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Products in PER: An Elementary Treatment
of the Semantics of the Polymorphic Lambda Calculus

J. W. Gray

Abstract. In order to give a semantics for the polymorphic lambda calculus, a category is required that has
products of the same size as the calegory itself. This is only possible using the notion of internal products
in very special calegories. One such category is the category PER of partial equivalence relations on the
natural numbers. The syntax of the polymorphic lambda calculus is described here with examples, followed
by a careful, elementary treatment of the related categories PER, MOD (of modest sets) and w - SET (of
omega scts.) Finally, there is an explicit description of the desired semantics functions.

1. INTRODUCTION.

This paper is an elementary expository account of an exciting development in category theory which
has led to extensive interactions between category theorists and computer scientists. The category
theory work began with a paper by Martin Hyland [10], based on an earlier work by Hyland,
Johnstone and Pitts [12). They showed that there was a nice category, called the effective topos whose
morphisms were determined by partial recursive functions. Inside this category there is a very
interesting small category, called the category of modest sets. Furthermore, there is a category object in
the effective topos which "looks just like" the category of modest sets, so the category of modest sets
occurs both as a subcategory and as a category object in the effective topos It was later shown by
Hyland [11] that this category is complete with respect to intemally indexed limits, which conwradicts
the old result of Freyd [4] saying that if a small category is complete then it is a preorder. Freyd's
result, of course, is proved in classical logic whereas the completeness of the category of modest sets
is meant in the sense of internal limits in the effective topos. The important thing from the standpoint of
theoretical computer science is that the existence, in the category of modest sets (as a subcategory), of
products indexed by the whole category itself (as a category object) means that this category can be
used to give a semantics for the polymorphic lambda calculus. There is now a large literature
concerned with this subject which will not be reviewed here. It can be found by following up the
references in this paper. Note that the polymorphic lambda calculus is a logical language which
provides the theoretical underpinnings for a number of actual programming languages, such as ML,
Miranda, and Haskel.

The second section of this paper explains the syntax of the polymorphic lambda calculus and the
third section is concerned with the categories PER and MOD. We make no use of the effective topos,
but instead use a treatment of the category of modest sets based on the work of Bruce and Longo [2].
They begin with the category PER (for partial equivalence relations), which played a role in the
original treatment by Hyland, and show that it is isomorphic to a subcategory of a simply described
category of w-sets. This category is isomorphic 10 a certain subcategory of the effective topos, called
the category of — — separated objects, but that plays no role in this paper. Finally, in the fourth
section, we briefly describe an explicit semantics for the polymorphic lambda calculus in PER.

This work is an original contribution and will not appear elsewhere.



326

J. W. Gray: Products in PER: The Polymorphic Lambda Calculus

2. SYNTAX OF THE POLYMORPHIC TYPED A-CALCULUS.

A polymorphic typed A-calculus is a language consisting of a collection of types and for each type a
collection of terms of that type. The types should be thought of as objects of some kind and the terms
as operations or morphisms between appropriate objects.

2.1
i)

ii)

Definition of a polymorphic typed A-calculus.

The set, Type, of types is given recursively as follows:

a) There is a finite or countable set B of basic constant types. Note that B may be empty.

b) There is a countable set Tv of type variables. B + Tv is called the se: of basic ppes.

¢) If o and 7 are types then (¢ — t] is a type, called a function-space type.

d) If oisatype and t is a type variable, then V.G is a type, called a universally quantified
type. The variable t is bound in the expression Vt.G.

Note: it is necessary to identify universally quantified types that differ by a-conversion; i.e.,
by renaming a bound variable t.

For each type 1, there are

a) acouniable set Var® of variables of type 1,

b) a finite or countable set Const™ of constants of type 1. Note that it can be empty for all 1.

¢) the set Atom® = Var® + Const® of atoms of type T.

iif) Write f : 1 for "f is a term of type 1". The set Terms® of terms of type 1 is described recursively

as follows:

a) Terms?=2 AtomT

b) Iff:[c>t]landg:c,then(fg): 1 ie.,iffe Termsl® = Tl and g € Terms® then
(f g) € Terms®. Here, (f g) is called an applicarion term.

¢) Ifg:tandxe Vard, then (Ax : 0. g): [0 = 1l;ie., if ge Terms® and x € Var9, then
(Ax : 6. g) € Termsl9 = 1l Here, (Ax : 0. g) is called an abstraction term.

d) Ifte Tvand g: o has the property thatfor all x : 1 € FV(g), t ¢ fv(t) then
At. g: V1. 0. Here, At. g is called a polymorphic term, or a rype abstraction of a term.

e) Iff:Vi.candte T,then f[t] : [ 1/t ] c. Here, f1] is called the instantiation of the term
f at the type .

If the set B and the sets Const® are empty for every type 1, then the A-calculus is called a pure
polymorphic typed A-calculus. That is the only kind of A-calculus that concemns us here. Note that the
above clauses without universally quantified types and without type abstractions and type instantiations
of terms is called an ordinary typed A-calculus. If there are no constant terms, it is called the simple
nyped A-calculus. In these definitions, FV(g) means the set of ordinary free variables of g and fv(t)
means the set of free type variables of 1 as defined below. [ t/t] ¢ means substitution of 7 fortin o
as usual. (See Hindley and Seldin [9].) We use the following notation:

Var = Uy ¢ TypeVar® = the set of ordinary variables.

