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Universal Algebraic Completions of Right Adjoint Functors

H. W. Bargenda

Abstract

We introduce a general concept of an algebraic category, the (E, M)-algebraic cate-
gories (A, U) over an (E, M)-category X, i.e. U is a right adjoint and lifts (E, M)-
factorizations uniquely. We prove some basic properties of (E,M)-categories. Given
any right adjoint functor U : A — X where X is an (E, M)-category with enough E-
projectives. we construct an (E, M)-algebraic category (.7\, 17) over X together with a
comparison functor £: (A, U) — (.“i f’) and prove that E is universal. We prove that
(A.U) inherits the rank of (A.U). We give a full embedding and reflectivity criterion
for E. Some examples of (K 17) over Set are determined.

0 Introduction

Category Theory answers the question what the algebmaicity and the topologicity of classes
of structures is. Whereas topologicity is described by the categorical notion of a topolog-
ical (i.e.. initial structures admitting) category (for a survey see Herrlich [4] or [1]), there
are several competitive categorical concepts of algebraicity, e.g. monadic, varietal, algebraic,
regular, essentially algebraic categories (or functors) (for a survey see [1] or [12]). In this
paper, we deal with a more general notion of Herrlich's concept of a regular functor [3].
A functor U : A — X is called regular provided that U is a right adjoint, X has (regular
epi, monosource)-factorizations and U uniquely lifts (regular epi, monosource)-factorizations.
(Note that the property X has (regular epi, monosource)-factorizations is a categorical ver-
sion of the Homomorphism Theorem for algebras]. This axiomatic concept of a regular
functor is justified by the following remarkable Representation Theorem essentially due to
Linton [9] (see also [12: 1.4]): A functor U : A — Set is regular iff (A,U) is concretely

isomorphic to a quasivariety (i.e.. to an implicationally defined class) of universal algebras of

This work is an original contribution and will not appear elsewhere.
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290 H. W. Bargenda: Universal Algebraic Completions of Right Adjoint Functors

a possibly infinitary or rankless type, considered as a concrete category over Set. Now. by
extending the (regular epi, monosource)-factorization structure to any (E, M)-factorization
structure on X, we introduce the concept of an (E, M)-algebraic calegory (A,U) over X,
ji.e. U: A — X is a right adjoint, X is an (E, M)-category and U uniquely lifts (E, M)-
factorizations (see 2.1). This concept makes decisive use of the fundamental categorical tool
of factorization structures; moreover, there are natural examples of (E, M)-algebraic cat-
egories which are not covered by one of the above mentioned notions of algebraicity (see
2.2 (b)).

One of the main topics in Category Theory is the construction and investigation of topolog-
ical completions of (concrete) categories. e.g., the universal initial completion, the MacNeille
completion, the cartesian closed topological hull etc. (see. e.g., Herrlich [5], [6]). The main
goal of this paper is to provide (E. M)-algebraic completions of categories (A, U) over X. We
show that they exist provided that U : A — X is a right adjoint and X is an (E. M)-category
with enough E-projective objects. We construct an (E, M)-algebraic category (;\ U) over X
together with a comparison functor £: (A .U) — (A, U). Construction and verification of
(RIA}) require more effort than topological completions. The main property we prove is
that E is universal, i.e., each functor D : (A.U) — (B.V) over X where (B, V) is (E, M)-
algebraic factorizes in a unique way through E. So. we may speak about E as the universal
(E, M)-algebraic completion. The investigation of algebraic properties preserved under this
completion may be of interest, in particular we show that the rank of (A, U) is carried over
to (:&,U) Unlike topological completions, E : (A, U) — (.&,U) need not be full (but it is
partially full). We characterize internally those (A,U) for which E is full and a full reflec-
tive embedding, resp., and we obtain an internal characterization of those categories (A, U)
over X which are fully and reflectively embeddable into a regular category over X, thus
getting an algebraic counterpart of the well-known topological result that a category (A,U)
over X is solid (formerly called semi-topological) iff it is fully and reflectively embeddable
into a topological category over X (see Hoffmann [8], Tholen [14]). Thus, the essence of this
paper is to supplement topological by algebraic completions and to demonstrate similarities

and differences in methods and results.

1  Terminology

We assume that the reader is familiar with the basic concepts and results of Category Theory.
In particular, we use notions and notations as they occur in [1] which the reader is referred

to if he/she wants to look up a notion or a result.

