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Contravariant Hom-Functors and Monadicity

M. Sobral

ABSTRACT. Let T beacomplete category. Then H B°F —— Set isa right adjoint if and only
if upto natural isomorphism. it is a hom-functor C(—,A ). for some G-obiject A In this
context. we consider the questions of knowing, which Eilenberg-Moore categories of algebras are
induced in Set and in T by the objects of §, ie which categories arise as categories of the form
Setn' or 'GT for the monads L in Setand T in § whose functor parts are L= t(a"A) and
T- Am-'A'. for some G-object A. We show that, under mild conditionson A. CT is equivalent to

Set’®, and so to the category CABool of complete atomic boolean algebras Furthermore, CABool is.
up to equivalence. a reflective. and in general non full, subcategory of B, whenever there exists

no unnatural isomorphism of powers of A, in the sense of V. Trnkova [24]. An approach to the
characterization of Set” is given, via closure operators. Finally, we characterize the categories of

algebras induced in © and SetL by the corresponding comparison adjunctlion, assuming that €
15 also well-powered and that A satisfies an injectivity condition

0. Introduction

To each abject A of a complete category © we can associate a contravariant
functor P=A :Set—— © which assigns 1o each set X the power object

AX and to each function I:X-—> Y the unique G-morphism Pf:AY —-»AX
such  that py - PI- P(x) - for each X e, where (px)“X
and (py)yey are the corresponding projections. Furthermore, for

H- ©(-A).the function ¥y:X—s HPX - G(AX,A) which sends 1 @ X to the

projection p, and the unique U-morphisms 6c: C — PHC - AG(C‘A) such that

P;. 60 =1, for each [ e G(C.A), are universal morphisms from X to H and from C
to P. Hence, we have a contravariant adjunction which induces the

monads L -[s(4”, 4), 7. HeP) in Set and T - (ABCA 6 pri) in & that wil

be called the monads induced by A in Setan in C, respectively.

This work is an original contribution and will not appear elsewhere.
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Section | and 2 are concerned with the questions of characterizing the
categories of algebras that are induced in ¥ and in Set by each object of a fixed

category ©U. We show that. under mild conditions on A. the category CT is
equivalent to the category CABool of complete atomic boolean algebras and derive
some consequences of the non existence of unnatural isomorphisms of powers of A. In

Section 2 we deal with the characterization of Setl‘. This question was raised
in[11]for © = Top, the category of topological spaces and continuous maps, and some
special cases were studied there. Namely, it was proved that the categories of
boolean algebras, of complete atomic boolean algebras and of frames are amongst the
categories of algebras induced by topological spaces. Indeed, they are induced by the
two point discrete space. the two point indiscrete space and the Sierpiriski space.
respectively. In all the examples given in [11] the topological space A
satisfies an injectivity condition. We prove that. when A is an object of a complete
well-powered and co-well-powered category T, this condition implies the following:
The Eilenberg-Moore factorization of G(-A) : 8°® — Set can be obtained via the

corresponding factorization of its restriction U to the dual of the category AC(A) of
absolutely closed spaces of the reflective hull & of {A} in T. Moreover, (AC(AJ°p . U)

Is an algebraic category over Set. Although these facts were very useful in the
special situations we referred to above, they are far from giving a general
procedure [or the characterization of the categories of algebras induced by right
adjoints H : ©°P — Set from the dual of a fixed complete category ©. We may ask
what is the situation like if we replace the category of sets by a monadic category
over Set. Right adjoints from cocomplete categories into such categories were studied
in [7) by P. Freyd and into categories of relational systems in [16] by A, Pultr, who

called our attention to these references.

