : X — H denote a minimal element
of this set. Then f turns out to be ['-homogeneous. Next. one shows that, for n € IN.a. € T.z* € XN

fllaw, 2 ) 2 Y aif(z)+ Y aig(z)
i=1 t=n+l

holds. As in [4]. (2.2). this is proved by induction. One puts, for an4; > 0,

n(2) s = inf{ aghi(f({ae.t")) - Ty aif(t:) = TRppziq(t)) | * € XN, tosy = 2, i = piz;
with p; e ST for1<i<n}.

In order to show that this defines a mapping 7 : X — H one again needs that H is closed. One also
uses the fact that S(T) is a I'- convex module (cf. [10]. (1.2)).

The next statement is a generalization of (7.2) in [12] and its proof follows the one given there.

(4) THEOREM: Let T be a positive convezity theory with zero. Let Jurthermore X be a T'- convez
module, Xo a¢ T'- conver submodule of X and H a I'- conver submodule of O(IR). Suppose that p :
X — H isT- conver and r : Xo¢ — H T'-concave, such that

(@) ifa. € T,zo€ XN and Ti = {i | i € IN. =¥ € Xo}, then

r({af,z*T)) < p({a.,2*)).
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(b) if{a.,2*) € Xo fora. € T,z" € XN, and T2 = {i|i € IN. z° € Xo}, then

r({aT .2 T)) < r({@.,z7)).
Then there exists a mapping q: X — H satisfying

(i) g is T - concave,
(li) ‘I/Xo =r,
(iii) ¢ < p.

Proof: Define go : X — IR by go/Xo : = 7 and go(X \ Xo) : = {0}. Put

o (=<}
g(z) : = sup{ Za;qo(z") lea€T.2” € xNz= Za;:t{ }.
=1 =1
Clearly. ¢ maps X to H. 4 o '
(i): Letz={e..2"), a. €T.2" € X Let furthermore be z* = Y7z, B;z4 with 8L €T
z9 € X, i, € IN, arbitrary.
Then, by (2), we have

[\Hf]a

o o0
Z Z §i: = zam)ﬂ/(k) J(k).ath),

k=1

W
-

hence, by (2) again.
q(z) 2 Z a8y o(zT WMy = 3 o >~ Bigo(2Y).
i=1 i=1

Since T is positive, we obtain, by passing to the supremum on the right side.

Ll .
g(z) > Y aig(sh).

i=1

This shows that g is I'-concave.

(ii): Clearly zo € Xo implies g(zo) > r{zo). Now. for 29 € Xo, take a representation zg = (a.,z”)
with a. € T,z* € X'N. By (b) we have

r(z0) > r({aT.z°TY) 2 (T . PN(z"T)) =

(@l qMzT)) = (@, e (z)) = Y cugo(z),

i=1
and passage to the supremum yields r(zo) > g(%o). Hence ¢/Xo = r. Here and in the following, for a
sel mapping h: X — Y, RN xN _y N is the canonically induced mapping.

(iii): For z € X take a representation z = 3°{Z, a;z' = (.. z7). Due to (a), (i) and (ii) we get

poz) > r((el.2°TY) = q{al 2T 2 (T g (="T)) = (e g8 (z7)).

Passage to the supremum on the right side yields p(z) > ¢(z).

(5) COROLLARY: Suppose that H in (4) is contained in IR*. Then (4), (a) and (b), are necessary
for the ezistence of a mapping ¢ : X — H satisfying (4), (i) - (iii).
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Proof: Suppose that ¢ satisfies (i) - (iii) in (4). Denote the restriction of ¢ to Xo by r. Let z =
{@..z”) € X and T as in (4), (a). Since H C IR*, we obtain

p(z) 2 4(2) 2 {a..d™N(z") 2 (eI ¢N(zT)) = (aT . TN(z'T)),
which is (4), (a). Next, let zg = (a..z") € Xo and T as in (4), (b). Here, we have

r(z0) = ¢(20) 2 {ae, N (")) 2 (aF,gN (2" T)) = (T . FN(zT)),
which is (4), (b).

Combining (3) and (4), we get the

(6) PROPOSITION: Suppose that T’ is a posilive convezity theory with zero and that H is a
connected, I'- convezr submodule of C)(IR). Let X be a T- convezr module and Xg a '~ convezr submodule
of X.Ifp: X — H isI'- convez, r : Xo — H is T- concave and (4), (a), (b), are fulfilled, then
there ezists a morphism f : X — H of I'- conver modules withr < f{X, and f < p.

