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Fubini’s Theorem from a Categorical Viewpoint

R. Bérger

Abstract: Integrals can be defined by a universal measure. Then Fubini’s theorem follows
from the preservation of a binary coproduct by a left adjoint functor. Here we give only a
simplified version. which works only for simple functions but shows the main ideas.

Introduction

The map x which assigns to every element of a set algebra B its characteristic functionis a
charge (i.e. a finitely additive set function) on B with values in the vector space LB of simple
functions. As F. Linton ([4],[5]) observed, this charge is even universal, i.e. every (vector-valued)
charge factors uniquely over x. The induced map assigns to each function its integral (see 3.2
below). Moreover. LB is even an algebra under pointwise multiplication, and y is multiplicative
in the sense that x(1) = 1 and x(X NY) = x(X) - x(Y) for all X,Y € B. It is easy to see
that y is even a universal multiplicative charge. Thus, for an algebra A, multiplicative charges
B — A correspond to algebra homomorphisms LB —+ A. and this bijection is natural in
both arguments. On the other hand, multiplicative charges also correspond to Boolean homo-
morphisms B — JA, where JA is the Boolean algebra of idempotents of A (see 5.1 below).
Thus, considering arbitrary Boolean algebras rather than set algebras (cf. [3]), we obtain an
adjunction L - J. Hence L preserves colimits. in particular binary coproducts. Since simple
functions of two variables correspond to simple functions on a coproduct of two Boolean alge-
bras, we obtain a version of Fubini's theorem (Section 6).

This only works for simple functions. By convergence arguments we can get a generalization
to bounded measurable functions, if B is even a o-algebra of sets. This can be done by conside-
ring Boolean algebras and vector spaces with sequential topologies subject to some conditions.
But this is much more complicated, see [1]. On the other hand. the finitely additive version
already gives a flavour of the “algebraic” part of Fubini’s theorem. Moreover, since we are not
concerned about convergence. we have no difficulties to develop the theory over an arbitrary
field. even over a commutative unital ring.

So we always work over a fized commutative unilal ring R. All tensor products are taken over
R, all R-algebras are associative, commutative, and unital, and all R-algebra homomorphisms
preserve the unit element.

This work is an original contribution and will not appear elsewhere.
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Likewise - but different from Linton’s ([4]. [5]) notations — every Boolean algebra has a top
element 1; the bottom element is denoted by 0. For a set algebra B on a set {2 we always assume
Q € B: the other axioms are (X, Y € B= XNY € B) and (X € B = Q\X € B). Then
we also have D € B and (X,Y € B= X UY € B). We reler to [2] and [6] for the theory of
Boolean algebras.

1. Simple Functions

Let B be a set algebra on a set Q. A B-simple function is a map f: Q — R such that its
image f[Q?) C R is finite and f~}[{¢}] € B for all ( € R. We denote the set of all B-simple
functions by LB. For any f.g € LB and all a € R the pointwise sum f + g and the pointwise
multiple af are B-simple, and LB is an R-module under these operations.

For X € B we have the characteristic function x(X) : Q@ — R. where

, 1. ifwe X,
X0 =g gk

One easily sees that x(X) € LB for all X € B. Moreover, let FB be the free R-module over
B and let n : B — FB be the universal map. Then the universal property of F'B renders a
unique R-linear map ¢ : FB — LB with goy = x.

1.1 Theorem:For any set-algebra B, there is an ezact sequence

0— K< FB-5LB —s 0,

where the submodule K < FB is generated by all n( X))+ 9(Y) — (X UY) with X, Y € B,
XnYy =40

Proof: For K as in the theorem, we first prove the following

Claim: For every s € FB. thereexist n € INU{0}. o,....ay, € R. X;....X, € B such that

X;iNX;=0fori#jands— 35 am(X;) € K.
=1

k
Every t € FB has a representation t = Y pin(Z;), where k € INU {0}, p; € R, Z; € B. We
<1
proceed by induction on k. The case k = 0 is trivial. Now assume that the claim is true for
k41 k
a given k and let s = 3~ pin(Z:) be given. By induction hypothesis, for ¢ := 3 p;in(Z;) there
i=1 i=1
exdst m€IN, B..... Bn€R, Y...., Y,,,eBwithY;ﬂY,-fori;éjandt—iﬂ;r](}’;)eh’.
=1

Foreveryi <mwehave YN Zyp € B. Y\Zn € B, (YiNZi) N (Y\Zia) = 0,
(YiN Ziy 1)U (Y\Zry1) =Y, hence p(Yi N Zisy) + 1(Yi\Ziyr) — n(Y) € K.

