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Nonlinear Existence Theorems in Nonnormable Analysis

L. D. Nel

ABSTRACT. We obtain generalizations in nonnormable setting of
the Banach fixed point theorem (parametrized version), the existence-
uniqueness theorem for differential equations (parametrized version),
the inverse function theorem and implicit function theorem. Qur re-
sults embody new formulations of these theorems which reduce in Ba-
nach spaces to the classical versions. But in even the simplest non-
normable spaces they are significantly different from other known gen-
eralizations.

Introduction

Let us recall a typical counterexample for demonstrating failure of the usual
inverse function theorem for nonnormable Fréchet spaces. Let E = C(R, R), the
space of continuous functions in its topology of uniform convergence on compact
subsets. Define f : E — E by putting f(z)(£) = z(£)? and let a(€) > u > 0.
Although the derivative of f, given by (D f(x) - h)(€) = 2z(§)h(€), is invertible
at a, the map f carries every open neighborhood V of a to an image f(V)
whose members, being squares 22, are all nonnegative. Thus f(V) is as far
from open as it can possibly be: its interior is empty. Accordingly, the inverse
function theorem for E — in its classical formulation — seems as far from true
as can be. And yet, the function f is "locally’ invertible at a and its inverse, the
function g(y)(€) = y(€)'/2, even looks smooth. We are taking ‘locally at a’ to
mean in some ‘quasiball’ B(a,6) = {z € E' | a(§) — 6 < z(§) < a(€) + 8}. Note
that B(a,é) also has empty interior. It is not hard to find numerous similar
functions with inverses which are smooth looking but defined only on a domain
with empty interior. The preceding situation motivated us to develop in [15] a
new differentiation theory applicable to such domains with empty interior.

This work is an original contribution and will not appear elsewhere.
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The main purpose of the present paper is to establish a new type of inverse
function theorem, based on the mentioned differentiation theory, for which the
above counterexample becomes an illustrative example. We apply this theo-
rem to certain nonlinear differential operators whose inverse functions are not
explicitly known; their values are global solutions which depend differentiably
on the right hand side of the equation. A parametrized fixed point theorem is
first established as general tool for existence proofs in nonnormable setting. We
demonstrate its versatility by using it also for an existence-uniqueness theorem
for first order differential equations with continuous dependence on the initial
value.

Let us indicate briefly the heuristics of our approach. The proof of the
parametrized fixed point theorem in a Banach space E uses balls B(a,$). In
Banach spaces E = C(I,R), where K is compact, such B(a, ) can be given the
two descriptions {z € E' | ||t —a| < é} and {z € E' | a(§) — 6 < z(€) < a(&)+6}.
In a locally convex space E = C(W,R), where W is locally compact but not
compact, the first description is no longer available, but the second is and gives
‘quasiballs’, which can be regarded as limits of balls. Indeed, for reasonable
choices of a category C of continuous maps the insertion maps insg : K — W
of compact subspaces should furnish an inductive colimit diagram in C. The
contravariant functor C(—,R) (for a good choice of C) should transform this
inductive colimit to a diagram C(W,R) — C(X,R) which expresses C(W,R) as
a projective limit of Banach spaces. Similarly, the ‘quasiball’ mentioned above
should be representable as a projective limit of balls in Banach spaces. If one re-
stricts attention to limit induced maps between such ‘quasiballs’, certain proofs
that work for balls in C(K, R) should work ‘in the limit’ for quasiballs in C(W, R)
to give corresponding results. At first glance this discussion may appear rele-
vant only to the special function spaces mentioned. But every Banach space is
well known to be representable as a closed subspace of some C(K,R) (with K
compact) and every complete locally convex space as a closed subspace of some
C(W,R) (with W locally compact), hence as a projective limit of Banach spaces.
So the approach should work in principle at least in all complete locally convex
spaces.

1. Categorical topological preparation

We begin by recalling relevant facts about two categories of continuous maps.

la CONVERGENCE SPACES
C. will denote the category of convergence spaces and continuous maps. The
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axjoms (essentially those of [2]) regulate filter convergence: (1) every point
ultrafilter & converges to z; (2) if a filter © converges to z, then so does every
refinement of ©; (3) if © is a filter whose every ultrafilter refinement converges
to z, then © converges to . The later (more general) axioms of [9] and [4]
would serve our purposes equally well. The first pages of [1] is a convenient
basic reference for C,.

C. has initial structures (hence final structures) and constant maps. The
usual category Top of topological spaces has these properties too, but lacks the
canonical mapping spaces C.(X,Y) of C.. These spaces give the exponential laws
(natural isomorphisms) tyxy : C.(W x X,Y) — C(W,C(X,Y)), t(f)w)(z) =
F(w,2). and §wxy : C(W,C(X,Y)) — C(X,CW,Y)), §()(@)(w) = flw)(z).
We will also write fJr for t(f). It follows from these laws that for each C.-space
W the functor C.(W,-) : C, — C, is right adjoint to W x — : C. — C, and
Ce(—,Y) : CP — (. is right adjoint to ‘itself’; more precisely to C.(—,Y)? :
C. — C2. For the first of these adjunctions we have the evaluation map eval,}; :
C(X,Y)x X =Y, eval(f,2) = f(z) as counit.

When X and Y are topological spaces, C.(X,Y) need not be topological in
general but it is so in case X is locally compact and in that case it carries the
compact-open topology. Note that our ‘compact’ includes ‘Hausdorff’. When Y
becomes replaced by a Banach space F', then the compact-open topology agrees
with the topology of uniform convergence on compact sets. In particular, for
compact K and Banach F, C.(K, F) is a Banach space.

We always suppose the real field R to carry the usual metric topology. A linear
C.-space is a C.-space E on which addition £ x E — E and scalar multiplication
R x E — E has been defined so as to be C.-maps, subject to the usual linear
space axioms. Such spaces together with linear continuous maps give rise to the
category LC,. Since products in Top correspond to those in C,, the usual category
of linear topological spaces is a full subcategory of LC,, in fact a reflective one.
The same holds for the category Lcx of locally convex spaces. Therefore a
(projective) limit of Banach spaces will be essentially the same thing, whether
formed in LC, or in Lex. For LC.-spaces E and F the linear hom space [E, F] is
the LC.-subspace of C.(E, F) formed by the linear maps. [F,R], the canonical
dual space, is also denoted E*.