1.1  Calegories over X

A category over (a base category) X is a pair (A,U) where U : A — X is a (not necessarily
faithful) functor. A functor D : (A,U) — (B.V) over X between categories over X is a
functor D: A = B with U =V D.
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1.2 (E,M)-factorization structures ({1: 15.])
Let X be an (E,M)-category (i.e. E is a class of X-morphisms, M a conglomerate of X-

monosources. E and M are closed under composition with X-isomorphisms such that X
has (E,M)-factorizations of sources and has the unique (E, M)-diagonalization property
([1: 15.1])). Then we use the following facts (see [1: 15.], [7]): ENM = {X-isomorphisms}.
E consists only of X-epi(morphism)s. E is closed under composition. M is closed under
composition of X-sources. If f,g are X-morphisms with fg defined and fg € E, then f € E.
If (f;); is an X-source, J a subclass of I such that (f;); belongs to M, then also (f;); belongs
to M. Each regular epi in X belongs to E. X has coequalizers.

1.3  Projective objects and right adjoint functors

Let E be a class of X-morphisms. An X-object X is said to have an E-projective cover
provided that there exists a morphism ¢ : P — X in E such that P is an E-projective
object. X is said to have enough E-projectives provided that each X-object has an E-
projective cover.

A very useful tool is the following

Lemma. LetU : A — X be a functor with a left adjoint F and E be a class of X-
morphisms. Then the following conditions hold:
(a) for each E-projective object X FX is a U'[E]-projective object,
(b) if E satisfies the cancellation property “fg € E = f € E” (see 1.2} and if X has
enough E-projectives, then for each A-object A there erists an E-projective object P
and a U='[E)-morphism e : FP — A, hence A has enough U~'[E]-projectives.

1.4 Categories with rank (Herrlich [2])

Let a be a regular cardinal and I be the category which is induced by a partially ordered set
(I,<). (I.<) is called a-fiitered provided that each subset J of I with card J < a has an
upper bound in (. <). For an a-filtered (I, <) the colimit of a diagram D : I — A is called
a-filtered. A category (A,U) over X is said to have a rank < a provided that U : A —- X
sends each a-filtered colimit in A to an episink in X.

2 Algebraic Categories

As outlined in Chapter 0, we introduce the fairly general and flexible notion of an (E. M)-
algebraic category over X, using arbitrary factorization structures (E, M) on X. But note
that in this paper M consists only of X-monosources (see 1.2). We collect some basic

properties of (E, M)-algebraic categories.
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Definition 2.1. A functor U : A — X or a category (A, U) over X is called (E. M)-algebraic
provided that the following conditions are satisfied:
(ALG 0) X is an (E, M)-category
(ALG 1) U is a right adjoint
(ALG 2) U lifts (E,M)-factorizations uniquely, i.e., for every A-source (f; : A — A;); and
every (E, M)-factorization (UA——=X —%U A;); of (U f;); there exists exactly one
factorization (A——=X =% A;); of (f)s in A with Uz = e and (Um); = (m:)1.

Remark 2.2.
(a) The regular functors in the sense of Herrlich [3] are just the (regular epi, monosource)-
algebraic functors. (In [1), regular functors are more distinctly called regularly alge-

braic.)

(b) (E,M)-algebraic categories occur quite naturally in Topological Algebra. If A is any
quasivariety and A(Top) the associated category of topological A-algebras, then the
forgetful functor U : A(Top) — Top need not be regular (see Richter [12: [11.2.13],
Nel [10]), but U is (surjective, initial point separating)-algebraic.

Proposition 2.3. Let U : A — X be (E,M)-algebraic. Then the following conditions
hold:
(a) U is faithful,

(b) U creates isomorphisms, hence reflects isomorphisms and identities.

Proor.

(a) Let € be the counit belonging to the right adjoint U. It is sufficient to show that
each £4.A4 A-object, is an A-epi (see {l: 19.14]). Since each Ue, is a retraction,
hence a regular epi, it belongs to E (see 1.2). Thus, it is sufficient to prove that
U reflects E-morphisms into A-epis: Let e : A = B be in A with Ue € E and
(p.q) : B2C a pair in A with pe = ge. hence UpUe = UqUe, so Up = Uyg, since
Ue is an X-epi (see 1.2). Therefore, (e,(p.q.idg)) and (e, (q.p.idg)) are factoriza-
tions of (pe, ge.e) so that (Ue,(Up.Ugq,idyg)) = (Ue,(Uq,Up,idyp)) is an (E,M)-
factorization of (Upe, Uge,Ue) (note that (Up,Ug,idyg) € M by 1.2). From (ALG 2)
it follows that (e, (p,q,idg)) = (e,(q.p.idg)). hence p = q.