From this we conclude ¢ — §1 Ben(Yi N Zig) - §l Bn(Y\Ziwr) = 3 Bi(n(Yi 0 Zags)
i= = i=1
(Y Zen) = (= £ Ba(Y) = £ B0 Zun) + 7Y Zin) = 2(¥) € K.
Now we have Z;., = _Q(Y;ﬂZkH)UZ’ for Z' := Z) 1\ lZ‘J1 Y.. By an easy induction argument

we see that f: (Yin Zep) + 9(2") — 9(Zk41) € K. Since s = t + pry1n(Zi41 ), we obtain
i=1
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s— __Zl(ﬂ; + pep)n(Yi N Ziyn) - ; Bin(Y\Zky1) — pran(2')

=t+ prs1(Zipr) — iﬁ Bin(Y: O Ziyr) — pras }: YN Ziy) - z Bin(Y\Zx41) — pear(Z')

=(t- Z Bn(YiN Ziy) - Z B:n(Y\Zk41)) — s Z( (YiN Zi4) +0(2') — n(Zi41)) € K.
But t,he 2m + 1 sets ¥; N Zk.,.,, Y\Zi41, 2’ are pau‘mse disjoint. This finishes the induction and
proves the claim.

Now we prove ker¢ = K. On the one hand. for X,Y € Q with X NY = ) we have
x(XUY) = x(X)+ x(Y) hence g(n(X) +n(Y) = (X UY)) = gon(X) +gon(Y)—qon(XUY)
= x(X)+ x(Y) = x(XUY) =0. proving K Ckerq.

Conversely, assume s €kerg. Then by the above claim there exist n € IN U {0},

ay,..0n €ER, Xyoo.o, Xn € Bwith X;NX; =0forisjands— i an(X;) € K Ckerg,
=1
hence 'i (X)) =s—(s- i a;n(X;)) €kerg, thus 0 = q(i an(X;)) = i agon)(X:) =
i=1 =1 i=1 i=1
i a;x(Xi). If w € X, then we have x(X;)(w) = 1, but for i # ip we have X; N X;, = @, hence
=1

w & X; and x(X;)(w) = 0. This gives a;, = z: a;x:{(X:)(w:) = 0. proving that for any ig either
X;; =W or oy, =0, hence o;,n(X;) =0 or a,or]()s ) = a;n(0).
This gives 3~ an(X;) = an(d) € K for some a € R. because n(8) = 1(8)+n(8)—n(dUd) € K.
i=1

Now we obtain s = (s — i an(X;)) + i an(X;) € K, proving kerg = K, i.e. the above se-
i=1 =1
quence is exact at FB.

Since the inclusion K «— FB is trivially injective. the sequence is also exact at /. Moreover.
if f € LB, then f[Q] is finite. e.g. f[Q)) = {a;..... an}. For every 7 € IN. we have

X; .= fT'{e:}] € B. and it follows casily that f = f: a; x(X;) = i a:(qgon)(X;)
i=1 =1

= g( i a;7(X;)) € q{FB]. This proves that q is surjective, i.e. the sequence is also exact at LB.
=1
[m]

2. Functions of Two Variables

Let B; be a set algebra on Q; (i € {0.1}). Then for 2 := € x ; and the canonical pro-
jections p; : @ — Q; (i € {0.1}) we consider the smallest set algebra B on ) containing
all ‘\0 x X, = (Xp x Q)ﬂ(ﬂo x X)) = pg'{Xo) N p7[X.], where Xo € Bo, X1 € B,. Then

: B; — B. X +— p{'[X] is 2 Boolean homomorphism. and B is generated by vo[Bo]Uv:[B,]
as a set algebra. i.e. as a Boolean algebra.