For effective analysis one needs spaces which are separated and complete
enough and which form a good. category. This is provided by the subcategory
cLC. C LC, determined by all E for which @g : E — E** is a closed embedding
(also by the smaller category olLC. of optimal spaces, see [13]). It is a reflec-
tive subcategory which contains R and is preserved by the functors [E, -] and
Ce(X, —). (Had we defined C, via the axioms of [9] and [4], the same categories
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cLC. and olLC, would have resulted).

All complete locally convex spaces E are reflexive in LC, i.e. the canonical
map Qg : E — E** @(z)(u) = u(z), is an isomorphism (see [1] or [12]). Hence
all such F are cLC.-spaces and projective limits of such spaces are again in cLC,.
A projective limit of Banach spaces is a Fréchet space whenever the index set is
countable.

1b COMPACTLY GENERATED TOPOLOGICAL SPACES

C;: will denote the full subcategory of Top determined by all spaces X which
happen to carry the final topology induced by the family of all continuous maps
f : K — X with compact domain. It is a coreflective subcategory of Top, so
its final structures and its colimits coincide with those of Top while its initial
structures and limits are different in general. All metrizable and all locally
compact topological spaces are Cp-spaces.

Ci also upholds the exponential laws mentioned in 2a; the canonical mapping
spaces Ci(X,Y) carry the Cp-coreflection of the compact-open topology (see
e.g. [11]). On spaces C¢(X, F'), where F is a Banach space, the compact-open
topology agrees with the topology of uniform convergence on compact subsets,
but the resulting space need not be a C;-space, even when X is locally compact;
however, it is a Ci-space in important special cases e.g. when X is locally
compact and the union of an increasing sequence of compact subsets I{,, in such
a way that every compact L C X is contained in some IK,. Again, for compact
K and Banach F, Ci(I, F) is a Banach space.

One builds the category LCy of linear Ci-spaces and the subcategory cLC; of
closed embeddable spaces much as for C. (cf. 2a). But since products in Top
do not correspond to products in C; in general, a linear C,-space is a concept
quite different from a linear topological space. Every Fréchet space (hence every
Banach space) is a linear Cg-space in the obvious way. Therefore, most of the
examples of LC.-spaces mentioned below are at the same time LC;-spaces. Every
Fréchet space is known to be canonically reflexive when viewed as a linear C-
space (see e.g. [5] or [12]), hence a cLC-space.

lc PREORDER CATEGORIES
Recall that a preorder category is a small category such that for every pair of
objects i and j, there is at most one morphism ¢ — j, which will be denoted ij
when it exists. Thus a preordered category always arises from a preordered set
(J,>) (reflexive transitive relation >). Let us look at a few relevant examples.
(1) The set N of natural numbers, equipped with the relation > in the usual
sense, is a preordered set, hence determines a preorder category whose non-
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identity morphisms can be visualized as follows:
—»]Lz—>1—>0

(2) Let X be a topological space. The set of compact subsets K, L, ...
of X form a preordered set under the usual inclusion relation X' C L. The
morphisms of the corresponding preorder category correspond to insertion maps
insgr : K — L, ins(z) = z, where K C L.

(3) If J is a preorder category, then the opposite category is again a preorder
category. The order relation and direction of arrows just becomes reversed.

(4) On any set whatever we can introduce the discrete order relation (every
point relates only to itself). The corresponding preorder category has only
identity morphisms. The limit of a functor with such a domain is (by definition)
a cartesian product.

2. The auxiliary categories

In what follows C will denote one of the categories C. or C; and J will denote
a preorder category. We will use J and C to construct two new ‘auxiliary’
categories: JLC and JC.

2a DEFINITIONS. The symbol [E], where F is an LC-space, will denote the
constant functor J — LC which carries all objects to F and all morphisms to
idg. A JLC-space is a triple (E, E(_),7%) consisting of (1) an LC-space E, (2) a
functor E(_y: J — LC, the approzimation functor, which transforms every j € J
into a Banach space Ej, the approzimand space, (3) a natural transformation
wF from the constant functor [E] to E(_y which forms a limit diagram in LC. Its
component at j € J will be written m; = wf :E— FEj.

Note that since cLC is a reflective subcategory containing all the spaces Ej,
their limit E is likewise in cLC. A JLC-map u : (E, E-),nf) — (F, F_,=F)
between JLC-spaces is formed by an LC-map u : E — F which is induced by a
natural transformation u : B_y — F{_y via the universal property of the natural
transformation 7F. Accordingly, we have for each J-morphism ij : i — j the
following commutative diagrams

E E
N
E; E;

— . E —
E;; u; Fi

u
— F F

ERIBN
— F; F,

F;

-
<
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The JLC-spaces and maps so obtained build in the obvious way a category of
structured sets, denoted JLC.

2b EXAMPLES. It is well known that every complete separated locally convex
space E can be represented as a projective limit of Banach spaces in the category
Lex of locally convex spaces (see e.g. §19.9(1) in [8]). Since Lex is a full reflective
subcategory of LC,, this projective limit can just as well be regarded as one in
LC.. Therefore every complete separated E € Lcx can be structured to become
a JLC.-space in at least one way — usually in several different ways. Let us look
more closely at a few special cases. The first two will be used in later examples.

(1) Let F be a Banach space. Let U be open in R" with K; (j € N) a
covering of U formed by an increasing sequence of compact subspaces such that
K; C intKjy, (interior). We construct a JLC-space as follows. Let J be the
preorder category (N, >) (see Ic). Let E = C(U, F') and let E_y: J — cLC. be
the functor obtained by putting E; = C.(K;, F), Ej; : E; — E; the restriction
map ¢ — ¢|K;, where of course K; C Kj. Let £ . E — E; likewise be the
restriction map. We claim (E, E(.), 7F) is a JLC-space. It is clear from the facts
in la that E = C.(U, F) is a Fréchet space and E; = C.(K, F) a Banach space.
It is readily seen that E(_, is a functor and 7 a natural transformation. To see
that = provides a limit for E_, is the main task. The crucial topological fact at
work is that the family of insertion maps

(*) insj: K; - U (j€))

is a final epifamily in C.. We omit the simple verification, based on local com-
pactness of U. The proof that m provides the stated limit can be completed in
several ways. Let us indicate an argument which exploits properties of the func-
tor Co(—, F) : C% — cLC.. The restriction maps nf and Ej;, expressed in terms
of the inclusion maps ins; : K; — U and ins;; : K; — K, become wf = Cc(ins_,-,'F)
and Ej; = Cc(insj;, F'). Moreover, E_y = C(—, F) o K, where K: J — CZ is the
functor which carries ji : j — ¢ to the insertion map ins;; : K; — K;. From the
finality of the family (*) it is easily seen that this family actually constitutes a
colimit in C, for K : J? — (., hence a limit for K: J — CZ. The right adjoint
C(—,F) : C®P — cLC, preserves limits. So it follows at once that the family
7; = Cc(ins;, F) : E — Ej (j € J) furnishes the required limit.