Pg(Var) = the set of finite subsets of Var.

Pf(Tv) = the set of finite subsets of Tv.

Terms = U ¢ TypeTermst.

type : Terms — Type is the function taking terms of type T 10 1.
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2.2 Definitions of free variable functions.

i) FV:Terms — P(Var) is the function defined by structural recursion as follows:
a) Ifx e Var?, then FV(x) = (x].
b) If c € Const?, then FV(c) = @.
¢) FV((fg)=FV(H UFV(g).
d) FV((Ax.g)=FV(g) - {x].
e) FV(At.g)=FV(g)
f) FV{[i)=FV(D)

ii) fv:Types — P((Tv) is the function defined by structural recursion as follows:
a) Ifte Tv,then fv(1) = {1},
b) Ifbe By, thenfv(b)=0
¢) fv(c — 1) =fv(o) L fv(1),
d) fv(Vio) =fv(o) - {1}.

A term or type with no free variables is called closed. Note that clause d) in the description of terms
can also be written:

d)Ifte Tvand g : o satisfy forall x e FV(g), t e fv(type(x)) then At. g: Vi. 0.
This condition says that t is not a free type variable in the type of any ordinary free variable of g.

2.3 Operational semantics for the polymorphic A-calculus. The operational semantics
for a A-calculus consists of rewrite rules. written with the symbol "=". The meaning is that an
occurrence of the left hand side of a rule will be replaced by the right hand side. The transitive closure
of = is denoted by "=*". The intention is that rewriting will continue until rewriting produces no
change in the expression, resulting in a "normal form" for the original expression. A computer
implementation of such a language consists in giving a concrete semantics to be executed by the
computer which implements the operational semantics of the language.

i) (B - conversion) (Ax .f) g = [g/x]f.

if) (o - conversion) (Ax . f) = (Ay .[y / x] f) providing y € FV(f).

iii) (rewrite schemes)

a) h=k b) h=k c) f=¢g
(hg) = (kg) (fh) = (k) (Ax. )= (Ax . g)

iv) (instantiation conversion) (At. [t = [1/t]{
Note that in P - conversion and instantiation conversion, substitution of g for x in f or of 1 for t in f has
10 be carefully defined to prevent free variable capture. The meaning of the rewrite schemes is
essentially that & and P - conversion can be carried out in any context. More restrictive schemes are
sometimes used.

2.4 Examples of types in the pure polymorphic A-calculus. Even if there are no basic
constant types, there are certain universally quantified types built-up, as it were, from nothing. These
examples are from [15].

void =Vt.t

unit  =Vi.[to1]

bool =Vt.(t=>[t>1]]

int =Vt. [[tot->[t-1])
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The intended interpretations are indicated by the names. In section 4, we will define the type
interpretation function D : Types — obj(C) in such a way that

Dy 1 =0
Dy, . [t—=4) =1
Dvi.fis[t=1) = Bool
Dvi.i=g-p—-y) =Nat

Similarly, given any many-sorted algebraic signature, there is a universally quantified type expression
whose interpretation is the initial algebra for the signature. See [15] for further examples.

2.5 Examples of terms in the pure polymorphic A-calculus. As with types, even if there
are no basic constant types or terms, there are certain terms, given by A expressions which are also
"built-up” out of nothing. We write them in bold face to make them easier to read.

2.5.1.  There is one closed term of type unit given by the following expression:
id=At.Ax:t.x
Since Ax : t. x has type [t — 1], id has type Vi . [t — t]. This is the polymorphic identity function. It
has instantiations at any type; €.g.,
id[bool] = At. Ax:t. x[Vt.[t> [t = t]]1]
The type of id[bool] is
[bool/t] [t—t] = [bool — bool]
=[Vi.it=[t=t]=VVi.t=[t=1]]
The rule for instantiation conversion says that
id[bool] = At . Ax:t.x[Vt.[t = [t = t]]]
SAX V. [t [t— t]].x
which is the identity function for type bool = Vt. [t = [t = (}].

2.5.2.  There are two closed terms of type bool = Vi. {t — [t — t]] given by the following
expressions:

true =At.Ax:t.Ay:t.x

false = At.Ax:t.Ay:t.y

(Cf., Bohm and Berarducci [1].)
Clearly, Ay : t . x has type [t = t] so Ax : t . Ay : t . x has type [t = [t = ]}, and hence true and
false have type bool. Define a term for negation: not : [bool — bool] as follows:

not =Ab : bool . At .Ax:t. Ay :t. ((b[t] y) x)
To check the type of not, note that if b is of type bool, then b{t] hastypet - t — t. Since x and v
have type t, ((b[t] y) x) has type t. Thus, Ax : t. Ay :t. ((b[t] ¥) x) has typet = t = t s0

t.Ay :t. ((bt] y) x)

has type bool. Therefore, not has type [bool — bool]. Homework: show that (not true) =* false.