R

%P — Set™, we have that, up to natural

Given a right adjoint K : €
isomorphism, HR. K = ©(-A) for some T-object A, HR denoting the forgetful
functor. In the last section, we consider the case where HR. K is the Eilenberg-Moore
factorization of ©(-A) and so R - L. Then we show that the injectivity of A with
respect to a class of morphisms we will define there, is equivalent 1o some close
relations between the reflective hull of {A} in © and the categories of algebras

induced in G and in Setl‘ by the adjunction associated with the comparison functor k.
Throughout this paper we shall assume that T is a complete
and well-powered category. Hence. the reflective hull & of {A} in @ is. for each

T-object A, its limit-closure and A is an extremal cogenerator in & ([23] ,6.1).
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Let M be the full subcategory of Cz. where 2 denote the categorv with two
objects and one morphism [rom one to another. with objects the extremal
monomorphisms of T. For each subcategory ® of € the B-closure operator ([3]. [5]).
originally defined in (18] when T - Top. is the functor | ]!3 ;M — M. which assigns

to each extremal monomorphism m the generalized pullback of the equalizers
of all pairs (f.g! such that f . m =g . m.codf=codg being a WB-object. Since T
has (epi. extremal monol-factorizations of morphisms ([9] . 34.5). we consider the

extension of | |y to CZ. also denoted by []g or simply by [ ], assigning to [ = m.e,
B  §)

in €, the B-closure [m] of m, where m.e is the (epi, extremal mono)-factorization of f.
If U:T—>9% has a left adjoint F with unit 4 and counit €, let T be the

monad induced by this adjunctionin . ¢ : © —o‘}CT be the comparison functor and
Fix{(T.n) be the full subcategory with objects all X in % for Which Ty is an

isomorphism.
We shall make use of the foliowing facts:

0.1 Propositionl(2]3.3 Cor”). The counit € is pointwise a regular
epimorphism if and only if €5 is the coequalizer of the pair (EFUX' FUEX). for every

X inG.

0.2 Proposition. [f T has coequalizers then the comparison functor ¢ has
a lelt adjoint.

Proof: [t follows from Th. | in [6]. g

0.3 Proposition. For a monad T- (T, n.u) in %K the following
assertions are equivalent:

(i) u is an isomorphism.
(ii) - Tn.
(iii) 7p is an isomorphism.

(iv) ‘KT is concretely isomorphic to Fix(T.n).

A monad T is called idempotent if it satisfies one, and so all, of the
conditions ti) - (iv) in 0.3.
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1. Categories of algebras induced in G by G-objects

Let us consider the adjunction H—«P(b . 709) and the

monad T - (AB(—.A;! 6, PZH) induced in B by a B-object A.
If A isthe Sierpifiski space, ie., A is the two point set with one

non-trivial open subset, then a description of TopT is given in [21]

(See also [l7]). In this case. the T-algebras are exactly the To-injeclive spaces

which admit an L-subbase, in the terminology used there. That is, these are exactly
the spaces that admit a T-structure map, which, furthermore, is unique. If A is
neither the Siefpidski space nor the one point space, topological spaces can have more
than one T-structure map ([20] .1.5 (b)). However, topological spaces do not

induce the same diversity of categories of algebras over Top as they do over
Set. Indeed, if A is aspace with at least two points then A" :Set®® — Top is

weakly monadic, ie. the comparison functor ¢ : Set’? — TopT is an
equivalence.

Let us analyse the same gquestion in the general contert we start
with. We denote by (M. ¢, x, B°p) . 6T — 5e1°® the comparison adjunction. For

(Be) e CT. we have that M(B.¢), being the equalizer object of the morphisms
7yp- (H8)P:B(B.A) —o(a%BA )

which are defined by l’HBlf) - Pr and (H§)°p(f)- f.¢, is the set
feBCA) |p; = 1. g'|.

We recall that, for each T-algebra (B.e) and for each set X,
K(Be) and ﬂx are the vunique T-morphism and the unique function

which satisfies the equalities « t-de and e, . .f, - ¥, . where
ox x X

(B.g) - (B,g)

. \op ) ) )

®pg) " €9 (IHB . (He) ) and e, is defined analogously (See (6] , Th. 1).
From now on we shall assume that A is not preterminal (i.e. that there exist

at least two parallel morphims in T with codomain A) and that the set G(1,A) is
non-empty, | being the terminal object.