For a simple example of a JLC.-map, take A : E — E given by the components
A;: E; — E;, Aj-h = 2z;h, (h € E), where x € E remains fixed and z; = 7;(z).

(2) An interesting generalization of the preceding example can be obtained
by taking £ = CI(U,F) (r € N) and E; = CJ(Kj, F), the usual Banach space
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of r-times continuously differentiable maps, with the remaining data as before.
To avoid complications we here suppose the K; to be convex, hence primary
domains hence tangential domains, as required for the differentiation theory of
[15] (see 2a in [14] and 3e in [15]). It follows via 4e in [15] that the family (*) is
final for the category C;, hence a colimit and.the remaining argument proceeds
as before.

(3) Consider the following variation on the theme of example (2). Specialize
U=0% (-1,1) C F with the covering family K; now a strictly increasing
sequence of compact subintervals. Choose a point z € Ky C K. Take E to
be the LC.-subspace CI(Q2, F). of CI(f2, F) formed by all functions z such that
z®)(z) = 0 for k < r and similarly E; consists of all functions in CI(K;, F) for
which these derivatives vanish at 2. The remaining data are defined as before.
The verification that one has the data for a JLC,.-space is left as an exercise. It
is somewhat easier to do the case r = 0 first i.e. the corresponding variation on
(1). By representing the subspaces formed in the definition as ‘natural’ equalizer
diagrams, the argument from that point on is purely categorical.

In the preceding three examples we could replace C. throughout by C; and
only very minor adaptations will be needed: the function spaces in question
carry the same topology regardless of whether C. or C; is used. In the following
example however, where we generalize (1) in a different direction, we cannot put
C. in the role of C;.

(4) Let U be an open subset of an infinite dimensional Banach space E, let
F also be a Banach space and let J be the preorder category formed by all
compact K C U, ordered by the relation L O K. Thus J is opposite to the
category whose morphisms are the insertion maps insgy, : K — L (see 1¢(2)(3)).
Put E = C(U,F), Ex = C(K, F), Erkx = Ci(inskr, F) and 7€ = Ci(insk, F),
the latter two again amounting to restriction maps. Much as in (1), we thus
have the data (E, E_y,7%) for a JLCy-space. The crucial topological fact at
work is again that the family of insertions inskx : K — U (K € J) constitute a
colimit in C;. And this is where it fails for C.: it is not a colimit in that category.
If it were one, then the family C.(ins;, F) : C(U, F) — C.(K;, F) would form a
limit in LC,, hence the domain would carry the initial C.-structure induced by
the family and since the codomains are all topological, so would be the domain.
But since U is not locally compact, C.(U, F) cannot be topological (see [17]).

(5) Every cartesian product E = [lje; Ej in LC of Banach spaces can be
interpreted as a JLC-space: the index set is taken to be a discrete preorder (see
1c(4)) and 7; : E — Ej; the cartesian projection.

(6) Every Banach space E can be interpreted as a JLC-space (E, E(_)), n)
in a trivial way: take J = {0} Ey = E, my = idg.
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2c PROPOSITION. The category JLC has finite products and the obvious forget-
ful functor JLC — LC preserves them.

ProOOF. We omit the tedious, straight forward proof.

2d DEFINITIONS. Proceeding analogously to 2a, we define a JC-space to be a
triple (X, X(—), 7*) consisting of (1) an C-space X, (2) a functor X(_):J — C,
the approzimation functor, which transforms every j € J into an approzimand
space X; which is a C-subspace of a Banach space, (3) a natural transforma-
tion 7% from the constant functor [X] to X(_y which furnishes a limit diagram
in C. Its component at j will be written 7; = 7% : X — X;. A JC-map
f (X, X(_),‘/TX) — (Y,Y(_),WY) between JC-spaces is a C-map f : X — Y
which is induced by a natural transformation f : X(_) — Y{_) via the universal
property of 7¥. These spaces and maps build in the obvious way a category of
structured sets, denoted JC. If the f above is a natural C-embedding, then the
induced map f will be called a JC-embedding; and if such embedding takes the
form f = ins, a natural insertion with components ins;(z) = z, then we have
a JC-subspace. Thus subspaces X; C E; € JLC give rise to JC-subspaces when
Eji(X;) C Xi.

Since the underlying C-space functor U : LC — C preserves limits, it induces
in the obvious way a similar underlying functor JLC — JC which preserves em-
beddings, subspaces and finite products.

2e PROPOSITION. JC has finite products and the obvious forgetful functor JC —
C preserves them.

ProOF. The tedious but straight forward proof is again omitted.

2f DEFINITION. Suppose now that E = (E, E_), 7F) is a given JLC-space, that
X = (X, X(-),7¥) is a JC-subspace and let a € X. Put a; = m;(a). If each ap-
proximand X; is an open ball B(aj,e) ¥ {w € E;! ||w — aj|| < €} (5 € J),
then the limit space X will be denoted B(a,¢) and called the quasiball in E
with center a and radius €. Let us emphasize that the same € is used for all
j. The definition of quasiball just given differs from that used temporarily in
the introductory remarks. The next proposition shows that the two descriptions

coincide.

2g PROPOSITION. Let E = CI(R, F) be the JLC-space described in ezample 2b,
a € FE and0 < 6§ € R. Then the quasiball B(a, é) consists of all z € E such that
max;<, |z (€) — a®(€)| < 6 for all € € R. A similar result holds for the spaces
E=C/U,F) and E=C(Q, F), of 2b.
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PROOF. By restricting wf to the mentioned subspace for each j, one obtains a
limit for the B(aj,6), as a direct verification shows.

2h EXaMPLE. Let J = (N, >) and define the JLC,-space (E, E_, 7F) by putting
E =R, E; = R equipped with the norm ||§||; = j|§| and 7;(§) = £. Then every
quasiball B(0, 6) is degenerate i.e consists of a single point.