2.5.3.  There are countably many closed terms of type nat given by the following expressions:
O=At. As:[t—=).Az:t.z
L=At As:[t—=>t)].hz:t.(s2)
2=At.As:[t = t].Az:t.(s(sz))
etc. (Cf., Girard [6].)
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These are called Church numerals exactly as in the untyped A-calculus, The successor function, suce :
[nat — nat} is defined by

succ =An :nat. At.As: [t = t].hz:t.s ((n[t] s)z2)

The addition function for Church numerals, plus : [nat — [nat — nat]] is defined by
plus =Am : nat . An : nat ., (m[nat] succ) n

The multiplication function for Church numerals, times : [nat — [nat = nat]] is defined by
times =Am : nat . An : nat . ((n[nat] (plus m)) 0)

Homework: show (succ () =* 1.

show ((plus DD =* 2.

show ((times 2) 2) =* 4.

2.5.4.  Here is an example of a bad term: At.Ax : [t — ¢']. (x z). Here z has to have type t,
butze FV(Ax: [t = t']. (x z)) and t € fv(z) so this term is not well-formed.

2.6 Discussion. This form of the polymorphic A calculus is called F3. It was originally
described by Girard [6] and independently by Reynolds [16]. It is explicitly typed. in the sense that the
types of all variables are given explicitly in the expressions and there is explicit type abstraction Vt on
types and At on terms. Furthermore, polymorphic expressions are applied explicity to type arguments
as in f1).

It is also possible to consider implicitly typed languages in which type information is omitted; e.g.,
ML, ewc. In this case, type inference (or type derivation) becomes an important consideration.
However, it may not always be possible to assign a unique type to an implicitly typed term. In ML
there are type inference algorithms that derive principle types (or principle type schemes) for
admissible terms. Admissible means that V't can only occur at the top level, and so, in fact, it is omitted
from the language entirely. This restriction is crucial in order to have principle types.

Example: The untyped term Af . Ax . f (f x) can yield the polymorphic typed term
t.Af:[t> t].Ax:t.f(f2z)

which, as we have seen has the type nat = Vt. [[t = 1] = [t — t]]. However, it can also yield the
polymorphic typed term

Af s (VL. [t > t) . A Ax ot L flt'] ('] x)
which has the type [ Vt. [t = t] = V1. [t' = t] ] This takes a polymorphic function as argument
and so is not allowed in ML. There can be no more general type which yields both of these types by
instantiation. Hence, the full language F» does not admit principle type schemes. The decidability of
type inference taking untyped A-calculus into F; is open.

Note: Fj extends to languages F3, Fy, . . . Fy by introducing Kinds as well as types. In Fa,
imagine that V't really means Vt: Type. Then F3 is given by a more complex grammar: there are Kinds
K, types T and terms f described by the grammars:

K == Type! Type = K
T = tIT->TIVe:KIAGK.TI(TT)
f w=xIAx:T.EI(F)IAL:K.fIf[T]
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To get Fa. K is allow 1o also have expressions of the form [Type — Type| — K. Finally, Fy, differs
from the earlier languages only in that K ::= Type | K - K'.

3. THE CATEGORIES PER AND MoD.
3.1 Review of partial recursive functions.

A partial recursive function is a partial function from N to N which is computed by some Turing
machine. Let PRF = the set of all partial recursive function. (Recursive functions of several variables
could be defined in the same way.) Since there is only a denumerable number of Turing machines,
there is an effective surjective function e : N — PRF. We use the notations:

e(n)(m)=ne+m=ex(m).
for the value of the n'th partial recursive function at the argument m. All of these notations include the
implication that ey(m) is defined. The number n is called the code for ey,

We will make use of a number of properties of partal recursive functions.
i) There is a bijection <—, — >: N x N — N whose inverse is given by two total recursive
functions with codes p; and py; i.e.,
Ppre<n,m>=n,p2*<n,m>=m,and <pj+m, p3 * m>=m.
ii) Composition is recursive; i.e., there is pcomp Such that
n e+ (m-«u) = (pcomp * <N, M>) * u.
iii) Sections of N x N are recursive; i.e., for each p there is a code sp such that
$p*n =<p, n>,
iv) Application is recursive; i.e., there is a code papp such that n » m = p,pp + <n, m>.
v) Induced functions into products are recursive: i.e., there is a code pjpq such that
<ne+p,me*p>=(pipd * <n, Mm>) * p.

3.2 The category PER.

The polymorphic A-calculus can be interpreted in any cartesian closed category C, except for types of
the form V't . expr(t) where expr(t) is some type expression in t. The idea is that Dy, expr(1) Should
involve [1A e ¢ expr(A). However, it is a “classical” theorem of category theory that if a (small)
category C has products of families of the same size as the category, then there is at most one
morphism between any two objects; i.e., the category is a preorder. (Proof: Suppose C(A, B) has at
least two elements. Then C(A, [lmor(c) B) = [Imor(c) C(A, B) has cardinality at least as big as
2mor(C) which is bigger that the cardinality of mor(C).)