(b) We prove firstly that U reflects identities: Let f: A — B bein A with Uf = idx where
X = UA = UB. (f,idp) and (id4. f) are factorizations of f for which (Uids,Uf) =
(Uf.Uidg) = (idx,idx) is an (E,M)-factorization of Uf. From (ALG 2) it follows
that f = id4. Now, let f: UA — X be an X-isomorphism with inverse g. Then (f.g)
is an (E. M)-factorization of Uid4. Therefore there exist J:A=Xandg: X = Ain
A with §f = id4. UJ = f and Ug = g. Hence. f is a section in A. Since Uf = f is an
X-epi and U is faithful by (a), f is an A-epi, hence an A-isomorphism. Let h: A — B
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be in A with Uk = f. Then, for the inverse k: X — Aof f,a:=hk: X — Bisin

A with h = aT and Ua = idx, hence a = idg and h = f, i.e., the uniqueness of an

h:A— Bin A with Uh = f is proved. O

The reflection of isomorphisms is a typically algebraic property which distinguishes the

(E,M)-algebraic from the topological functors. Also the following useful property is al-

gebraic; from it it follows that (E.M)-algebraic functors U : A — X lift the (E.M)-
factorization structure from X to A in a canonical way.

Proposition 2.4. Every (E.M)-algebraic functor U : A — X reflects E-morphisms into
U-final morphisms.

PROOF. Lete: A — Bbein Awithlie€ E, a:A—=CinAand f:UB—-UCinX
such that the left diagram

Ua Ua; a;
UA vc UA UA; A A;
3
Ue f Ue m; € m;
UB UB B X
commutes.

Let (m; : UB — UA;); be the source of all U-structured morphisms with domain UB
such that for each i € I the composition m;Ue is an A-morphism a; : A — A;. There
exists j € [ with B = A; and idyg = m;. Hence (m;); € M by 1.2 and Ua; = Ue, hence
a; = e by 2.3. The (E, M)-factorization (Ue, (m;)[) of (Ua;); is lifted by U to a factorization
(2. (7:)1) of (a;);. Hence (e.idp) and (€.7;) are factorizations of a; and they must be equal
by Um; = m; = idyp and (ALG 2). Thus e = €. Since (*) commutes. there exists k € |
with m, = f and Ay = C. Hence we have for W, : B — A, that Um, = m, = f holds,
hence a = mye. since U is faithful. O

Proposition 2.5. IfU : A — X is (E,M)-algebraic, then A is a (U7}[E],U"[M])-
category.
Proor. That A has (U'[E],U"![M])-factorizations is obvious from (ALG 2). The

diagonalization property follows immediately from (ALG 0), from 2.4 and the faithfulness
of U (2.3). O

Proposition 2.6. Every (E.M)-algebmic functorU : A = X
{a) reflects regular epimorphisms,
(b) creates limits,

(c) detects colimits.
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Proor.
(a) Let F be the left adjoint of U and n the unit. Let r : A — B be in A and (z,y) :
X=3U A be a pair in X such that Ur is a coequalizer of (z,y) in X. There exist
A -morphisms Z,§ : Fz3A with z = (UT)yx and y = (U7)nx-

I

r X =: UA
y \ / nx \ /
f g
c UFX

Because of the universality of nx, r equalizes (Z.7). Now, let f: A — C be in A also

equalizing (T.¥). Then Ur equalizes (z.y). Since Ur is the coequalizer of (z,y), there
exists g : UB — UC in X with Uf = gUr. Since Ur is a regular epi, it belongs to
E (1.2). By 2.4, r is U-final. Hence thereexists g: B — C in A with f = gr.

(b) and

(c) follow immediately from 2.3, 2.5, 1.2 and [1: 23.11). (Observe that (E. M)-algebraic
categories are essentially algebraic as defined in [1: 23.1].) O

3  Algebraic Completions: Construction

Our objective is to algebraically complete categories (A,U) over X, i.e., to construct an
(E, M)-algebraic category (A, ) over X together with a comparison functor E : (A,U) —
(A.D).

Construction of E : (A.U) — (A, ). Assume that the category (A.U) over X satisfies

the following conditions:
(I) X is an (E, M)-category and has enough E-projectives,

(1I) U: A — X has a left adjoint F' with unit 5.