2.1 Theorem: In the above situation, B is a coproduct of By and B, in the category Bool of
Boolean algebras, with injections v; : B; — B (1 € {0,1}).

Proof: The result follows immediately from the following coproduct criterion:

2.2 Lemma: Let B, By, B, be Boolean algebras and let v; : B; — B be Boolean homomor-
phisms. Then B is a coproduct of By and B, with injections v; : B; — B (1 € {0,1}), if and
orly if the following conditions hold:
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(i)B is generated by vo[Bo) U v1[B1] as a Boolesn algebra.

(ii) If z; € BA{0} (i € {0.1}), then vo(zo) A vy(z1) # 0 in B.

Proof: “=>" The construction of the coproduct (=sum) B := BglIB, is standard (cf. e.g. [2]).
Let u,; : B; — B be the coproduct injections and let B’ C B be the Boolean subalgebra gene-
rated by uo[Bo] U u;[B,]. Then the u; restrict to Boolean homomorphisms u}: B; — B’ (i €
{0.1}). For the inclusion j : B' < B we have jou! = u; (i € {0,1}). The coproduct property
renders a unique r : B — B’ with rou; = v} for i € {0,1}. This leads to jorou; = jou! = y;
for i € {0,1}. Since j or and the identity B — B are both Boolean homomorphisms, they
coincide by the uniqueness condition of the coproduct property. In particular, j is surjective.
hence B’ = B, proving (i).

For o € Bo\{0}. z; € B)\{0} there are Boolean homomorphisms k; : B; — 2 with
hi(z;) = 1, where 2 = {0,1} is the two-element Boolean algebra. Then the coproduct pro-
perty yields a unique homomorphism & : B — 2 with hou; = h; for 1 € {0,1}. This gives
h(uo(z,) Auy(z1)) = (houg)(zo) A(hou)(z1) = ho(xe) ARi(z1) =1 A1 =135 0= h(0), hence
uo(zo) A ur(z1) # 0, proving (ii).

“e=". Let u; : B; — BolIB, be the coproduct injections (i € {0,1}). Then the co-
product property gives a unique Boolean homomorphism v : BoliB;, — B with vou; =
v (1 e {0,1}). Now v is surjective by (i). Moreover, every z € BOHBI admits a representation

z= (uo(zok) Auy(zx)), where zo € B; (i€ {0.1},k=1,. (cf. [2]). This can also be
k=

seen dxrectly in the following way: the set of all z such that both z and z° admit such represen-
tations is closed under the Boolean operations and contains the images of the injections; hence
it is all of Bo I B;.

If we have z # 0, then we get ug(Zok,) A ui(Z1k) # 0 for some kg, hence u;(z;,) # 0. thus

Tiko # 0 for both i € {0, 1}. Now (ii) gives 0 # vo(Zok,) A v1(T1x) \n/ (vo(zox) A v1(z1x))

=V (v o up(zox)) A (v o uy(z11))) = v( V (up(zor) A uy(z44))) = v( ) hence v(z) # 0. But

BOUB, is an abelian group under the symmetnc difference (i.e. z+w:=(zAw)V (z°Aw) =
(2 Vw) A (z Aw), where © denotes complementation). and v is a group homomorphism. Since
we have seen
kerv = {0}, we see that v is also injective.

Thus v is bijective and hence a Boolean isomorphism, because Bool is monadic over Set.
Then the result follows immediately. O

3. Universal Charges

Now we work over an abstract Boolean algebra B. A map u from B to an R-module A is
called a charge, if p(z Vy) = p(z) + u(y) holds for all z,y € B with z Ay = 0. Then we also
have p(0) = (0 V 0) = u(0) + u(0), hence u(0) = 0.

Now we consider the universal map n: B — FB (where FB is the free R-module over B).
Let K < FB be the submodule generated by all elements n(z)+7(y)—n(zVy), where z,y € B
with z Ay = 0. We define LB := FB/K. and for the canonical projection ¢: FB — LB we
define x :=qon: B — LB.
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3.1 Theorem: x : B — LB is a charge. For any R-module A and any charge py: B — A,
there ezists a unique R-linear map | : B — A withlo xy = p.