This proof is classical and is not valid inwitionistically; i.e., it need not hold in a topos, where
products are "internal” products. We will discuss a sequence of categories: EFF 2 @—SET 2 PER
where EFF is the effective topos, w—SET is (isomorphic) to a certain (large) subcategory of E¥F, and
PER is a small subcategory which contains products indexed by w—sets, but nevertheless is not a
preorder. (Actually, we will only discuss the topas EFF in passing.)
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3.2.1 Definition. A per A is a partial equivalence relation on the set N of natural numbers; i.c., a
symmetric, transitive relation A contained in N X N.

Notation: Write n A m iff (n, m) € A and dom(A) = {n!n A n}. Then A restricted to dom(A) is an
equivalence relation. Denote the equivalence class of n € dom(A) mod A by [n]a = {m!n A m} and
the set of equivalence classes (or the quotient set of dom(A) by the relation A) by Q(A) = {[n]alne
dom(A)]}.

3.2.2 Definition. If A and B are pers then a morphism f from A to B is a function  : Q(A) — Q(B)
such that there is anf € N with the property that for all p e dom(A), f([p]a) = [ng * p]g. In particular,
nf+ (- )is a total function on dom(A). The number nf is said to realize f, or to be a witness for f.

3.2.3 Proposition. Composition of morphisms of pers is again a morphism of pers.

Proof. Givenf: Q(A) = Q(B) and g : Q(B) — Q(C) with witnesses nf and ng, then
g(f(p)) = [ng * (nf * PIIC = [(Pcomp * <ng, ne>) * plc.

Hence, (pcomp * <ng, ng>) is a witness for g ¢ f.

3.2.4 Definition. PER denotes the category of pers and morphisms of pers.

3.2.5 Theorem, PER is a cartesian closed category with all finite limits.
Proof.
1. PER has binary products. If A and B are pers then A x B is the per defined by
nAxBmiff (p;*n) A(p1*m)and (p2°n) B (p2+ m)
The projection morphisms pra : Q(A x B) = Q(A) and prg : Q(A x B) — Q(B) are given by pra([n]a
x B) = [p1 * n)a and pre([n]a x B) = [p2 * n]B, Thus p; and pj are witnesses for pra and prg. Note that
<pra, pre>seT : Q(A x B) = Q(A) xsgr Q(B) is a bijection since, given [n]a and [m]g. then <n, m>
€ dom(A x B) and [<n, m>]a x B is well defined with pra([<n, m>]a x B) = [n]a and prg([<n. m>]a
x B) = [m]g. Now, given f : Q(C) — Q(A) and g : Q(C) — Q(B) with witnesses nf and ng, then there
is a function
<f, g> : Q(C) » Q(A) xg¢; Q(B) = Q(A x B)
satisfying
<f, g>(Irlc) = [<nf* 1, ng * ©>]A x B = [(Pind * <0f, ng>) * rlA x B
SO pingd * <nf, ng> is a witness for <f, g>.

2. PER has function space objects. Let A and B be pers. Then the function space per, [A = B],
is defined as follows:

n[A—>B]miff Vp.Vq.pAq=(n+p)B(m-q)
In particular, n € dom({A — B])iff Vp. Vq.pAq = (n - p) B (n+q)sonis the witness of a
morphism fp : Q(A) — Q(B). Furthermore, n and m are witnesses of the same morphism if and only if
n[A = Blm, so Q([A — B]) = PER(A, B).

3. The application morphism is defined as follows. Define appa, B : Q({A - B]) x Q(A) —» Q(B)
by the formula: appa, B([n){A — B}, [m]A) = [n *m]p = [Papp * <n, m>]gy 50 papp Witnesses appa, B.
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4. Curried morphisms are morphisms. Let h: C x A — B be a morphism witnessed by ny, and
consider h([<p, n>]cx A) = [0 * <p, n>]g. Since h is really a function h : Q(C) x Q(A) = Q(B), it
determines a curried function h¥ : Q(C) — [Q(A) — Q(B)lseT. Then

h#([plc)(In]A) = [nh * <p, n>)p = [np * (5p * n)]B = [(Pcomp * <Nh, $p>) * nlB
Hence, h*([plc)( - ) is a morphism from A 10 B witnessed by Pcomp * <np, Sp>. Furthermore, F(p) =
Pcomp ® <Rh, Sp> Is & recursive function of p, so h#: C — [A — B] is a morphism. Therefore PER is
cartesian closed.

5. Equalizers. Let f, g : A — B be morphisms of pers. Then eq(f, g) : Eq(f, g) » A is
constructed as follows: Chose witnesses ng and ng for f and g and form the set theoretic equalizer of
the restrictions of ng and ng to dom(A). This is the domain of Eq(f, g) and Eq(f, g) itself is the
restriction of the relation A to this set. The morphism eq(f, g) is witnessed by the code for the identity
function. The existence of arbitrary finite limits follows as usual from the existence of binary products
and equalizers. See also [18].

3.3 The category of w-sets.

3.3.1 Definition. An w-set is a set X together with a surjective relation |-x contained in N x X;
i.e., ¥x. 3n. n I-x x. This relation is read "n realizes x" or "n witnesses x". Note that a particular n
can realize many different x’ s. The only condition is that every x is realized by some n.

3.3.2 Definition. Let (X, %) and (Y, l-y) be @-sets. A morphism f: (X, I-x) = (Y, l-y)isa
function f : X — Y such that there exists pr e N satisfying the condition: if n I-x x then (pg+ n) -y
f(x). As usual, we say py realizes or witnesses f.

