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Convexity Theories U — Back to the Future

H. Rohrl

ABSTRACT: In this note we present an outline of what might be called algebraic convezity theory. We
describe briefly the salient features of this theory, state few conjectures, and indicate promising directions for
future research.

The definition of convexity theories requires the presence of a normed unital semi-ring R. Unital
semi-rings are described by exactly the same axioms as unital rings, except that the existence of
additive inverses is not assumed. Normed unital semi-rings are unital semi-rings R equipped with a
norm J|2f| : B — R that is subject to the standard requirements of a norm: in particular ||1]| = 1.
A slight modification of the notion of Cauchy sequence in a normed ring leads here to the concept
of Cauchy sequence in a normed unital semi-ring. Similarly one has the notion of limit of a Cauchy
sequence in a normed unital semi-ring. If every Cauchy sequence in a normed unital semi-ring has a
unique limit then we speak of a Banach semi-ring.

Let RN denote the set of sequences a. := (a).ay,...) with entries in the normed semi-ring R.
The support supp(a.) is the set {i € IN : a; # 0} and the cardinality of supp(a.) is called the length
{g(a.). A subset ' of R s said to be finitary, if a, € T implies lg(a.) < Ro; otherwise I' is said to
be infinitary. Given a subset T of RN we denote the elements of I'N by 82, with the understanding
that ﬁf isin T, for all j € IN. Define {(an .8°) € RN forag €T and 8° € N, by

(an B2 ) := Y {e;Bi :i€ IN}.
If T is finitary then (ag .BC ) is well defined under the following additional assumptions:

(i) R is a Banach semi-ring,.

(i) lla-]l < 1 and [|B5]| < 1. j € IN, where [la.|| := S {lle:]| : € IN} (and ||B2]| correspondingly).
Therefore, whenever we are dealing with an infinitary I' C RN, we assume - without stating so
explicitly - that R is a Banach semi-ring.

DEFINITION: Let R be a normed semi-ring. A (left) convezrity theory I’ over R is a subset of
R such that
(T0) la.f £ 1 forall a, €T,
(T1) 8 := (6{6;) €T forall j € IN, where & is the usual Kronecker symbol.
(I'2) {an.B%) €T forall a..8).4%,...€T.

A number of useful formulae involving the composition {0, 0) are known.

DEFINITION: Let I’ and T be convexity theories (over R’ resp. R). Then amap ¢ : I' — T'is
called a morphism of convezity theories if

This work is an original contribution and will not appear elsewhere.



322 H. Rohrl: Convexity Theories U - Back to the Future
(M1) (1) = 6! for all j € N,

(M2) ¢({ao ,ﬂ?) = {¢(ao ),(;:IN(ﬂ,D )). for all a.,B.02.... € IV, where (,olN TN N g the
induced map.

These two definitions give rise to the category Conv of convexity theories. There is a functor S
from the category Conv to the category Mon of monoids. It assigns to each convexity theory T over
R the submonoid S(T') of R* - the multiplicative monoid underlying R - consisting of precisely those
p € R* for which (p.0,0....) € T holds; S(T'}) is called the monoid of scalars of I'. Conv plays a role
somewhat similar to the category of unital rings and more information on Conv would be quite useful
in our theory. One item that would be particularly interesting is a, at least partial, classification of
the convexity theories over a given normed semi-ring. Indeed, in the case R = IR all convexity theories

N,

containing the standard convexity theory Q¢ := {a. € IR™ : |la.|| = l.lg(e.) < Ro,a; > 0 for all

i € IN} can be characterized ([8]), the take-off point for this classification is Kuhn’s Theorem ([2]).

Let T be a convexity theory and let X be a set. An operation of ' on X is a map T x xWN 5
(a..z") — (a..z") € X. X together with such an operation is called a I'-algebra. Following [5] we
have the following two definitions

DEFINITION: Let X be a I'-algebra. Then X is called I'-conver module. if

(CC1) (8.z°) =2} forall jelIN,z* e XN,
(rc2) ({ag.B%).z°) = {00 .{8° .z*)) forall a. € .89 €N 2z e xN
where (89 ,z°) := (8,2°).