Next, let I' be a positive convexity theory with zero, let X be a I'- convex module, Xg a I'- convex
submodule of X and H a I'- convex submodule of O(IR). Suppose that p: X — H is a mapping. A

mapping f : Xo — H is called p-continuous, if {a..z°) = {8.,¥°). a.,f. € T. z*.y* € XN implies
FQC ar’) < S B+ 0 Y Biv')

i€T ieU ielN\U

where T: = {i i€ IN,z' € Xo}.U : = {i| i € IN.y' € X¢}.
Note. if there is a p - continuous mapping, then p is non-negative on the I'- convex submodule of
X generated by X \ Xo. Moreover, every p - continuous mapping f satisfies

. a‘z)<f(zafc') FOo By Y <p( Y. Bi).

i€IN\T ieV ielN\U

Under the assumptions made for defining the notion of p-continuity, we denote by d: Xgx X — H
the mapping given by

d(zp.2): = inf{ p( 2 a;z')| z = {@.,2), 20 = (o ,z°T), for some a. €T, 2" € xN rc IN}.
i€IN\T
(7) LEMMA:
(i) d(0,2) £ p(z),z€ X.
(ii) d(z0.20) < P(0),20 € Xo.
(iii) If p is - convez, then, for any a. € T', 25 € : AN,Z' e xWN,

(e 230, (e ) € 3 (5 2)
i=1

holds.

Proof: The proof of (i) and (ii) is straightforward. To show (iii). let £ > 0. Then, for every i € IN,
there are 8% € I',z** € X and T: C IN, s.th.

“Zﬂ‘ w‘ Zﬂx w~

veT,
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d(zh.2) <pl( Y. B2") <d(z,2) + e
velN\T;

Denote T': U{ i} x T:, and. with a bijection (f,9) : IN — INXIN as in (2). put U : = (f.g)"Y(T) C

IN. Then, in the notation of (2), we have

o £6)_ f(k)alk
3 = Eank)ﬁg(k)zﬂ )l ),
k=1

N S (k) , fk)o(k
0= Z j(k]ﬂ ) 2 k)alk)
kelU

hence o
d(Zo, 2‘) S p( Z Qj(k)ﬂ f(k),g(k)) =
kelN\U

=p(Y e D BE)<Y e 3 B

i=1  LelN\T, i=1 veIN\T;

o o0
<Y auld(zh, ) + 6] < Y eid(zh. 2 + e,
=1

i=1
which proves (iii).

We are now in the position to prove an

(8) EXTENSION THEOREM OF HAHN-BANACH: Let T' be a positive convezity theory
with zero, H be a connected, T'- convez submodule of O(IR) and p: X — H a T'- convex mapping from
a I'- convezr module X. Then, for any T'- convez submodule Xq of X and any p-continuous morphism
fo: Xo — H of T- conver modules, there is an ertension f: X — H with f < p.

Proof: Define
g(z) : = inf{d(z0,2) + folzo) | To € Xo}
for z € X. (7), (i). yields
g(x) < d(0.z) + fo(0) = d(0.2) < p(z).

Due to (7), (ii), we have for z¢ € X
q(z0) € d(z0,z0) + fo(za) < p(0) + fo(z0) £ fa(z0).

as p is [-convex.
Next, we will show that g is - convex. For this. let a. € T. 2" € zN. For every € > 0 there are
zj € Xo, such that ¢(z* Y < d{zh.z') + folzh) < ¢(z*) +£.i € IN. Hence, due to (7), (iii).

q(('_)=:l a;z') < d({e.,zp) {a..27)) + fol{a..z5))
< g:l a;d(zh.z') + 5; a; fo(zh)
<

o .

Y aig(zf) + e

i=1

Since ¢ is arbitrary, the I'- convexity of g follows. Finally, put

r(z): = sup{ fo(z a;z) |z = (a.,a:'),(a?,x'T) € Xo },

€T
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for z € X We claim that r is I'- concave. For this. let a. € T, z° € XN_ Given £ > 0, there are
Biel.z9eX, i,j€IN,and T; C IN, s.1h.

o0
=Yg Taex

JET,

and

rz') - € < ol X Bi2) < (=),

1€T,
i€ IN. For z = 3%, a;z¢, we get from (2)

0o oo 3 16)
_ R § 47 k).g(k
= ZQ‘ Zﬂjz-’ = ;a!(k)ﬁg(k)zj( )ugl( )
=l j=1 =1

If we define. for i.j € IN. B
wl ;= { for je€T:
0, else,

and T : = {k|k € IN and g(k) € Ty(y)}. (2) yields

Z a!(k)ﬂl(k) Sk g(k) — Zal(k)ﬂ!(“)uf(k),g(k) — za Zﬂ' ij — za‘ s ﬂ, i € Xo.