3.3.3 Definition. ® - SET is the category of w-sets and morphisms of w-sets.

3.3.4 Theorem. w - SET is cartesian closed with all finite limits.
Proof. (X, x) x (Y, l-y) = (X x Y, |-x x Y ) where

nl=x x v (x, y) iff (p * n) -x x and (py * n) -y y.
The function space object is (w - SET(X, Y), l-{x - v]) where p I-[x  y) f iff p witnesses f as
above. Equalizers are "full” subobjects; i.e., if f, g : (X, I-x) — (Y, I-y) are morphisms of ®-sets,
then the equalizer Eq(f, g) of f and g is constructed ser theoretically as the subset of A on which fand g
agree, with the relation given by n l-gq(f, gy e if and only if nl-5 e

3.3.5 Definition. MOD denotes the full subcategory of ® - SET determined by the "functional” w-
sets; i.e., those (X, l-x) for which |—x is the graph of a function. Thus, if n l-x x and n l-x y then x =
y. Such an{(X, l-x) is called a modest set. In a modest set, a number n witnesses at most one element.
MOD is called the category of modest sets.

3.3.6 Proposition. MOD is isomorphic to PER.

Proof. We define functors PerToMod : PER - MOD and ModToPer : MOD — PER by the
formulas: PerToMod(A) = (Q(A), € o), and PerToMod(f) = f. Here, (€ ) is the subset of N x Q(A)
given by (n, [p]a) € (€ o) iff n € [p]a. In the other direction, ModToPer(X, I-x) is the per defined by
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n ModToPer(X, l-x) m iff 3x € X with n I-x x and m [-x x and ModToPer(f) = f. Thus, n €
dom(ModToPer(X, x)) iff 3x € X with nl—x x, and

[nIModToPer(X, -x) = {m | 3x € X with nl-x x and m I-x x}.
One checks easily that ModToPer(PerToMod(A)) = A and PerToMod(ModToPer(X, I-x)) = (X, I-x):
i.e.,.ModToPer » PerToMod = idpgr and PerToMod » ModToPer = idmonb.

3.4. MOD as an internal category object in ©-SET.

3.4.1 The “equational’” definition of a category.
A category C consists of six components:
i) A class obj(C) whose elements are called objecis of C.
i) A class mor(C) whose elements are called morphisms of C.
iii) Two functions domg, codc : mor(C) — obj(C) called the domain and codomain functions.
The expression f : X — Y for a morphism f in C abbreviates the statements: domc(f) = X and

codc(f) = Y.
iv) A function idc : obj(C) = mor(C). We will write id¢(X) as idy when C is clear from the
context.

v) A function compc : compPair(C) — mor(C) called composition. Here compPair(C) denotes
the class of pairs of morphisms (f, g) such that codc(f) = domc(g). As before, we write
compc(f, g) =g« f orgf, orf; g. Sometimes for clarity we writc it as g oc f.

These data satisfy four axioms.

a) domg(idy) = codc(idy) = X; ie., idx: X = X,

b) Iff: X > Y, thenidyef=f-idy=f.

¢) domc(g - f) = domc(f) and codc(g - f) = codce(g); ie.,if f: X = Yandg:Y — Z, then

gef: X 7Z

d ff:X>Y,g:Y>Z,andh:Z—> W, thenhe(gef)=(h:g)-f.

The functions described in this definition can be illustrated by the following picture.

dom
id
cod

compPair(C) ———— mor(C) 0obj(C)

In this version of the definition, the collection of morphisms f such that dom(f) = X and cod(f) = Y
could be a proper class. If it does form a set for each pair of objects X and Y, then C is called locally
small, and the set of such morphisms is denoted by C(X, Y). C is called small if both obj(C) and
mor(C) are sets.

The definition of CompPair says that CompPair is a pullback of the two morphisms dom, cod :
mor(C) — obj(C), so we can generalize this description of a category to the notion of a category
object, or an intemal category in any category D.

3.4.2 Definition. An internal category object C in a category D is a diagram
dom

C, © C id
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of objects and morphisms in D, Cz is a pullback in D of the morphisms dom and cod, as above, and
the same equations as in the existential definition of a category are satisfied.

3.4.3 The internal category object M in w-SET.
Let Mg = (obj(MOD), I—M ) where I—M =N x obj(MOD); i.e., every n € N witnesses every modest
set. Such an w-set is chaonc or codzscrete Let

M; = ({< (X, I-x), f, (Y, I=y) > | f € MOD(X, Y)}, l-M.)
where n -y <X, f, Y> iff n lx o y] f. Finally, dom(<X, f, Y>) = X, cod(<X, f, Y>) = Y, id(X)
= <X, idx, )&>), and comp(<X, f, Y, g, Z>) =<X, f; g, Z>. Then

M = (Mg, M, dom, cod, id, comp)
denotes this category object. Note that there is also the discrete category object

Mg = (Mo, My, id, id, id, id).

3.4.4 Relations with EFF. The categories MOD and ®-SET can be imbedded in a natural way in
the effective topos. Under this embedding, MOD is equivalent to the category of "effective objects”
and w-SET is equivalent to the category of "—— - separated objects”. See Hyland [10].