Proof: For z,y € B with zAy = 0 we have x(z)+x(y)— x(zVy) = ¢(n(z)+n(y)-n(zVy)) = 0,
because 5(z) + n(y) — n(z V y) € K. This proves that x is a charge.

If 4 : B — Ais a charge, the universal property of FB yields a unique R-linear map
h: FB — A with hoy = y. For z,y € B with x Ay = 0 we obtain A(n(z) +n(y) —n{zVy)) =
u(z) + p(y) — p(z Vy) = 0. This gives K C kerh, and thus there is a unique R-linear map
l: LB — A with log = h. This I satisfies lox =logon = hon = g, and clearly ! is uniquely
determined by the equation {0 x = p. 8]
3.2 Remarks: For R = IR and B a set algebra, we see from 1.1 that LB and xB here are the
same as in section 1 (up to a canonical isomorphism). Thus we may assume that LB is the
space of simple functions and that for any X € B. y(X) is the characteristic function. Then for
u. 1 as in 3.1 we have [ o x(X) = p(X) = [ x(X)du. But [ and the integral are both R-linear,
and since x[B] generates LB as a vector space, we see that {(f) = [ fdu for all f € LB.

But the above definition of LB does not depend on a representation of B as a set algebra.
So the elements of LB can be viewed as generalized simple functions. Moreover, for f € LB
and g,! as above we iniroduce the notation [ fdp := I(f).

By M(B, A) we denote the set of all charges on B with values in A. Then M (B, A) is even
an R-module under pointwise operations, and M : Bool®”” x Modg — Modg becomes a
functor in the obvious way. For any fixed B. A the map Modgr(LB,A) — M(B,A),l —s loy
is clearly an R-module isomorphism. This even gives a natural isomorphism between the func-
tors M(B.0).Modg(LB.0Q) : Modr — Modg. i.e. M(B,0) is represented by LB. For any
Boolean homomorphism, the induced natural transformation M(h.0O): M(B’,0) — M(B,0)
corresponds to a unique R-linear map Lh : LB — LB by the Yoneda lemma. It follows easily
that L : Bool — Modp, is a functor. Thus we obtain:

3.3 Corollary: The functors M : Bool’” x Modg — Modpg and (B, A) — Modg(LB. A)
are naturally isomorphic. o

4. Multiplicative Charges

Till now we have not used the fact that the simple functions over a set algebra are clo-
sed under pointwise multiplication; they even form an (associative, commutative and unital )
R-algebra. We can generalize this multiplication to our “pointless” approach in the following
way: let B be a Boolean algebra. Then “A”: B x B — B is an associative and commutative
binary operation on B with unit element 1. Since (7(z)):ecp is a base of FB, there exists a
unique bilinear multiplication “-” on F B such that n(z)-n(y) = n(z A y) for all z,y € B. Since
associativity and commutativity are multilinear identities, we see that F'B is associative and
commutative. By the same reason, 1 :=7(1) is a unit element of FB.

4.1 Lemma:Let B be a Boolean algebra and let K < FB be the submodule generated by all
n(z) +n(y) —n(zVy), wherez.y € B withx Ay=10. Then K is an ideal in FB.

Proof: For z.y.z € B, we have (n(z) + n(y) — n(zV y)) - n(2) = (n(z) - n(z) + n(y) - n(z)-
n(zVy)-n(z)) = n(zAz)+n(yAz)—n((zVy)Az) = n(zAz)+09(yAz) —n((zAz)V(yAz)) € K.
because (zAz)A(yAz)=zAyAz=0Az=0. Since the n(z) generate FB as an R-module
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and by definition of K. 4.1 follows immediately. m]
Now the quotient LB := FB/K is also an R-algebra. For the projection g: FB — LB and

for x := gonasin 3.1 we see that x(1) = qon(l) = ¢(1) =:1 is a unit element of LB, and for

z.y € B we have x(zAy) = qon(zAy) = q(n(z)n(y)) = (gon(z))-((gon(y)) = x(z)-x(y). If Ais

an R-algebra, we call a charge 4 € M(B, A) multiplicative, if u(1) = 1 and p(zAy) = p(z)-p(y)

for all z,y € B.