Under these conditions the construction of an (E, M)-algebraic completion E : (A,U) —
(A.0) is possible, as we now demonstrate.

Let (UA—X =%U A;); be an (E, M)-factorization of (U f;); for some A-source (f;: A —
A;)1. If there is a functor E : (A,U) — (B.V) over X where (B.V) is (E, M)-algebraic,
then there exists a unique B-algebra structure X over X such that e and (m;); lift to a
B-morphism € : EA — X and a B-source (m; : X — EA;);, resp., with V& = e and
(Vi) = (m;);. Thus, it is obvious to consider such e : UA — X as the candidates for the
objects of the (E, M)-algebraic category A over X we want to construct.
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Definition 3.1.

(a) H (UA—X 45U A;); is an (E.M)-factorization such that all m;e are A-morphisms
A — A; (i € I), then the pair (A.e) is called an (E.M)-structure quotient (with
respect to U).

(b) A map f: (A.e) = (A'.€') between (E, M)-structure quotients is an X-morphism
f: X — X' such that there exists an A-morphism a: A — A’ so that the diagram

Ua
UA UA
e ‘e/
X f X'

cornmutes.

Let e : UA — X be an (E,M)-structure quotient. By (I), (II) and 1.3 there exists a
U~'[E]-projective cover a : P — A. Then eUa: UP — X is also an (E,M)-structure
quotient, and the following Lemma shows that it is sufficient for the construction of A to
consider (E, M)-structure quotients e : UP — X with P being a U~![E]-projective object.

Lemma 3.2. Lete: UA — X and e’ : UA' — X be (E.M)-structure quotients anda : A —
A’ an A-morphism with e = ¢Ua. Let E: (A,U) — (B, V) be a functor over X into an
(E.M)-algebraic (B, V). Then, for every V-lift¢: EA— X ofe:UA=VDA — X and
T:EA =X ofe': VDA — X, the identity X = X holds.

PROOF. Since € : EA — X is V-final by 2.4, it follows from idxVe = e¢ = e'Ua =
V&VEa = V(¢ Ea) that there exists b : X — X in B with Vb = idx. Thus, by 2.3.
b= idyz, hence X = X. O

The Lemma shows that two different (E, M)-structure quotients with the same codomain
X may induce identical algebraic structures on X. This means for our construction of A
that we have to identify certain (E.M)-structure quotients. In view of the Lemma, the

identification is given by the following equivalence relation:

Definition 3.3. Two (E, M)-structure quotients ¢ : UP — X and e’ : UP’ — X are said
to be equivalent provided that there exist A-morphisms a: P — P’ and a': P’ = P such
that the diagram

commutes, i.e., e = e'Ua and ¢’ = ela’.
The equivalence class of e : UP — X is denoted by [P, €.
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(A, D):

The objects of A are the equivalence classes [P,e] of (E,M)-structure quotients (P, e)
where P is a U~![E}-projective object. f : [P,e] — [P’,€'] is an A-morphism (resp.. an
A-identity) provided that f : (P,e) = (P',¢') is a map (resp., f = idy if (P,e) and (P, ¢’)
are equivalent). The composition of A is adopted from X. U : A — X is defined by
U{P,e] = X = codomain of e and U f = f. Hence. U is faithful.

E:(AU) = (A.D):

For any A-object A, there exists a U~![E]-projective cover d : P — A (see 1.3). Since
the singleton source (Uid,) belongs to M (see 1.2). the pair (P, Ud) is an (E. M)-structure
quotient. Put EA = [P,Ud]. This object assignment ObA — ObA is well-defined. since
if there exists another U~[E]-projective cover d’' : P' — A, then (P,Ud) and (P! Ud') are
equivalent. For any A-morphism f: A — A", Uf is an A-morphism EA — EA’. Thus a
morphism assignment Mor A — Mor A is defined by Ef = Uf. Obviously, E : (A,U) —
(A. D) is a functor over X.

Now we prove the claim that (A U) is (E.M)-algebraic. To prove in particular (ALG 1)

we make heavy use of the assumptions (I) and (II).
Theorem 3.4. (A, ) is (E.M)-algebruic.