3.5. Products of modest sets indexed by MOD.

3.5.1 Definition.

Let C be a category and let A be an object in C. The slice (or comma) category CLA is the category
whose objects are pairs (X, f : X — A), abbreviated by (X, f). A morphism from (X, f) to (X', ) is a
morphism h : X = X' in C such that f + h = f. Objects and morphisms in ClA are called objects and
morphisms over A.

X—’X

NS

A useful way to think about objects over A is in terms of indexed families of objects. If C has
pullbacks and a terminal object, then given f : X — A and a global element'a: 1 — A, we can form
the pullback Xaof falong 'a as illustrated. X is called the fibre of f: X — A over a.

H V

If f: X’ > Ais another objcct over A and h : X = X' is a morphism over A, then it is easily checked
that h determines a family of morphisms (h; : X3 — X'3}. Thus, for each global element a of X, h,
maps the fibre of X over a 1o the fibre of X' over a.

It is easily seen that a category CLA has a terminal object given by the identity map on A and that
C has pullbacks if and only if ClA has binary products for all A in C. The relations between the slice
categories over objects A and A’ determined by a morphism g : A — A’ are our main concern here. If
g: A — A’, then the change of base funcior Xg : ClA — ClA' is the functor whose value on objects
is given by Za(X, f) = (X, g * f) and whose value on morphisms is given by Y¢(h) = h; i.e., Lg takes
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objects and morphisms over A to objects and morphisms over A' by composing the objects with g. If
C has chosen pullbacks then Zg has a right adjoint functor, the inverse change of base functor g* :
ClA" - ClA given by pulling back along g; i.e.,
g*X, f: X2 A)=(g*X, p1: g*X = A)

where p1 is the projection from the pullback to A. A category C with finite limits is called locally
cartesian closed if for all g : A — A’in C, g* has a further right adjoint functor [1g : CLA — CIA" If
f: X — A, then we frequently write [Tg(X) instead of the more precise [1g(X, f). See Freyd [4], or
Taylor [19]. Note that local cartesian closedness is equivalent to all slice categories being cartesian
closed.

3.5.2 Example.
The category ®-SET is locally cartesian closed. This can be proved directly, or by using topos theory.

3.6 Internal functors.

Just as there are internal category objects in a category, one can also consider internal functors between
them (i.e., small functors) as well as internal functors from an internal category object to the ambient
category (i.e., locally small functors).

3.6.1 Definition. Let Cjy = (Cg, C;, dom, cod, id, comp) be an internal category object in a
category D. An internal functor F from Cjq; to the ambient category D is an object (F, p : F = Cp) in
D1 Cq together with an action o : F xC, C) — F over Cy, satisfying easily derived equations. For a
discrete category object, there are no equations and the action is the identity morphism.

3.6.2 Definition.
A constant internal functor over C is one that is pulled back from something over 1; i.e., one of the
form

CoxY Y
pr — 'y
!

Cy 1

where the action is given by the projection onto Y. (It represents the functor constantly equal to Y.)

3.6.3 Internal products.

Recall the usual definition of a product of a family of objects X; indexed by i € I, which says that
C(Y, Tlie 1 Xi) = [Ti e 1 C(Y, Xj);i.e., morphisms from Y to [1; ¢ 1 X; are bijectively equivalent 10
cones from Y to the family (X :i e I}. Stated differently, Y can be regarded as the constant family
indexed by I and [T; ¢ 1 C(Y, Xj) is the collection of "natural transformations” from the constant
family {Y; = Y} 1o the family {X;]. Turning 1o the case of internal products, instead of the index set I,
one uses a discrete internal category object Co (which is identified with its object Cg of objects) as the
indexing object. Furthermore, the family {X;iie I} is replaced by an object over Cp (i.e., a
morphism p : X — Cp), thought of as an internal functor on the discrete category object Cp, while the
constant family equal to Y is represented by a constant internal functor pr: Co x Y — Cg. The product
of the family p : X — Cp is the value of the right adjoint functor [Tt : C{Cg — Cl1 on (X, p). Thus,
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the description of an internal product in terms of slice categories says that “internal natural
ransformations” from the constant internal functor (Cg x Y, pr) to the internal functor (X, p) are
bijectively equivalent to morphisms over 1 from Y to [1i(X, p); i.e.,

(CLCo)((Cox Y, pr). (X, p) ) = (CI 1Y (Y, ty), [T((X, p) ) = C(Y, [IiX )
as illustrated below,

Therefore, there has to be a natural bijection between morphisms ¢ and ¢* as illustrated.
3.7 Products in MOD.

In the category ®-SET, suppose that Co above is Mg and consider an object p : X — Mg where the
fibres of X are modest sets; i.e., X looks like a family {Xa ! A € Mp) of modest seis indexed by the
"w-set of all modest sets”. More explicitely, for each global element 'A : 1 — X, the pullback Xa
constructed as in 2.3.4 is a modest set.