This example shows that where quasiballs are to serve as domains for C!-
maps, one has to restrict to JLC-spaces in which the foregoing pathology does
not occur. But we can also learn something positive from this example: when a
quasiball is degenerate with respect to a given JLC-structure, it may be possible
to choose another such structure (in the present case e.g. by redefining the norm
on E; as ||€||; = [€]) which yields the same underlying LC-space while having
nice quasiballs.

3. A parametrized fixed point theorem

The theorem to follow generalizes to JLC-spaces and quasiballs a long known
theorem for Banach spaces and open balls (see e.g. 10.1.1 in [3]), namely that for
a given parametrized family ¢(w, —) of contraction maps there is a correspond-
ing parametrized family of fixed points f(w) which vary continuously with the
parameter w. We will produce a JC-map f whose values f(w) are fixed points
for a given JC-parametrized family of JC-contractions c¢(w,—). The proof for
the JC-version departs from certain key steps of the Banach space proof (rather
than the Banach space result itself).

3a THEOREM. Suppose given the quasiballs U = B(a,o) C E, V = B(b,) C
F, ascalar0<p<land aJC-mapc:U xV — F such that
llej(w, y) — cj(w, 2)|| < plly — 2|l and |lcj(w, b;) — bl < B(1 — p)

hold for all w in U;, y and z in V;, (j € J). Then there ezists a JC-map
f : U = V such that f(w) = c(w, f(w)) and f(w) is the only fized point of

Proor. Fix j € J. Define the sequence fj, : U; — F; (n € N) of C-maps
inductively by putting

fio(w) = b;, fiwr(w) = cj(w, fr(w)) (w € Uj, k €N).
Then, as in the cited classical proof, one obtains by induction that

| F5mer(w) = Fim(w)|l = llcj(w, fim(w)) = cj(w, fim1(w))|| <
< pll fim(w) = fima(w)|| < ... < p™lcj(w, b;) — bl (w € Uj).
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Moreover, | fia(w)=b;ll < llc;(w, b;)=b;ll(p" ' +p""2+...+1) < B. We thus have
a sequence of bounded Fj-valued C-maps which is uniformly Cauchy hence uni-
formly convergent on U; to a C-map f; : U; — V; satisfying c;(w, fj(w)) = fj(w)
and fj(w) is the only fixed point of ¢j(w, —). The identity satisfied by f; can be
expressed as the following commutative diagram:

id, f;
U; . Ui xV;
DIAGRAM (j) fi G
V; F;
! ins; !

CLaM 1. There is a natural transformation f : Ui_y — V{_) between the approx-
imation functors of the given quasiballs having the maps f; as its components.

To establish Claim 1 we have to return to the sequence f;, which defined f;
and note from its inductive construction that we have for j € J, m € N the
commutative rectangle

id’ f'm
g, & Tim)_ ey
DIAGRAM (j, m) fima Cj
V; F;
’ ins; ’
We will need to establish that
in ins;
U; d Vi F;
DIAGRAM (4,7, 1) Uij Vij F
Uj 14 EF;

fjn
always commutes. Now the rectangle on the right commutes by definition of a
JC-subspace (see 2d). We use induction to show that the one on the left also
commutes. For Diagram (7, 7,0) this holds by definition. Choose m and sup-
pose Diagram (i, 7, m) commutes. By using the commutative Diagrams (¢, m)
and (j, m) we can express Diagram (i, j, m 4 1) equivalently as the commutative
diagram

ms,-
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v, & fm) o G F
Ui Uij x Vij E;
U U; x V. F;

J (id.me) 2 X J Cj J

We conclude that Diagram (7,j,m + 1) also commutes, hence by induction,
Diagram (¢, j,n) commutes for all 4,j,n. It follows at once that we have the
natural transformation f asserted by Claim 1, hence a JC-map f : U — V.
Moreover, from Diagram (j) we have the equation c o (id, f) = inso f of nat-
ural transformations. In other words, we have a JC-map f : U — V such
that ¢(w, f(w)) = f(w). The stated uniqueness follows at once from the cor-
responding uniqueness present in every component together with the fact that
the underlying set functors on C and LC preserve limits.

Banach spaces E and F' can be regarded as JLC-spaces as described in 2b(6)
and in that case the last theorem clearly reduces to the classical result.

4. A parametrized existence-uniqueness theorem

For curves into Banach spaces there are effective results affirming existence
and uniqueness of solutions to first order initial value problems (see e.g. [3]).
But already for Fréchet-spaces these results fail (in their classical formulation).
Such theorems that have appeared in nonnormable setting are, not surprisingly,
much more complicated than the Banach space version. The theorem closest to
the one derived below, but still significantly different from it. is that of {16]. We
begin by introducing an appropriate JC version of Lipschitz maps.

4a DEFINITION. Let g : U x V — F be a JC-map whose domain is a product
of two quasiballs U C E and V C F. Such g is called JC-Lipschitz in its second
variable if there exist positive constants g and v such that the relations

llg;j(w, R) — gi(w, k)|l < pllh — k|| and [lg;(w, )| < v
hold for all j € J, all w € U; and all h,k € Vj.

A further preliminary is concerned with the familiar reduction of an ini-
tial value problem to an integral equation. For our purpose we need to show
that the problem u/(7) = g(r,u(r)) with u(a) = z reduces to the problem
u(7) = c(z,u)(7) & 2+ 17 g(\, u(A))dA, where g and ¢ are JC-maps. The simple
proposition to follow paves the way for the formal verification of this.
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4b PROPOSITION. A functor G : cLC — cLC lfts to a functor G : JLC — JLC
whenever it preserves Banach spaces and also preserves limits. Moreover, a
natural transformation u : G — H between two such functors in cLC induces,
for every JLC-space (E, E(_),WE), a natural transformation between the approz-
imation functors of the two lifted JLC-spaces on GE and HE and then every
component ug lifts to a JLC-map GE — HE.

PRrROOF. It is clear that G transforms the data of one JLC-space (E,E(_),WE)
into the data (GE,G o E_,). G7E) for another. The required verifications are
straight forward.

The key theorem in the categorical calculus of vector valued curves (see the-
orem 2a in [15]) affirms existence of a natural isomorphism ‘average value’ with
components

avag : C(A,E) — adC(A x A,E) C C(A x AE)

in cLC, where A is a non-empty real interval and adC(A x A,) a certain natural
subspace of C(A x A, E). The integral of a C-curve f : A — FE is defined in terms
of av by the formula

£ (A = (B - e)av(f)(e, B)-

All the basic properties of such integrals are simple consequences of the men-
tioned fact that av is a natural isomorphism. For the present purposes we will
need the following specialized result.