4.2 Theorem: Let B be a Boolean algebra. Then x : B — LB is a multiplicative charge. For

every R-algebre A and every multiplicative charge p: B — A the map LB — A, f — [ fdu

is a (unital) R-algebra homomorphism.

Proof: It has already been shown that x is multiplicative. Integration is R-linear by 3.1.

Moreover, we obtain [ldu = [ x(1)dp = p(1) = 1. For r.y € B we have [(x(z) - x(y))du

= [x(zAy)dp = p(z Ay) = p(z) - p(y) = [ x(z)du - [ x(y)dp. Since the x(z) generate LB as

an R-module, by bilinearity we obtain f(f-g)dp = [ fdu - [ gdu for all f,g € LB. ]

4.2. means that the universal charge is also a universal multiplicative charge. Conversely, for
a multiplicative charge 4 : B — A and an R-algebra homomorphism [ : A — A’ it follows
immediately that o p: B — A’ is also a multiplicative charge. By M*(B. A) we denote the
set of A-valued multiplicative charges. Then the above maps M*(B, A) — Algg(LB, A),
pu+— [Odyp and Alggp(LB. A) — M*(B.A) . [+ lo x are inverse to each other.

Similarly mutliplicative charges compose with Boolean homomorphisms on the right, hence
M* : Bool” x Alg; — Set is a functor. Note that M *(B. A) is not a submodule of M (B, A):
it is neither closed under sums nor under scalar multiples. For a fixed B the above bijection
gives a natural transformation between the functors A{*(B,0) and Algg(LB.0O).

From the Yoneda lemma it follows that L : Bool — Algy is a functor. This can also
been seen directly from 4.2: If A : B — B’ is a Boolean homomorphism and if x : B —
LB, x':B' — LB’ are the universal charges. then x' o h € M*(B, LB'), and thus the map
Lh:LB— LB,

f— [ fd(x'oh) is an R-algebra homomorphism. The functorial properties of L follow from
standard argument. From this we obtain:

4.3 Corollary: The functor M* is naturally isomorphic to the functor

Bool” x Algp — Set, (B.A)+—— Algg(LB. A). o

5. Boolean Algebras of Idempotents

We have seen that the functor M* is “representable in the second variable”. Now we shall
give a “representation” of M* “in the first variable”. For an (associative. commutative and
unital) R-algebra A let JA be the set of all idempotents, i.e. all f € A with f2 = f. Then, by
straightforward arguments. JB is a Boolean algebra with top element 1 and bottom element
0, where fAg:=fg. f:=1~fand fVvg:=f+g— fgforall f g€ JB.

5.1 Theorem:For every R-algebra A, the inclusion ¢ : JA — A is a mulliplicative charge.
For every Boolean algebra and every multiplicative charge u: B — A there is a unique Boo-
lean homomorphism h: B — JA with toh = p.

Proof: Straightforward; just note that u(z) = u(z A z) = p(z)? hence u(z) € JA for every
u € M*(B,A), z€B.
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5.2 Remark: If 2 := 1 + 1 is not a zero divisor in A, (i.e. if the additive group of A has
no 2-torsion), we have some kind of converse of the above statement: every up € M(B, A)
with (1) = 1 and p[B] C JA is multiplicative. Indeed for z,y € B with z Ay = 0 we ob-
tain p(z) + uly) = p(z Vy) = u(z Vy)* = (pz) + 1(y))* = p(z) + 2u(z)uly) + p(y)* =
g(z) + p(y) + 2u(z)pu(y), hence 2u(z)pu(y) = 0 and then p(z)p(y) = 0 by our hypothesis, Now
for every z,y € B we obtain u(z) - u(y) = (u(zAy) + pu(z Ay°)) - (u(z Ay) + p(z°Ay)) =
p(zAY) +p(zAy) (2 Ay) +p(zAy©)- u(zAy)+p(zAy)-p(sAy®) = u(zAy)+040+0 = u(zAy).
If 2 is invertible in R (in particular, if R is a field of characteristic # 2), then 2 is invertible
and hence a non-zero-divisor in every R-algebra.

5.1 leads to the desired “representation”of M* “in the first argument”. Note that
J : Algp — Bool is trivially a functor.