If (Bg) is a T-algebra then M(Bg) is a monosource in & and
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the T-morphisms [ : (Bg) — (B'.¢’) are exactly the C-morphisms { : B —B
such that gf e M(B.g) whenever g e M(B'.¢') ([20].1.4). The fact that ©(1.A) # O
is important to show that B - 1 if M(Bg) - @

1.1 Theorem ([20] . 2.1). The comparison functor ¢ : Set’? —s CT is an
equivalence.

Proof: Since A is not preterminal in T, then it is easy to prove
that Z’X:X—>G(Ax, A) is a regular monomorphism. for each set X. Thus, by

0.1, 7y is the equalizer of the pair [fHPX. (HPT;D)OP ] Hence, by definition of B, By is

an isomorphism, for each set X,
If M(Bg)#0O then €B.)

is a split epimorphism, since « e=de . If M(Bg) - 0 then B as well as
(B.g) (Be)

is a split monomorphism in Set and so “(Bei

dM(Be) - A? are the terminal object of . and so g 6 is an isomorphism.
For all f « M(B.¢). we have that

~

Pp-%pg) §=Pp-l ¢

where (pf) are the projections. Since § is an

and

f « M(B, €) (pg)g « T(BA)
epimorphism, Pr- % ¢) " f, for all f « M(B¢), and this implies that “(Be) is a
monomorphism since M(B,¢) is a monosource. Thus “(Be) is an isomorphism for

every T-algebra (B,¢), since it is simultaneously a monomorphism and a split
epimorphism.m

It is well-known that CABool is dually equivalent to Set (See e.g. [13], VI
4.6 (a) and (b); [20]. 2.2). From this fact and 1.1 we conclude the foliowing:

1.2 Theorem (i201.23) The category CABool is monadic, up to
equivalence, over all categories which have arbitrary powers of a non preterminal
object A and at least one morphism {rom the terminal object to A.
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Since TopT. when A is the Sierpifiski, space, is, up to isomorphism, a
reflective subcategory of Top, one may ask what happens when we consider an
arbitrary category € and a B-object A satisfying our general assumptions.

In a category, an isomorphism between two powers of a non terminal
object, indexed by sets with different cardinalities, is called an unnatural
isomorphism (See [24]).

1.3 Theorem. If there exists no unnatural isomorphism between any two

powers of the T-object A then CT is, up to equivalence. a reflective and, in
general, non-full subcategory of T.

Proof: By 1.1, %B ¢) is a T-isomorphism for each T-algebra (B.g¢). Let ¢

. T T - .
and O be two T-structure morphisms on B. Then P u(B.e) . P X@ge) IS an

M(B.) M(B.8)

isomorphism in © from A to A . Then, there is a bijection between the
sets M(B,¢) and M(B,®)and so (B.g) and (B,®) are isomorphic T-algebras. Thus a
skeleton of 'GT is, up to isomorphism, a reflective tand in general non-full)
subcategory of C.m

The identification of CT with CABool, established in 1.1, as well as 1.3 tell
us that any non preterminal object A of a category T which admits arbitrary powers
of A, no unnatural isomorphisms between any two such powers and at least one
morphism from the terminal object 1o A, lives in a reflective subcategory of € that
looks like the category of complete atomic boolean algebras. In addition, it has a
monadic embedding, though not full in general.

2. Categories of algebras induced in Set by G-objects

Let C be a complete, well-powered and co-well-powered category.

An object B of a subcategory Bof € is said (o be B-absolutely
closed if every G-extremal monomorphism m : B — B’, with B’ « B, is a regular
monomorphism in B ([41). We remark that a similar notion had already appeared in
[12].
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Let AC(A) be the category of Q-absolutely closed objects of the reflective
hull & of [A] in © and Q denote the class of extremal monomorphisms in
T between G-objects, i.e. Q = ExtMono(T) N Mor(®).

We recall that a concrete category (B, U : 8 — Set) is algebraic if

B has coequalizers and U is a right adjoin! functor which preserves and reflects
regular epimorphisms ([9] . 321).

2.1 Theorem. If A is Q-injective then (QOP, U) is an algebraic category,
U being the restriction of the functor ©(-,A) to &°P. Furthermore, @& - AC(A) and
the Eilenberg-Moore factorization of the functor ©(-.A) can be obtained, up to
isomorphism, via the corresponding factorization of U.

Proof: By [9] 32.21 (2) & (3), (Clop, U) is an algebraic category if and
only if A is a regular cogenerator (also called a coseparator) and it is regular injective
in Q.