3.7.1 Theorem. []; X = PerToMod(M4 Mg ModToPer(Xa)).

Proof. Recall that ModToPer(X ) is a per for each A; i.e., a symmeiric, transitive subset of N x N.
The intersection of such subsets is again symmetric and transitive, so it is a per. (Note: in PER, for
any family Aj of pers, N e 1 Ajisdefined byn Njc jAjmiff forallie I, n Ajm. Then dom(N ¢
Aj) = Nje 1 dom(A;) and there are morphisms pri: Q( e 1 Aj) = Q(A;) which are witnessed by the
code for the identity function.) Hence PerToMod(Na ¢ M, ModToPer(X A)) is a modest set.

To prove that this modest set is isomorphic to the internal product [Ty X, let Y be a modest set, and
consider a morphism ¢ : Mg x Y — X over Mg in ®-SET as in 2.6.3. Let m be a witness for 6; i.e., m

FMgxY - X1 9. Let (A, y) € Mgx Y and letnl-Myxy (A, y),sony =py by A, mp=p2nl-
v y and n = <ny, n2>. Then m » n l-x ¢(A, y). The point of the following argument is that the
condition ny =M, A is no condition at all since Mg is a chaotic w-set. It is satisfied by all nye N.
Hence, for all n] € N and for all A € Mp. m » <ny, n2> l=x (A, y). In particular, we can choose n} =
0, so m * <0, n2> |l-x ¢(A, y) for all A. But (A, y) € Xa since ¢ is a morphism over My.
Furthermore, m ¢ <0, n2> l-x , O(A, y) since X is full in X, because it is a pullback. Thus there is a

number r = m » <0, np>, independent of A, which witnesses the value of ¢(A, y) in each Xa4.
Therefore,

re dom(Ma e M, Out(Xa)).
Now consider PerToMod(Ma ¢ My ModToPer(Xa)) and define 0% : Y = PerToMod(Ny e Mg
ModToPer(X)) by
o*(y) =1Irla, ¢ MgModToPer(X4) = [m * <0. n2>Jn, o ModToPer(X )
= [(Pcomp * <m. $0>) * N2ln, MmpModToPer(X )
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so ¥ is witnessed by Pcomp * <m, sp>. (Note: one still has to verify that the correspondence between ¢
and ¢* is a natural bijection.)

3.7.2 Corollary: MOD, (or PER) has internal products indexed by chaotic w-sets.

4. SEMANTICS OF THE POLYMORPHIC A-CALCULUS IN PER.
4.1 Semantics of the simple typed A-calculus in a cartesian closed category.

For a more complete treatment of certain aspects, see Gray [7] and [8]. If we ignore universally
quantified types, type abstractions of terms and type instantiations in terms, then what is left is an
ordinary typed A-calculus. This has a standard interpretation in any cartesian closed category C.

4.1.1 Semantics of ordinary types.
A rype interpreration of an ordinary typed A-calculus in C consists of a function D : Type — obj(C)
such that
i) If be B, then D(b) € obj(C) is some user chosen object in C.
ii) D([o — 1] =[D(0) = D(D]c.
We frequently write Dg for D(G).

4.2.2 Semantics of ordinary terms.
i) Iffisany term, then Env(f) = [1x e Fv(p) Diype(x)-
ii) Foreach x € Varand f € Terms, updatey_ 1 is defined by two cases:
a) If x e FV(f), then updatey r: Env(Ax . f) x Diype(x) = Env(f) is the unique morphism
such that for every w € FV(f),
prw - updatex f = prw o pry, if w = x, and pry « updatex_ = pr3.
b) If x € FV(f), then FV(Ax . f) = FV(f), so Env(Ax . f) = Env(f) and
updatey, f = pri : Env(Ax . f) X 1 = Env(f).

ili} The (local environments) term interpretation function [ - J] : Terms — mor(C) for a simply
typed A-calculus assigns to each term f in L a morphism [[ f ]] : Env(f) — Diype(f). These morphisms
are defined recursively by the clauses:

a) Ifxe Var,then[[x]] = idDrype(x) : Diype(x) = Diype(x)-
b) Iff:[c—>1jand g: o, then
([(fg)]} =appo,« < <([£11-prev(ny . [[ g 1) * prEv(g)> - Env((f g) ) = Dy
¢) Letxe Varandfe Terms. If x € FV(f), then
([Ax.f ]} =curry(f[ f]] - updatex ¢} : Env (Ax.f) — [Diype(xy = Diype(n))-
else
[{Ax. £]])=curry(([ f ]] - update, ) : Env (Ax . f) = [1 = Dyypep)-

Here, curry : C(X x Y, Z) = C(X, [A — B]) is the isomorphism describing the function-space
construction {A — B] as right adjoint to the cartesian product. Part b) makes sense since
([ £1):Env(f) = {Dg — D¢) and [[ g ]] : Env(g) = Dg.
Now Env((fg) ) =TIlwe Fv(fyu FV(g) Diype(w) SO there are generalized projections
preven : Env((f g) ) = Env(f) and prev(g) : Env( (f g) ) = Env(g)
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Thus

<[ £1]=prrven, [ g ) e prEv(g)> : Env( (f g) ) = [Dg — D+l X Dg
while appg, 1 : [Dg — D1} x Dg = Dr.