5.3 Corollary:M* : Bool®™ x Alg, — Set is naturally isomorphic to the funcior

(B, A) — Bool(B, JA). o
Composing the natural isomorphisins of 4.3 and 5.3 we obtain bijections Algg(LB,A) =
M*(B, A) = Bool(B, JA), natural in both arguments. Now we immediately obtain the follo-
wing:

5.4 Theorem: The functor J : Algp — Bool is right adjoint to L : Bool — Algp. o
5.5 Remark: If B is a set algebra on a set §, then by 1.1 we may view the elements of LB
as simple functions. We easily see that f € LB is idempotent if and only if f(w) is idempotent
in R for all w € Q. In particular, if 12 is a connected ring (i.e. R # {0} and 0,1 are the only
idempotents of R), then an idempotentent simple function f attains only the values 0 and 1,
hence f = x(X) for some unique X € B. This means that ¥ : B — JLB, X — x(X) is a
bijection and hence an isomorphism of Boolean algebras. But ¥ is the unit of the adjunction
from 5.4 at B.

Since every Boolean algebra is isomorphic to a set algebra by Stone’s representation theorem
(cf. [2],[6]), we see that the unit of the above adjunction is always an isomorphism. This can
also been seen by a direct translation of the above argument. Thus J is full and faithful in this
case. But note that 5.4 still holds for arbitrary R.

In the classical situation A = R = IR, by 5.1 multiplicative charges on a Boolean algebra B
correspond to Boolean homomorphisms B — JIR = 2, i.e. to ultrafilters (or maximal ideals)
in B.

6. Fubini’s Theorem

From 5.4 we see that the left-adjoint functor L preserves colimits, in particular binary co-
products. But in Algp, the coproduct is the tensor product, because all algebras are assumed to
be commutative and unital. For R-algebras Ao, A;, the multiplication on Ap ® A, is the unique
bilinear operation with (fo® f1)(90® 1) := fogo ® f1g: for all f;, g; € A;, wherei € {0,1}. The
coproduct injections j; : A; — Ay ® A, are given by jo(fo) := fo®1, H1(fi):=1@f. T Ais
an RR-algebra and if [; : A; — A are R-algebra homomorphisms, then the unique R-algebra
homomorphisms ! : Ag® A, — A with loj; = I; (i € {0,1}) is the unique R-linear map with
[(fo® fi) = l(fo) - L(f1) for all fo € Ao, fi € Av.

6.1 Theorem: Let By, B, be Boolean algebras and let B; — Byll B, be the coproduct injections.
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Then the unique R-linear map k : LBo@® LB, — L(Boll B,) with k(fo® f1) := Luo(fo)-Lui(f1)
is an R-algebra isomorphism.

Proof: By the above argument, k is the unique R-algebra homomorphism induced by the co-
product property of LBy ® LB,. Since the coproduct of By and B is preserved by L, k is an
isomorphism. o

Now let x; : B — LB; (i € 1) and x : BelIB, — L(BollB,) be the universal charges.
For arbitrary (not necessary multiplicative) charges y; € M(B;, R), we define [; : LB; — R
by Li(f) := [ fdu (7 € {0,1}, f € LB;). For the multiplication isomorphism m: RQ R — R,
a®fr— aff, wehave p:=mo(lo®!,)o k™o x € M(B, R). We call u the product charge of
#o and p,. For f € L(BollBy) we get [ fdu = (mo(lo® )0 k™')(f).

For o € By, 1z, € B;, we have k(xo(z0) ® x1(21)) = (Luo 0 xo(x0)) - (Lu; 0 x1(z1))
= (x o up(z0)) - (x 0 u1(z1)) = x(uo(zo) A ui(z1)), because x is multiplicative. This leads to
#(uo(zo) A ur(z1)) = (mo (oo hy) 0 k™')(uo(zo) A wi(z1)) = (m 0 (lo ® h))(xo(Z0) ® X1(21))
= m((lo @ X0)}(20) ® (I © x1)(z1)) = M(so(z0) ® #11(21))) = po(z) - p1(z1).