4c PROPOSITION. Let A C R be an interval and choose a € A. Then there is
a natural transformation (‘antiderivative at a’) in cLC with components

a(a)e : C(A, E) — C(A, E), a(a)(f)(7) = JZ f(A)dA.

such that a(a)/(t) = f(7). Moreover, if A is compact and E is a JLC-space,
then a(a)g underlies a JLC-map.

PrRoOF. Form the composition a(a) = e(a) o av where e(a) is the natural
transformation with components e(a)r : C(A x A,E) — C(A,FE) given by
e(a)(f)(7) = (r — a)av(f)(e, 7). If A is compact, then the functors C(A, —)
and C(A x A, =) : cLC — cLC preserve Banach spaces and they preserve limits
because they are right adjoints. So proposition 4b applies.

4d THEOREM. Let Q. = B(a,¢) C R and B(b,8) C E be quasiballs and
g: Qe xW — E a JC-map which is JC-Lipschitz in its second variable. Then
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the initial value problem
* u/(1) = g(7,u(r)) with u(t) = z € B(b,3/2)
has a unique local solution which is a JC-function of the initial value z.

The conclusion, more explicitly stated, reads as follows: There exists a com-
pact ball A = Q, C Q. and a JC-map v : B(b,3/2) — C(A,W) such that
u=v(z): A — W is on A the unique solution to problem (*).

PRrROOF. In view of the hypotheses there exist positive constants g and v such
that

llgi(7, B) — gi(7: )| < pllh — k| and [|g;(r, h)|| < v

hold for all j € J, all 7 € ), and all h,k € W;. Choose v so that the following
hold:

0<v<eand yu <1and vy < B/(2v+28y).
Put A = Q,. Define for F' € cLC the C-map cr : B(b,3/2) x C(A,W) — C(A, F)
by putting c(z,u)(7) = z + f7 g(X,u(A))d). Since ¢ is obtained by adding a
constant function to a(a)r o gT, it follows from propositions 4b and 4c that

cg is a JC-map whenever E underlies a JLC-space, moreover that c(z,u)/(7) =
9(7,u(7)). We can now establish without difficulty that

sup,en |lej(25, A7) — cj(25, k) (T)Il < suprep [l J2[g5(A, (X)) = g;i(X, k(X))]dA]|
< ypsupyes [|R(A) = k(A

Also, using [b] to denote the constant function with value b and using the rela-
tions assumed for v, we have

llei(z5, DTN = [z + 47 g5 (A, bYdA|l < B/2 + v < B(1 — py).
Putting p = yu and restating in terms of the norm of C(A, E;), we obtain
llej(z, k) = ci(z, k)|l < pllh — k|| and [|ej(z, (D) < B(1 = p).

Thus the parametrized fixed point theorem 3a applies when we put U = B(b, 3/2)
and V = C(A,W) = B([b],8) C C(A,E). We conclude existence of a JC-map
f : U — V such that f(z) = ¢(z, f(2)), unique among functions satisfying
this identity. So it follows from what was established for ¢ that f(z)/(r) =
C(Za f(z)),(T) = g(Ta f(z)(T))’ as required.

In the special case of Banach spaces we again recover the classical result.
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5. Prelude to the inverse function theorem

In this section we establish results needed for proving and illustra
inverse function theorem in the next section. The first of these (prop .., .o
of independent interest, forming part of the categorical theory of differential
calculus [15]: it is valid for any category C satisfying the calculus axioms of [15].
A special case of this result (for Fréchet spaces) can be found in [7], derived
there with different technique.

We recall briefly the basic concepts of the differentiation theory [15]. Let A
be a nondegenerate real interval (a fundamental domain in the scalar field) and
take a C-subspace U C E € cLC. A C-map p: A — U is called a curve; such a
curve p is called a path if there exists a (necessarily unique) curve p' : A — E
such that p(B8) — p(a) = [f p/()dr holds identically in o and 3. A tangential
domainin E is a C-subspace U C FE such that at every z € U the tangent vectors
p/(a), formed by paths with p(a) = z, generate the linear C-space E. In case
E € LC, is locally convex, the latter condition is satisfied whenever these tangent
vectors have a linear span weakly dense in E. A C-map f : U — F on such
a tangential domain U is called a C!-map if there exists a (necessarily unique)
C-map Df : U — [E, F] such that f(p(8)) — f(p(c)) = & Df(p(r)) - p/(7)dr
holds identically in p, a and 8. Such f is called a C"-map (r > 1) if its deriva-
tive Df is a C""!-map. The derivative Df : U — [E, F] and its transpose the
differential df = (Df)i :Ux E — F, df(z,h) = Df(z) - h, determine each
other. The usual formulas of calculus hold on the basis of these definitions;
see [15] for more details. By the transpose of f : X x Y — Z is meant the
map fJr : X = C(Y,Z) (see 1la) while g : X — C(Y,Z) has the transpose
gi : X xY — Z, gi(z, y) = g(x)(y) i.e. 1 is the inverse of {.

5a PROPOSITION. Let E and F be cLC-spaces and U a tangential domain in
E. LetQ:U — [E,F] and R : U — [F, E] be C-maps such that for everyz € U
the maps Q(z) : E — F and R(z) : F — E are inverses to each other. Then
Q is a C"-map if and only if R is a C"-map (1 < r < o0). In fact, when Q is a
CT-map the derivative of R is given by

(1) DR(z)-h=5(z) -h ¥ —R(z) o (DQ(z) - h) o R().

PROOF. Suppose Q is C!. To show R is C! we have to verify that for any path
p: A = U the following holds identically:

(2) R(p(B)) — R(p(e)) = &§ S(p(7) - p'(7))dr.