To make sense of part ¢), we have to clarify what morphism is being curried. If x € FV(f), then
updatey, f : Env(Ax . f) X Diype(x) = Env(D),
so [[ 1] - updatex, 1 : Env( Ax . f) X Diype(x) = Diype()- Hence,
curry([[ f ]] - updatex 1) : Env(Ax . f) = [Diype(x) = Diype(n]s
as desired. If x ¢ FV(f), then updatey, ¢ = pr1 : Env( Ax . f) x 1 = Env(f), so as before,
curry({[ f ] - updatex, r } : Env( Ax . f) = [1 — Diype(p)].

4.2 Semantics of the polymorphic A-calculus.

If X is a discrete category and C is cartesian closed, then [X — C] is cartesian closed with (F x
G)X) = F(X) x G(X) and [F = GI(X) = [F(X) = G(X)]. We use this with C = PER and X =
IPERITY where ICl means the underlying discrete category of C, and Tv is the set of type variables for
the polymorphic lambda calculus. The product category IPERITY can be thought of as the (discrete)
category of type environments.

4.2.1 Polymorphic types. Assume that B; = @. Note that obj([IPERITY — PER]) consists of
functors F : IPERITY — PER. Such a functor has a value for each type environment S € IPERITY,
called F(S). Define D(.y: Type — obj([IPERITY — PER]) by the recursive clauses:

D, = pr, : IPERITY — PER, i.e.. Di(S) = pry(S) = S(1).

Dig -1 =[Dg— Dz]

Dv16(S) = [1ae IPERDs(S[A/])
Here S € IPERITV is a type environment and S[A/t] is the environment in which t is updated by A; i.e.,
S{AN]() = A and S[AN)(1) = S(t) for ' # .

Example: Consider int = Vt . [[t = t] = [t = 1]]. Then
Dy, lt=->t=- (]](S)

= [1aePERD[(1 - 1] - [1 - l(S(A/])

= [Tae1Peri[[D(S[AN] — Dy(S[A/]] — [D(S[A/t] — D(S[A/]]]

= [1aeper[[S[A/](V) — S[AANM)] — [S[ANI(1) — S[ARIW]]

=[TaepErl([A = A] = [A - A]]

=MaelPERI([[A = A] - [A — A]]L
It is a theorem, first proved by Hyland, Robinson, and Rosolini (13] that this per is exactly the natural
numbers. Later, Freyd [5] gave a much simpler proof for this case.

4.2.2 Polymorphic terms. In the case of the polymorphic A-calculus, terms are represented by
morphisms in the category [IPERITY — PER]. These are natural transformations between functors, but
since IPERITY is a discrete category, natural transformations are just families of morphisms. Thus, let
F, G : IPERITY = PER be functors. This means that F and G are functions with values in PER for
each type environment S € IPERITY. A morphism ¢ : F — G is a family of morphisms ¢s : F(S) —
G(S) for each S. Since [IPERITY — PER] is cartesian closed, the interpretation of ordinary terms is
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the usual one, and we only have to worry about type abstractions and type instantiations. These will be
determined by induction as usual. In general, if g € Terms9, then [[ g 1] : Env(g) — Dg where

Env(g) = Tlx eFV(g) D[ypc(x)-
Regarded as functors, Env(g)(S) = (Ix ¢ FV(g) Diypex))-(8) = x e Fv(g) (Diype(x)-(S)), so

([ g 1ls : Tlx e Fv(g) (Diype(x)-(S)) — Do(S).

4.2.3 Type abstractions of terms,
Assume that [[ g ]] has already been specified. Now, a term of the form At . g has type Vt. g, where
type(g) = G, and for each S e IPERITY, by 3.1, Dy 6(S) = [Tac ipERIDo(S[A/t]) s0 the component of
[[At. g]] at S has to be a morphism

[[At. glls : TTx eFv(ar . g (Deypex)(S)) — [MaeiPERIDG(S[AN])
Such a morphism is determined by its projections onto the objects D5(S[A/t]) for each A € PER.
These are given by the formula:

pra < [[At. glls = [[glls;am
This makes sense since FV(At . g) = FV(g) so the domain of [{g]] is (ITx e FV(At. g) Diype(x))-
Furthermore, for all x € FV(g), t € fv(type(x)), so Duype(x) (SIA/1]) = Diype(x) (S) by induction on the
structure of type(x). Hence the domain of [[ g Is{any, which is [Tx e Fv(ar. g) (Diype(x)(S[AA])), in
fact equals [1x e Fv(ar. g) (Diype(x)(S))- Thus, for all A,

(L& Dstan : TTx eFviar. g) Diype(x)(S) = Do(S[AA])
as desired.

4.2.4 Type instantiations of terms.

If fe TermsVtS then [ f]s : Tk e FV(f) Diype(x))(S) = [Tae PERIDo(SIA/]). Assuming that ([ f]]
has already been determined, then we must specify [[ f] ]] for any type 1. But Dy € PER so there is
a factor Dg(S[D+/1]) in [TaeiPERID(S[A/t]). Hence it makes sense to define [[ f[1] )]s = PrD, ([f)s.
This completes the description of the semantics. It is a non-trivial exercise to show that this semantics
is invariant under the operational semantics of the polymorphic A-calculus.
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