PrOOF. (ALG 1) for U : Let X be an X-object and (f; : X — X; = U[P;, &i]); be the
U-source of all J-structured morphisms with domain X. By (1), there exists an E-projective
cover d: P — X. Hence, for each i € | there exists g; : P — UP; in X with fid = e;¢; and
g;: FP — P;in A with g; = Ug;np.

gi

P UP;

/U-;'; Udt \ y/U,bUP'

’ UFP
€; d

\J/ NS

There exists the E. M)-factorization (UFP—»X % X;)1 of the X-source (e;Ug;: UFP —
X;);. Therefore there exists the diagonal fjx : X — X in X with enp = Axd and f; = m;fix

~

Uak
UFP

UAx

for all i € I. Since for each e; there exists a U-structured source (m}); in M such that
the compositions me; are A-morphisms aj : P; — A%, the composition (m}m;);; belongs
to M (see 1.2), and we have mjm;e = m;'.e;Uﬁ,- = Ua;UgT; = U(aji,-) for all 1,7, i.e..
e is an (E,M)-structure quotient and [FP,e] even an A-object, since FP is a U™}[E]-
projective object by 1.3. Hence all m; are A-morphisms m; : [FP,e] — [P;,¢]. It remains
to show that 7y is a U-epi (since then fjx is (7-universal): Let m,n : [FP.e]3[P, €] be
A-morphisms with Umijiy = Unfix. Then there exist a,b : FP=}P’ with me = e'Ua and
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ne = €¢'Ub and a U-structured source (ny : X' — UAy): in M such that the nie’ are
A-morphisms e, : P! — A,. We have U(aya)np = UayUanp = nie'Uanp = nymenp =
nemixd = nkﬁmﬁxd = n;f/nr’ixd = .- = U(arb)np, hence ara = aib for all k. So we
obtain ngme = nie’'lla = UaUa = U(ara) = U(arb) = - -+ = nyne for all k, hence m = n,
since e is an epi (see 1.2) and (n;); is a monosource.

Next we prove that U reflects identities: Let X be an X-object and idy : [P.e] — [P’ €]
be an A-morphism. By 1.3. there exists a U-'[E}-projective cover r : FQ — P’ where Q is
E-projective. Since FQ is U~[E}-projective, r is aretraction. Hence, {P’,¢') and (FQ.€'Ur)
are equivalent, i.e., [P".¢'] = [FQ,d] for d = €'Ur. There exists a : P — FQ in A with
dUa = e. Because of the E-projectivity of Q there exist z : Q — UP with ez = dyg and
hence T: FFQ — P in A with z = Uzyqg.

Q -—nQ——UF'Q

~ Ua;
> Ve l d\
[ my;
X

3

up

UA;

There exists a U-structured source (m;); in M such that each m;d is an A-morphism
a; : FQ — A;. For b; = a;a we have m;e = Ub;. Thus, Ua;ng = midng = m;ex = (Ub;)z =
U(b:Z)ng. hence a; = b;T, therefore m;eUT = U(h;T) = Ua; = m;d for all i € I. Hence
eUZ = d. since (m;); is a monosource. Thus, [P,e] = [FQ,d] and the A-morphism idy is
the A-identity of [P,e].

(ALG 2) for U: Let (U[P,e] = X—4Y 24 X; = U[P.. &]); be an (E, M)-factorization such
that all n;d are .l-morphisms [P, €] = [P;,&]- Hence, for each ¢ € I there exist a; : P — P,
in A with e;Ua; = n;de and a U-structured source (m;), in M such that each m:;e,- is an
A-morphism a; :P— A;

Ua;
UpP UP:
IR
d n; m‘~ .
X Y X; 1 UA;

(P,de) is an (E, M)-structure quotient, since de € E and (m}n;);; € M (see 1.2) and
m;'-n;de = mj-e;Ua; = U(aj-a,-) for all 1,5. Hence d : [P,e] — [P,de] and all n; : [P,de] —
[P:, ;] are A-morphisms. Now, let [Q, c| bein A with J[Q,c] = Y such that d : [P,e] — [Q, ¢]
and all n; : [Q.¢] — [P: &) are A-morphisms. Then there exists a : P — Q in A with
de = clUa, ie., idy : [P,de] = [Q,c] is an A-morphism. We have seen that U reflects
identities. Thus, [P,de] = [Q. ¢]. and the uniqueness of the U-lift of (n;d); is proved. O

The comparison functor E : (A,U) — (A, ) has two useful and interesting properties.
We show that E. although not necessarily full, is partially full and that E sends U-free
objects with an E-projective base to [-free objects.
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Proposition 3.5.
(a) E : (A,U) — (A,0) is full on U~|E}-projective objects, i.e. for each U~'[E}-
projective object P and each A-object A, E : Hom, (P, A) — Homz(EP, EA) is onto.