If m e ExtMono(®) has codomain in & and m - [m] . ¢ is its factorization
through the G-closure of m, then [m] belongs to @ since it is the equalizer of a
pair of morphisms in &. Then, the injectivity of A with respect to Q enables us
10 prove that ¢ is an U-epimorphism. Indeed, given two morphisms f, g in @
such that f¢=gc with [ # g we may assume that its codomain is A, since A is a
cogenerator in @, and so conclude that there exist two morphisms ' and g such
that f[m]=f and glm]=g By definition of [m), then m =g . m implies that
f[m] = g'lm] and so that f - g. Hence, ¢ is an isomorphism if m € ExtMono (&) and so
the classes ExtMono(G) and RegMono(@) coincide. Thus A, being an extremal
cogenerator in its reflective hull ¢, is a regular cogenerator in @. Furthermore, since
RegMono(¢) = ExtMono(G) C Q, A is regular injective in &. We have therefore

concluded that (QOP. U) is algebraic. Now, since U reflects regular epimorphisms
and A is Q-injective then Q = Reg Mono (&) and this implies that AC(A) - G.

Let H-= HL . KX be the Eilenberg-Moore factorization of the functor
H- c(-,A) 8% — Set. Ifa subcategory B8 of © contains the images of all sets by
the left adjoint P of H, then we can consider P co-restricted to B obtaining, in this
way, the left adjoint to the restriction H' of H to B%P. It is easily seen that this
adjunction induces in Set the same monad than the former one does. Furthermore, if

B is reflective in € with reflector R and embedding E, and H' - HL . K is its
Eilenberg-Moore factorization then, for eachC e T,
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L g R%P(C) -HL[C (R(C), A). H 68“] -G(R(C), A) 2 B(CA) - HLKC

\

and the reflection r: Idc —— ER brings out a natural isomorphism between K and

K' . R°? Observing that the reflective hull of {A} in © is the smallest reflective

subcategory B satisfying the above conditions and that it coincides with AC(A), then
the proof is concluded.m

For © = Top, the fact that the Eilenberg-Moore [actorization of ‘G(—.A) can
be obtained via the corresponding factorization of its restriction 10 Q. was a useful

tool in [11] to characterize the category Setl‘ of L-algebras. [n all the examples
considered there @& - AC(A). The coincidence of these two categories was analysed in
[19] where we considered the subcategory of &-absolutely closed objects of the
epireflective hull & of [ A] in Top. Also, it is easy to prove that the &-absolutely

closed objects are exactly the ¢-absolutely closed objects, using the fact that an object
of T belongsto & if and only if it is an extremal subobject of some power of A.

The T,-spaces which are neither T} nor sober, are examples of objects that
are not Q-injective, with respect to the corresponding class Q. Indeed, the
epireflective hull of each such space A is Top,, because there does not exist any
epireflective subcategory of Top strictly between Top, and Topi (18], Prop. 1.1).

Observing that AC(A) = Sob, the full subcategory of sober spaces which are exactly
the Topo-absolutely closed spaces, and that AC(A) is strictly contained in @, the
conclusion follows from 2.1 .

To our knowledge there is not known any way to decide, given a monadic
category over Set, i.e. an equationally presentable category of algebras with free
algebras ([15] Chap l). when there does or does not exist a topological space

inducing it. For that we would need to know if the categories of algebras induced by
topological spaces have some particular behaviour, for example in terms of Mal'sev
conditions. Then, it could be interesting to know if the properties of the topological
spaces are, in some way, reflected by those of the corresponding category of algebras.

In this context, it is natural to make a first distinction between the
topological spaces which induce a finitary theory and those inducing an
infinitary one. Though we have not got a complete answer to this
question, we remark that the two point discrete space induces a f{initary
theory and it is easily proved that this is false for each topological
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space A, which is not a Tl-épaoe. Indeed, the theory L is [initary
if for each set X and each helX =Top (Ax. A) there exist a natural number

n, a function f:n— X and a continuous mapt & Ln - Top (An, A), such
that t.Pf-h (115), 1.418). If A has an indiscrete subspace {ab} then

h: AN —— A, defined by

a if a -a for exactly one n & N

O

otherwise

is a continvous function which does not satisfy the above conditions. The same holds
with

b ifan=b for all n & N

o[(s.)]-|

a otherwise

if {a}butnot (b} isan open subset of the subspace {ab }.