Define the C-map ¢ : A — [E, F] by putting ¢(7) = DQ(p(7)) - p/(7). Then we
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can form also the C-map av(q) : A x A — [E, F] such that (8 — a)av(q)(e,8) =
S8 q(r)dr. Now construct the C-map A : A x A — [F, E] by putting A(a, 8) =
—R(p(B)) o av(g)(a, B) o R(p(a)). It follows from the linearity of R(p(c)) that
(B-c)A(e, B) = —R(p(8))o(8—a)av(a)(a B)oR(p(a)) = —R(p(8))o[Q(p(8)) -
Q(p(a))] o R(p(a)) = R(p(B)) — R(p(a)). We conclude from this (see theorem
2d(6) of [15]) that R o p is a path with (Ro p)/(r) = A(r,7) = —R(p(7)) o
g(7) o R(p(7)). It follows at once that (2) holds, thus that R is C!. For the gen-
eral statement, fix 7 > 1 and assume, for induction on r, that the implication
Q € CF = R € C* holds for all 1 < k < r. Suppose then that Q € C™*'. We
have to show that the differential dR : U x E — [F, E] is a C"-map. But formula
(1) allows it to be expressed as a composition of C"-maps as follows. Using
proy : U x E — U we form the composition R o proy : U x E — [F, E], hence
the C"-map S % (=R o proy,dQ, Ro proy) : U x E — [F, E] x [E, F) x [F, E).
The map comp : [F, E] x [E, F]| x [F,E] — [F,E], comp(u,v,w) = wouvou,is
multilinear hence a C* map. So we can express dR = comp o S, a composition
of C"-maps, as required.

5b PROPOSITION. Suppose E and F' are JLC-spaces and U C E a tangential
domain in E which is also a JC-subspace of E. Let f : U — F be a JC-map
such that f; € CY(U;, F;) for all j € J. Then f € CY(U, F) and the differential
df :U x E — F is a JC-map with components df; : U; x E; — Fj.

PROOF. We begin by showing that the given differentials df; : U; x E; — F;
are natural in j i.e. that F}; o df; = df; o (Uji x Ej;). For every path p: A — U;
we have [8 Fj; - dfy(p(r), p/(r))dr = Fyi - [ df;(p(r), p'(r))dr = Fy: - £5(p(8)) -
Fji- fi(p(@)) = (fi o E;i)(p(B)) — (fi o Eji)(p(a)). On the other hand, using the
linearity of Ui, f£df;(Uji - p(7),Uji - P'(7)) = (fi o Usi)(p(B)) — (i o Usi)p(e).
Since Uj; is just a restriction of Ej;, the two integrals agree for all choices of «
and B. Therefore the integrands agree. By transposing, we see that the com-
positions eval(—,p(7)) o (Fj; o df;)! and eval(—,p(7)) o (df; o (Uj; x Ej,-))T, as
maps E; — F;, agree for all paths p. Since the evaluations eval(—,p(7)) con-
stitute a monofamily while the tangent vectors p/(7) generate E;, we conclude
Fjiodf; = dfio(Uji x Ej;) as required for the stated naturality. It follows that there
is a limit induced JC-map df; : U x E — F, linear in the E-variable. To show
that df; = df, the differential of f, it is enough to consider a path p: A — U and
verify that [? df;(p(7),p/(7))dm = f(p(B)) — f(p(c)). Composing with the rele-
vant projections 7;, we have 7rf JBdfy(p(T),p'(1))dT = J# nfdf_,(p(r),p'(r))d'r =
1B dfx¥p(r), nfp!(r))dr = fi(m;(p(B))) - fi(mi(p(@))) = m;f ((B))—7;f(p(a)) =
m;[f(p(B)) — f(p(c))]). After canceling the monofamily (;), we obtain the re-
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quired equation.

5¢ PROPOSITION. Let E = CI(2,R) be the JLC-space described in 2b(2). Then
every quasiball in E is a tangential domain. The same holds for the space

E = CI(Q,R)p (see 2b(3)).

PRroOOF. We have seen in 2g that a quasiball B(a, §) consists of all = such that
|28 (€) — a®)(€)| < 6 for all £ and all k=0,1,...,r. Fixz € B(a,6) and h € E
arbitrarily. Take a C2°-function #; : R — [0, 1] of compact support which has
the constant value 1 on K. Let p; be the maximum value of |z(¥)(€) — a®)(€)]
for £ in the support of ; and 0 < k < r. Note that p; < 6. Choose A; > 0
so that the absolute value of Aji;h and of its first r derivatives is always below
8 — pj. Then x4+ Ajhtp; lies in B(a, §). The path p(1) = z + 7A;hep; (0 < 7 < 1)
therefore takes values in B(a,8) and p/(0) = A;he;. Since hy; converges to h in
E as j — oo, it follows that the positive multiples of tangent vectors to B(a, 6)
at = form a dense subset of E. This is sufficient for B(a,§) to be tangential in
E (see 3b and 3c in [15]). A similar argument works in the corresponding space
of 2b(3).

6. Inverse function and implicit function theorems

In all that follows, E and F are assumed to be cLC-spaces, U C E a tangential
domain, a € U and f € CY(U, F).

The inverse function theorem to be established here differs significantly from
previous versions in nonnormable setting (cf. (7], [6], [18]) in that open neigh-
borhoods become replaced by tangential ‘quasineighborhoods’ which need not
be open and may even have empty interior. The justification and motivation for
this was given in the introduction. The restrictions to be placed on the function
to be inverted will largely be expressed in terms of ad hoc JLC-structures on
the spaces concerned. Since every complete locally convex space can carry some
JLC-structure, our conditions are not all that restrictive on the spaces; rather,
it is the map which is required to behave itself. We will now describe how it
should.

6a DEFINITIONS. For Banach spaces E and F', Ban(E, F') will denote the usual
Banach space of linear continuous maps E — F. It is well known and easy to see
that, as cLC-space, Ban(FE, F') carries a structure finer than that of the canonical
space [E, FJ; in general, if f € C!(V, F), its derivative Df is a C-map on V into
[E, F), which need not be continuous as a map into Ban(E, F); when it is, we
will say Df is norm-continuous.
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Suppose the LC-spaces E and F' have been structured to become JLC-spaces.
A quasineighborhood of a € E means a JC-subspace W C F such that for every
J € J the approximand space W; is a neighborhood of a; in F; in the usual
sense.

In general, a quasiball B(a, ) in F may consist of a single point, as example
2h shows. Mindful of this, we define a JLC-structure on E to be differentially
compatible if every quasiball is a tangential domain.

Tosay f:U — Fis calm near a means there exists a quasiball B(a,8) C U
such that f is a JC-map B(a,6) — F with components f; : B(aj,6) — Fj such
that the following hold: (1) Df; is norm-continuous; (2) there exists u > 0 such
that || Dfj(aj)|| < ¢ (5 € J); (3) for every € > 0 there exists n > 0 such that for
all z € B(a;,n) and all j € J we have ||Df;(z) — Dfj(a;)| <e.

To say Df(a) is equiinvertible means A % Df(a) : E - F is a JLC-
isomorphism such that ||A;'|| < & < co holds for all j € J.

Let us emphasize that the constants é, 4 and x appearing above are required
to work for all § € J at the same time. The norm used is of course that of

Ban(Ej, Fj).