=1 =1 =1 j€Ti
Hence
r(Za )2 f(3oas B2 = el S Bi2) 2 3o am(a) - .
=1 jeT, i=1 JET: i=1
for any £ > 0, i.e. r is -concave. Moreover. the p-continuity of fo implies. that, for z = (a..z") =
(Bu.y"), T:={i|i€IN.z' € Xo},U :={i|i€IN.y € Xg}.
fo(Qoaix) < fo(3_B)+p( 3. Biy)
€T eV ielN\U
holds. If we only regard f..y". s.th. zo = ¥ ey Biy' we get
o3 a;z') < folzo) + d(zo. 7).
i€T
resp.
r(z) < g(z).
Now. r(z) > fo(0) = 0 for all z € X. and we get
0 < r(z) <g(z) < pfz). z€ X.
As0¢€ H and p(z) € H. we get g(z) € H, because H is connected and thus also r(z) € H. Hence (3)
implies the existence of a morphism f: X — H with r < f < ¢ < p. For zg € Xp this implies
fo(za) £ r(zo) < f(20) £ g(z0) < Jo(zo)
i.e. f(zg) = fo(zo); f is an extension of fy.
One should note that the last section of this proof shows that actually f(z) € H+ for z € X, where

H*:= HnIRY, the non-negative part of H is a I'- convex submodule of H. Hence, if we discuss the
possibility of extending fo : Xo — H by a morphism f: X — H,sth. f(z) > 0forall z € X and
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f < p. the condition of p-continuity is also necessary. Because for (a..z") = {f..y") with T.U C IN
as in the definition of p-continuity, we get

fo (Zaﬂ") < Yeif@)+ Y aif(z)
ieT €T i€IN\T
= DB+ Y BSG)
34 ielN\U
< fo (Zﬂ;y‘) +P( > ﬁif(?l‘)) .
el ielN\U

In order to get the analogue of the classical extension theorem we need the concept of real symmetric
convexity theories. We call a real convexity theory [' symmetric, if the following conditions are fulfilled:

(i)0. €T,
(ii) a. € T implies —a. = (—a; |i € IN) € T. _
(iii) there is an a. € T with at least two non-zero components .

Let T' by symmetric and let a. € T have at least two non-zero entries. We may assume a; #
0 and az # 0. It follows easily that (o, 3 2,0;,0.0...) isin I'. If ¥%,0a; = 0, replace a. by
(a1, —az,03,...), which is again in T', and form (a;, —az + 3 {234,0.0,...) € T. Then the second
component of the latter is different from 0. In any case there is a (@), 22.0,0,...) € [ with a;a; # 0.
Hence, the element

ay(@2,0,0,...) + a2(0, £, 0,...) = (a102, £ 22.0,0....)

is also in I'. In other words, I contains an element of the form (a,+a,0,0,...) with a # 0.

If T is real symmetric and X is a ['- convex module, one verifies easily that ¢ : X — X, defined
by o(z) : = —z : = L2(—8})z is an automorphism of I'- convex modules. Finally we put '} : =
{a. | a. €T and a; 2 0.i € IN}.

(9) PROPOSITION: Let I' be a real symmetric convezity theory. H a connected T'- convez
submodule of O(IR) and X a I'- convex module. Suppose that p : X — H is a Ty- convezr map-
ping with p(0) = 0. Then there ezists a morphism f : X — H of I'- convex modules, such that
—-p(—z) £ f(z) < p(z) holds for z € X.

Proof: Put q(z) : = —p(—z), then ¢ : X — H. Let (a,-2,0.0,...) € T with @ > 0. then
{@.,z7) = 0 for z°: = z,i € IN. In abbreviated form the last equation is mostly written as az — az =
az + a{-z) = 0. We get

0 = p(0) < ap(z) + ap(-z)
and thus g(z) = —p(—z) < p(z). As q is obviously 'y - concave, (3) yields the existence of a morphism
f: X — H of Ty~ convex modules with —p(-z) < f(z) < p(z),z € X. As ¢ is 2 morphism of
T- convex modules and commutes with f, we get j(—z) = — f(z) for £ € X. For a. € T we denote by

la]. the sequence defined by |al; : = |ey], i € IN. It is easy to check that |a]. € Ty. Hence we have
oG R o A
fQ o aiz’y = f(3_leil(sgn(ai)z’))
=1 i=1

S lailftson(ai)e’) = Y- acf (@),

i=1 1=1
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showing that f is a morphism of T'- convex modules.

(10) EXTENSION THEOREM OF HAHN-BANACH (Symmetric Version): Let T be a
real symmetric convezity theory and H a connected I'- conver submodule of O (IR). Suppose that X is
a I'- conver module and p : X — H is I'-sublinear. Then, for every - convez submodule Xo of X,
any morphism fo : Xo — H of ['- convez modules with fo < p/Xo can be eztended to a morphism
f:X — H of T'- convez modules, such that —p(-z)} < f(z) < p(z), forallz € X.

Proof: There is an a > 0, such that (a,+a,0,0,...) € T. With this o one defines, as in the proof
of (3.2) in [4), for z € X,

g(z) : = a tinf{plaz — azy) + afo(zo) | zo € Xo}

and proves in exactly the same way that ¢ is I'y- convex and fulfills —p(—z) < g¢(z) < p(z). Now
the existence of f with —g(—z) < f(z) < ¢(z) follows directly from (9). For zo € Xy, we have
g(z0) £ fo(zo). which implies —g(—z0) > fo(zo). Hence, for z0 € Xo . f(z0) = fo(zo) holds, i.e. fis
an extension of fo.

It should be noted, that. in the symmetric case, no p -continuity is needed, an an assumption, which
is necessary in the positive case,
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