3. Monads induced by the comparison adjunction

The comparison functor K:GT°P— setd  has a  left adjoint,

by 0.2, since T is assumed to be complete. Let us  denote
by (N, K.o.p® ) :set — ©°  the comparison adjunction
and by S- (N K.o.Kp® N) and § - (NK. P . (NUK)OP) the monads
it induces in Setl‘ and in T, respectively.

We recall that, for each L-algebra (X,e). N(X.¢) is the equalizer object of

the Q-morphisms (Pg)op and 6py and so that N(X.t) belongs to &. We denote the
equalizer by e(XE)'
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3.1 Lemma. For each T-object C, [6‘3]& - eyc-

Proof: Since the closure operators relative 1o the subcategories {A)

and @ coincide ([8] , 2.1).ie 1[I it is enough to prove that [éc]m = eye

w e
and this is essentially lemma 1 in [14].g

3.2 Lemma (221, 22). If A is injective with respect to the
class D=[[6C]& I Ce C} then p. is an Q-epimorphism, for each Ce T.

Proof: For each object C of T, Pe is the unique G-morphism such
that ep..pc = 6C. If f and g are morphisms in & such that [ . 6C= g. 6C . wWe may

assume, without loss of generality, that its codomain is A, because A is a

cogenerator of its reflective hull @. The D-injectivity of A enables usto prove,
in a complete analogous way we did in the proof of 2.1, that Pe is an Q-

epimorphism.g

3.3 Theorem ([(22] . 41) For an object A of T the following are
equivalent:

(i) A is D-injective.
(ii) The comparison functor K induces an equivalence between a°? and
S
(Setl‘) .

s ) .
(iif) @ and T are concreiely isomorphic over T.

Proof: (i) = (ii) As we already observed, N(X¢) is an Q-object for
every L-algebra (X.e). This implies that N is left adjoint to the restriction Kl of K
to QOP and that this adjunction induces in Setl‘ the same monad as the former

one does.
For each Q-object B, 6B is an extremal monomorphism in &, because

B is an extremal subobject of some power of A in its reflective hull. But,
by 3.2, Pp is an epimorphism in @ and so, from the equality OB - [6B] . Pp -
we conclude that Py is an isomorphism. Hence KpOPN is an isomorphism

and, consequently, S is an idempotent monad (0.3 (i)).It is now clear
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S
that K, a°? — Fix (KN, o) & (Setl') is an equivalence,

(ii) = (iii) If K, is an equivalence then py is an isomorphism for each B in

Q. Then py; is 2 natural isomorphism and so S’ is an idempotent monad (0.3 (iii)).

The functor G: @ —bCSI - Fix (NK, p). defined on objects by G(BJ - (B, pi;l) .isa

S .
concrete isomorphism over G m the sense that U . G - E, where E is the
embedding of & in © and U U —— © is the forgetful functor.

(iii) = (i) For each T-object C, Pc s the reflection of Cin . Indeed, NKC
s .S S
is an ¢-object and the fact that Pe! C — NKCeU F C, where F denotes the

left adjoint to U . is universal from C to the embedding E : & —T is a
straightforward consequence of the hypothesis.
Let f:NKC—— A be a T-morphism. Then by definition of §.

pg. 6C g for g-f. Pe- Since p [6] e =T pc and Pe is the reflection

morphism, then pg.[éc] =f and so A is D-injective.g

.. . . . S
By 3.3 (i) = (ii), & is dually equivalent to a monadic category (Setn‘)

over a complete and well-powered category Setl', because monadic functors create
limits. Thus we have the following:

3.4 Corollary. If A is D-injective then @ is a cocomplete and cowell-
powered calegory.

This was the main aim of [22].

It is known that if T is also co-well-powered then it has (epi,
extremal mono/ - factorizations of sources and this implies the existence of certain
colimits in © ([10] , l.l) and so in its full reflective subcategories.

In the recent book [l] it is proved that every cocomplete and co-well-
powered calegory with a generator is complete and well-powered (Th. 12.13). By its
dual, a stronger result than 3.4 is obtained. Indeed, it follows that each object of a
complete and well-powered category has a cocomplete and co-weli-powered
reflecuve hull. The only advantage of the exira condition seems to be the explicit
description of the colimits in the reflective hull.
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