6b PROPOSITION. Suppose f : B(a,6) — F to be a JC-map whose components
fj are C'-maps with sup; || Dfj(a;)|| < co. Then the following implications hold:
(a) all f; are C*-maps and v def sup; sup, || D2f;(z)| < oo,
¢
(b) Df; is Lipschitz into Ban(Ej;, F}) with one Lipschitz constant for all j,
4

(¢c) f is calm near a.

PROOF. We have (a)=> [|Df;(z) - Dfj(w)l| = || § D2;(w+0(z—w))-(z—w)]| <
vz - wll = (b) = (c).

6c EXAMPLES.

(1) Let E = F = C.(R,R), define f : E — E by f(z) = 2? and choose a € E
to be the constant function a(§) = 1 for all £&. Then (D f(z) - h)(€) = 2z(€)h(€)
and (D?f(z)- h-k)(€) = 2h(€)k(€). By choosing as JLC-structures for E and F
that described in 2b(1), it follows readily that 6b(a) is satisfied, hence f is calm
near a.

(2) Let E = C}{(Q,R)o and F = C(Q,R) be the JLC.-spaces described in 2b
(see (1) and (3)). Let ¢ : R — R be a C'-map such that ¢’ and ¢’ are bounded
and define f : £ — F by

f@)(r) = 2'(7) + ¢(z(7))-
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Then f is calm near any point @ € E, as a straight forward verification shows.

6d INVERSE FUNCTION THEOREM. Suppose f € CY(U,F) is such that there
ezist JLC-structures for E and F, with that of E differentially compatible, such
that f is calm near a € U and D f(a) is equiinvertible. Then there ezists a tan-
gential quasineighborhood V of a such that W = f(V) is a tangential quasineigh-
borhood of f(a) and f : V — W has o C'-inverse g : W — V with every Dg;
norm-continuwous. Moreover, if f is a C"-map, then so is g (1 < r < 00).

ProoOF. Choose 0 < p < 1 once and for all. By calmness of f there exists
6 > 0 such that f: B(a,8) — F is a JC-map and there exists g > 0 such that

IDfi(a)l < s (G € 9)
By equiinvertibility of D f(a) there exists x such that
| A7} < & where A; o D f;(a;).
Choose a; > 0 such that
I Df(z) — Dfj(a;)l|l < p/x for all z € B(a;, n).
This choice is possible by calmness of f near a.

CLAIM 1. For all j € J and all w,z € B(a;j, o) we have
Iz —w - A7!(fi(=) = fi(w)] < pllz — w|.

Proof 1. Put z(f) = w+6(z — w). Then the left side can be expressed ||z — w —
A5 B DS ((0))d0 - (x — w)]| = lla — w — A7 GIDF;(2(6)) — 45]d8 - (& — w) -
(z - w)l| < 145'] - ID£;(=(8)) - Dfs(a)ll- Iz — wll < 5 (/) - |z — wl]. So
claim 1 holds.

Choose 8 > 0 so that 0 < k8 < a1(1 — p). Put b = f(a) and c(y,z) =
T+ A7 (y - f(=)).

CLAIM 2. There ezists a unique JC-map g : B(b,8) — B(a,a;) such that
9(y) is the unique fized point of c(y,—): B(a,ay) = E. Moreover, f(g(y)) = y.

Proof 2. It is clear from its definition that ¢ : B(b,3) x B(a,a;) — FE is a JC-
map. For all j € J, all y € B(b;,8) and all w,z € B(aj, ;) we have ||c;(y,z) —
city,w)|| = llz — w — A7 (fi(z)) — fi(w)| < pllz — w]|, by claim 1. Moreover,
llej(y, a;) —ajll = |A7H(y — f(a;))|| < £8 < e1(1—p). So the fixed point theorem
3a applies to ¢ and provides a JC-map g : B(b,3) — B(a, ), unique among



L. D. Nel: Nonlinear Existence Theorems in Nonnormable Analysis 361

maps such that ¢(y, ) = z implies = ¢g(y). Algebraic manipulation shows the
equation g(y) = c(y,9(y)) to be equivalent to y = f(g(y)). So claim 2 holds.

Now choose a > 0 so that o < o and (g + p/k)a < B. Put V = B(a,a) and
W; = £;(V;) (j € J). Wehave W; C B(b;. B) because || f;(z)~b;|| = || fy Dfj(a;+
O(z—a;))-(x—a;)df|| < ||[Dfj(z)—Dfi(a;)+Dfi(a)ll-lz—a;ll < (ptp/r)ex < B.
Let W denote the JC-subspace of B(b, ) determined by the spaces W; (j € J).

CLAM 3. The restricted map f : V — W is a JC-isomorphism with inverse
g: W = V. Moreover, W; is open in F}j for each j.

Proof 3. Since f;(V;) = W; it is clear that f(V') C W. Direct calculation shows
that ¢(f(z),z) = x for all z € V. It follows by claim 2 that g(f(z)) = z and
flg(y)) =y for y € W. Note that W; = gj'l(Vj), so it is must be open in Fj by
continuity of g;. So claim 3 holds.

Define @ : V x V x E — F by putting ®(w, z, h) = f§ Df(w+8(z —w))dd-h.
Then the transposed map & : V x V — (E,F) is a difference factorizer of
f:V — F (see 4c in [15]).

CLamM 4.9 : V xV x E — F is a JC-map with components ®; such
that @;-f : V; x V; — [E;, F;) lifts to a C-map into Ban(E;, F;) whose values
@;[(w, z) are LC-isomorphisms E; — F;. Hence for each (w,z) € V x V the
map ®(w,z,-) : E = F is a JLC-isomorphism.

Proof 4. That @ is again a JC-map follows readily from the naturality of the
integral: Fj; I = J§ Fj; and so on. Take (w,z) € V; x V; and put 2(f) =
w + 0(z — w). By calmness we have Df; : V; — Ban(E;, Fj) continuous, so
the same holds for @}L : V; x V; — Ban(E;j, Fj) (see 4c in [15]). Moreover, by
choice of , IICP}(w,l') — 4jll = | BIDSi(2(6)) — Dfi(a;)ldoll < p/x < || A7~
It follows, by a well known criterion of Banach space theory, that ®(w,z,—)
is close enough to the invertible operator A; to be invertible itself. Since the
maps ®;(w,z,—) are natural in j, so are their inverses. Hence <I>T(w,:1:) is a
JLC-isomorphism as claimed.