DEFINITION: Let ¢ : I' — T be a morphism of convexity theories. Then a map f from the
I"-convex module X' to the I'-convex module X is called a morphism of conver modules over ¢, if

S, z%) = (pla), fN(z*)) forall a.el’ .z e XN,

where le : X o XN is the induced map. If ¢ = idr, then we speak of a morphism of I'-convez
modules.

If T is fixed, then the totality of I'-convex modules together with their morphisms - composed set-
theoretically - forms the category I'C of I'-conver modules. T'C is an algebraic category. As such there
are free ['-convex modules on any set. There is an explicit construction of these free I'- convex modules,
that resembles the construction of the I;-spaces on a given set. S(I') equipped with the obvious -
convex structure is the free I'-convex module on the set {1}: T itself is free on the set {6 : j € IN}.
Various computational rules for I'-convex modules can be proved by verifying them for these free
objects. Each I'-convex module carries an intrinsic semi-norm ||Qj|r whose general properties resemble
those of a norm: in particular one has ||z|[r < 1, for all z € X. It can be used to define various special
kinds of -convex modules. (For special cases see (6] and [9])

Given the notion of normed (Banach) semi-ring R there is an obvious concept of normed (Banach)
left semi-module M. A morphism f : M’ — M between two left semi-modules over the same normed
semi-ring is said to be contractive, if ||f(m')]| < ||m'|l. for all m’ € M’. The category of normed
(Banach) left semi-modules over R with their contractive morphisms is denoted by R-Mod,. Note that
a contractive morphism f: M’ — M maps the closed unit ball O(M') of M’ to the closed unit ball
O(M) of M. Moreover, if T is a convexity theory over R, the closed unit ball O(M) carries a canonical
I'-structure making it a I'-convex module OF(AI). Since the contractive morphism f: M’ — M, when
restricted to the closed unit balls, is a morphism of [-convex modules Op(f) : Or(M’) —Or(M),
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we obtain a functor Or : R-Mod; — I'C. Or has a left adjoint M : IC — R-Mod,;. This left
adjoint was constructed in a special case in [5], where it was denoted by S. Mr can be used to study
the interior of I'-convex modules.

It is of considerable importance for the investigation of I'C to develop a theory of quotients of I'-
convex modules. This, of course, amounts to investigating congruence relations on I'-convex modules.
The effect of a congruence relation on the interior of a I'-convex module X is fairly easy to describe.
but the effect on the boundary is much more complex. However, the two most important cases can
be handled reasonably well; that is the case, where X = S(I') or X = the free I'-convex module on
the two-element set. The quotient modules of S(T'), i.e. the cyclic I'-convex modules, define the type
of an element z of a I'-convex module X as follows: if f : §(T') — X is the unique morphism with
f(1) = z, then im(f) is called the type of z in X. It would be very interesting to know more about
the way in which various types are distributed over a given I'-convex module. Additionally, similar
to ordinary module theory, these types play a significant role in finding cogenerators for the category
I'C. In [5] and [3] the types of two particular convexity theories are explicitly determined. To find all
quotient modules of the free I'-convex module on the two-element set is important, as it reveals the
structure of the submodule X’ of X, that is generated by two arbitrary elements. This program was
carried out for a particular convexity theory in {7]. In the category I'C the notion of torsion theory
can be formulated following [1]. However, a slight modification is needed, as a convexity theory need
not contain the zero sequence O.. The semi-norm allows the construction of torsion theories in TC,
that have no analogue in ordinary module theory. As is the case in ordinary module theory. the torsion
theories in I'C correspond to certain topologies in T.