Now return to the case that B; is a set algebra on Q; for 1 € {0,1}. Then by 2.1 we
may regard BolIB, as a set algebra on Qp x Q,, and for Xo € By, X; € B, we have
Xo x X1 = uo(Xo) N uy(Xy), hence u(Xo x X;) = po(Xe) - #1(X)). Then u is the product
charge in the usual sense, i.e. it is defined like the “product measure without o-additivity”.

Now consider the elements of LB; (i € {0,1}) and L(BolB,) as simple functions. Then for
any wp € g, w; € ) we have x(Xo x X;)(wy,w1) = xo(Xo)(wo) - x1(X1)(w1), hence
I x(Xo x Xy )(wo,wi Ju(d(wo, w1)) = u(Xo X X1) = po(Xo) - g1 (X))
= J xo(Xo)(wo)po(dwo) - [ x(X1)(wi)pmi(dwr) = [(xo(Xo)(wo) - [ x1(X1)(wi)p(dws))po(dwo)
= J(J xo(Xo)(wo) - x1(X1)(w1)p1(dewn)) po(dwo) = J(f x(Xo x X1 )(wo,wr)p1(dwi))po(dws).

Now every X € ByllB, is a disjoint union ljl(X((,") X X{")), where X‘-(") € B;

(i € {0,1}, v € {1,...,n}), thus x(X) = i x(Xc(,") X Xf")). Every f € L(B,llB,) can be
v=1

written as f = i a,x(X,), where ay,. .., a, are the (finitely many) values of f and
r=1

X, := f"'{a,}] (p € {1,....r}). So we get the finitely additive Fubini's theorem for simple
functions:

6.2 Corollary: Let B; be a set algebra on ;, let u; € M(B, R) and let y1 be the product measure
of po and py. Then [ fwo.wh)pd(wo,w1)) = f{[ f(wo,wi)pi{dwr))ue(dwo) holds for all

f € L(B,1B,).

Proof: The identity is linear in f. But by the above argument. f is a linear combination of
functions of the form x(X), X € BollB,. But each such X is a sum of functions of the form
x(Xox X1), Xo € By, Xi € Bi. For functions of this type the identity has been shown above.
Thus it holds for all f € L(BoUB,). (n]

7. Final Remarks

The proof of 6.2 is just translating 6.1 from the “pointless” approach to “classical” measure
theory. If one wants to work in the “pointless” situation, one may consider 6.1 as a version
of Fubini’s theorem. Our approach at least makes it clear, why product charges exist; it just
follows from coproduct preservation by a left-adjoint functor.
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This adjunction in 5.4 may also be interesting in itself, but the only thing we need about
the functor J is that it is right-adjoint to L. Multiplicative charges were introduced solely for
this purpose; 5.4 and 6.1 do not refer to multiplicative charges any more. Though IR-valued
multiplicative charges are quite trivial (see 5.5), the functorial behaviour of algebra valued mul-
tiplicative charges is the key to our version of Fubini’s theorem.

For our functorial machinery we have to work with charges with values in modules, even if
we are only interested in integration of R-valued simple functions with respect to R-valued
charges. This is in contrast to the classical theory, where the vector-valued Bochner-integral
seems more complicated than the scalar—valued Lebesgue-integral; vector-valued measures look
even more difficult.

F. Linton ([4],[5]) already mentions the universal property of x and the natural isomor-
phism of 5.3, but he does not consider multiplicative charges. His approach to Fubini’s theorem
for abstract o-algebras (i.e. Boolean algebras with countable joins) is quite different. As a
“pointless” substitute for measurarable real-valued functions one might consider o~algebra ho-
momeorphisms from the o-algebra of Borel subsets of IR to a given o-algebra. This is quite
similar to Linton’s approach, which involves some more technical difficulties, because Linton
does not require Boolean algebras to have top elements.

In our approach, top elements are convenient, because they correspond to unit elements
of R-algebras. The latter are crucial, because the tensor product is not a coproduct in the
category of not necessary unital R-algebras. Since the tensor product of unital not necessarily
commutative R-algebras is not a coproduct either, commutativity is also needed here. It is also
needed in order to get a Boolean algebra structure on JA; in a non-commutative R-algebra

11
products of idempotents need not be idempotent. For instance, the product 5 6 of the

idempotent real matrices (

N ooty e
|4 |+

) and ((1) g) is not idempotent.
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