CLAIM 5. W is a tangential domain in F.

Proof 5. In view of claim 4, the derivative Df(z) = ®(z,z, —) is invertible for
every z € V. Therefore W, the image f(V'), is tangential by proposition 4i in
[15]).
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CLAIM 6. g: W — V is a C'-map, with Dg(y) = Df(g(y))~".

Proof 6. By proposition 5b it is enough to show that every component g; : W; —
V; is a C!-map with the derivative indicated. Since Wj is open in Fj}, every y € W;
has an open ball neighborhood B, = B(y, 6,) C W;. We will use the localization
theorem (see 4e of [15]) which requires that we show g; : B, — Ej; is a C!-map
with derivative Dg;(y) = Dfj(g;(y))~" for each y. Since the balls B, are convex,
we can apply the characterization of C*-maps in terms of difference factorizers
(4c in [15]). Accordingly, our task is to exhibit a C-map ¥ : B, x B, — [F}, Ej]
such that g(y2) — g(¥1) = ¥(vy1,y2) - (y2 — y1). Using claim 4, we construct ¥ as
the following composition.

v
By x By [F5, Ej]
gxg ins
Vi x V; ) Inv(E;, ;) — Ban(F;, E))

In this construction, Inv(Ej, F;) denotes the open subset of Ban(Ej, F;) formed
by all invertibles, inv(u) = u~!, and ins(v) = v. These maps are all well known

to be C-maps. Put z1 = g(y1), 22 = g(y2). Since @; is a difference factorizer for
fi, we have (21, 22)- (z2—21) = f;(22) - fi(1) = ya— 1. Hence g(yn)—g(ys) =
q’}(wl,xz)“ (y2—w) = (i"V°<I>;-r°(g X g)(y1,¥2)) - (y2 — 1) = ¥(y1, ¥2) - (2 — 1),

as required. Moreover, since ¥ factored through Ban(Fj, Ej), the derivative Dg;
is norm-continuous.

CLAM 7. If f is a C"-map, then so is g.

Proof 7. We proceed by induction on r = 1,2,.... The case r = 1 is dealt
with by claim 6. Choose ¢ > 1 and suppose claim 7 is valid for r < q. Define
Q:V = [E,Fland R:V — [F,E] by Q(z) = Df(z), R(z) = Df(z)™}. If f
is a C9*!-map, then Q and g are C%-maps. So by proposition 5a, R is a C9-map.
Hence, in view of claim 6, Dg = Rog is a C?-map, which means g is a C?*1-map,
as required. This ends the proof of the inverse function theorem.

In the above theorem, the quasineighborhood V could be chosen to be a
quasiball B(a,é), as the proof shows. Its image W = f(V') cannot be expected
to contain a quasiball B(f(a),€), even when f is linear. This is illustrated by
the map f : C(R,R) — C.(R,R), f(z) = tz where ¥(£) = exp(—£?). Thus in
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general a quasineighborhood of a is not a set containing a quasiball centered on
a.

In the special case when E and F' are Banach spaces, one could employ the
trivial JLC-structure in which all E; = E (see 2b(6)). Then the calmness re-
quirement becomes simply the demand that the derivative be norm-continuous;
equiinvertibility reduces to ordinary invertibility. In order to see that the above
inverse function theorem reduces here to a result equivalent to the classical
inverse function theorem of the Fréchet calculus, we need only the assurance
that the maps are Fréchet-C!. But C'-maps are clearly Gateaux-differentiable
and Gateaux-differentiability combined with norm-continuity of the derivative
implies Fréchet-C!, as is well known.

Our concept of Cl-map agrees on open domains of complete locally convex
spaces with that used in [7]. The inverse function theorem for Banach spaces
derived in [7] as prelude to the Nash-Moser theorem requires the map f to be
C? and to that small extent it is a weaker result (for Banach spaces) than the
one derived here. Note in this connection that f € C? = Df is norm-continuous
= f € C! (cf. 5b).

The counterexample of the introduction becomes an example to illustrate the
preceding theorem. Most of the required verifications have already been done
in 5c and 6c¢; the remaining ones are straight forward. We now give a nontrivial
application of the theorem to a situation where the inverse function is not known
in advance.

6e PROPOSITION Let f : E = C}(Q,R)g = C.(Q,R) = F be the nonlinear
differential operator f(z) = z' + ¢ o x described in 6¢c(2). Letv € E andw € F
be such that f(v) = w i.e. v/(7)+¢(v(T)) = w(7). Then there exists a tangential
quasineighborhood V' of v in E and a tangential quasineighborhood W of w in
F such that for every y € W the equation /(1) + ¢(z(7)) = y(7) has a unigue
solution = = g(y) € V and the solution mapg: W — V is Cl.

ProoF. Differentiation gives D f(z)-h = h'+(¢'oz)h. The equation Df(z)-h =
k is thus nothing but the elementary initial value problem

R(1) + ¢/(z(7))h(7) = k(7) with h(0) = 0.
This problem has a well known solution, namely
W) = e~ P() [7 POK()d6 where P(7) = JJ ¢'(z()\))dA.

By using the naturality of the integral J (see section 3), it is readily verified
that Df(v) is equiinvertible and we have already seen in 6c(2) that f is calm
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near v and via 5c¢ that the JLC-structure is differentially compatible. So the
inverse function theorem applies to give the stated conclusion.

Note that the values of the guaranteed inverse function are global solutions
on the given domain (2, in contrast to the local solutions of 4d. It would be
of interest to know to what extent one could replace Q by an unbounded do-
main and moreover to obtain a corresponding application for first order systems
of equations. One should also experiment with other choices of JLC-structures.
Another line of further investigation would be to determine what class of nonlin-
ear partial differential operators could be addressed by the new inverse function
theorem.

6g IMPLICIT FUNCTION THEOREM. Let f € C'(U x V,G) and suppose that E,
F and G can be given JLC-structures such that those of E and F are differen-
tially compatible with f calm near a point (a,b) € U x V and 82f(a,b) : F — G
equitnvertible. Then there exists a quasiball T centered on a end a unique C'-
map g : T — V such that f(z,g(z)) = f(a,b) holds for all zx € T. Moreover, if
f ts a C"-map, then so is g.

PRrROOF. This is derived quickly from the above inverse function theorem along
familiar lines: the argument as presented e.g. in [10] for the Banach space situ-
ation requires only obvious adaptations to apply here. One can also derive this
theorem independently via the fixed point theorem.
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