Let p : I — T be a morphism of convexity theories. Then ¢ gives rise to the functor V() :
I'C — IC, called the restriction-of-scalars functor ; it assigns to each X € I'C the same set X on
which I'' operates by the formula {a!,z*) : = (¢(a’).z*), and to each morphism f : X — Y the same
map, which turns out to be a morphism in IYC. One can easily see that V() has a left adjoint C(yp):
I'C — T'C, and an explicit construction of the completion functor. or extension-of-scalars functor,
C(y) is readily available. Of particular interest is the unit of the adjunction £ : ['C —V(¢)C(¢).
In case X' is regular, that is ||z|jr = 0 implies 2’ = Ox. £x- is conjectured to be an injective map.
More generally, the congruence relation on X' included by ey, is of considerable interest and should
be studied in detail. In the same vein, one should be able to characterize among all objects of I'C
those of form C(@)}(X’). for same X' € ['C.

A theory of dimension of I'-convex modules can be developed by defining the dimension of X as the
isomorphism class of Mp(X). In a sense, the dimension of X captures the part of X that is separated.
A related yet quite distinct issue is that of a minimal system of generators of X. To some degree.
minimal systems of generators in conjunction with the dimensioin are a measure of the “roundness”
of the boundary bdy(X) := {z € X : ||z|l[r = 1} of I-convex modules. Under certain compactness
assumptions one obtains very general Krein-Milman type theorems for I'-convex modules X. They
remain in force under passage from X to that I'-convex quotient module of X. in which the interior
int(X) := {z € X : ||z|ir < 1} is one congruence class. while all other congruence classes consist of a
single element only. More generally. the study of the behavior of minimal systems of generators under
quotient morphisms yields interesting phenomena.

Various versions ot the Hahn-Banach Theorem have been proved in certain special classes: for total
convexity [4]. for positive convexity {10], and for general positive convexity theories (8]. It is likely that
these results can be extended to some if not all convexity theories over arbitrary Banach algebras. The
main problem here is, whether a convexity theory over a, say real, Banach algebra A has a large enough
intersection with the convexity theory Qg := {a. € RN . |la.|| < 1}; such reality problems would
become much more tractable by corresponding advances in the classification of convexity theories over
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A. The classical Hahn-Banach Theorem, which calls for morphisms to Op(R), or I'-convex submodules
of Or(R), can be extended to furnish morphisms to products of various types, an issue that is closely
related to determining cogenerators for the category T'C. At the same time, these Hahn-Banach type
theorems lead to en extensive duality theory for I'-convex modules and to a theory of dual I'-convex
modules.

The category I'C fails to be an additive category. Still there is the possibility of launching homolo-
gical investigations involving I'-convex modules. However, the appropriate concept to use here is that
of A — O -convex bimodules, where A is a left convexity theory. © is a right convexity theory (in the
sense that (I'2) is replaced by “{82 ,ag) € ©7), and an additional axiom (A — ® C3), stating the
obvious associativity condition for A — O- convex bimodules, is added to (AC1) = (0C1) = (I'C1).
and (AC2) = (I'C2) and the corresponding (©C2). Then AC(X’, X) is a right ©-convex module, and
for appropriate bimodules X and X" the tensor product X'®g X” can be defined as usual (by shifting
scalars form the right of X’ to the left of X"”); a special case is discussed in [5]. Hence, in the situation
described, we have the basic constructs for homological algebra. In case all convexity theories involved
are finitary, there is a broader concept, that is amenable to homological investigations. It is that of
linear theory. A (left) linear theory over a (not necessarily normed) semi-ring R is a subset A of RN
such that

(A0) lglay < R for all a. € A,
(A1) = (T1),
(A2) = (T2),

hold. In case A is the set of all a. € RN with Ig(a.) < Ro, the A-linear modules are precisely the
R-modules, while for other choices of A various generalizations of the R-module concept appear (see
e.g.: W. Bos and G. Wolff, Mitt. Math. Sem. Giessen 129, 1-15, 1978; F. Ostermann and J. Schmidt.
J. Reine a. Angew. Math. 224, 44-57, 1966).
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