(b) EFP = FP for each E-projective object P (F denotes the left adjoint of J).

PROOF.
(a) Let f : EP — EA be in A where P is U™'[E]-projective. By definition of E we
may write EA = [Q,Ud} and EP = [P,Uidp]. So, there exists a: P — @ in A with
f=fUidp =UdUa = U(da). Henceg=da: P — Q — Aisin A with Eg =Ug = f.

(b) Let P be an E-projective object. The construction of fix : X — U[FP, e} = UFX (see
Proof of 3.4) shows that for X = P we can choose d = idp. So we have fjp = enp, even
fip = [767]}2, since because of eidypp = eU(idrp), 1.3 and the definition of £, e is an
A-morphism EFP — [FP.e] = FP. Since np : P — UFP = UEFP is U-structured
andfjp: P — U FP is O-universal, there exists h : P — EFP in A with np = Uhﬁp.
The composition he : EFP — EFP isin A. Since FP is U'[E]-projective, there
exists a : FP — FP in A with Ea = he by (a). Hence Uanp = UEanp = [(he)yp =
(7hUer7p = Uhfip = np. hence a = idpp and he = Fa = idgpp. Thus, e is a section

and, by 1.2, an epimorphism, hence an isomorphism in A. O

4 Algebraic Completions: Universality

We prove that E : (A,U) — (A, /) is a universal construction and that (A, /) inherits the
algebraic property having a rank from (A.U).

Definition 4.1. A functor E : (A.U) — (B, V) over X into an (E, M)-algebraic (B, V) is
called a universal (E, M)-algebraic completion (of (A,U)) provided that for every functor
D : (A U) - (C,W) over X into an (E,M)-algebraic (C, W) there exists exactly one
functor D : (B,V) — (C, W) over X such that the diagram

(C.W)

(B,V)

commutes.

Theorem 4.2. Let U : A — X be a right adjoint and X an (E, M)-category with enough
E-projectives. Then E : (A,U) — (A,U) is a universal (E,M)-algebraic completion.
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ProOF. Let D: (A,U) — (B.V) be a functor over X into an (E,M)-algebraic (B, V).
Let e: UP — X and € : UP' — X be equivalent (E, M)-structure quotients, i.e., [P, e] =
[P'.¢] € ObA. Thene: VDP — X and €' : VDP' — X are equivalent (E, M)-structure
quotients with respect to V. The V-lifts €: DP - X and € : DP' — X ofe: VDP = X
and ¢ : VDP' — X, resp., exist with X = X' by 3.2. Therefore, D(P,¢] = X yields a
well-defined object assignment D : ObA — ObB. Let f : [P,e] — [P'. €] be an A-morphism,
andlete: DP —» X and @ : DP' = X be the D[P, ¢] and D[P, ¢'] defining B-morphisms.
There exists a: P — P’ in A with fe = ¢'Ua.

Ua=VDa
UP=VDP UP =VDP
e=|Ve () e=|ve
- / -,
X=VX X'=VX

By 2.4, € is V-final. Hence there exists exactly one B-morphism f : X — X' with
VF = f. Thus, Df = J yields a morphism assignment D : Mor A — Mor B. By definition
of D, VD = [ holds for A-objects and A-morphisms. It follows that D : A — Bis a functor,
since for an A-identity tdip with e : UP — X and for A-morphisms f : [P,e] — [P'.€] and
g: [P ¢'] - [P" "] we have VDidp, = Oidlp'e] = idx, hence Didp,} = idpp,) (since V
reflects identities by 2.3) and we have VD(gf) = U(gf) = UgUf = VDgVDf = V(DgDf).
hence D(gf) = DgDf (since V is faithful by 2.3). By definition of E and D, D = DE holds
for all A-objects. Hence, for every A-morphism f: A — B, wehave VDf =Uf = UEf =
VDE(f, hence Df = DEf by the faithfulness of V. Thus, D = DE holds on A. Finally,
let G : (A,[A]) — (B,V) be a functor over X with D = GE. Then, for every A-object
[P,e], e : EP — [P, €] is an A-morphism (see Proof of 3.5(b)). Hence Ge : GEP = G[P,e]
coincides with the D[P, ¢] defining B-morphism & : DP — X. Thus, G = D holds for all
A-objects, and if f : [P,e] — [P, €] is an A-morphism, then VGf = Uf = VDS, hence
Gf = Df by the faithfulness of V. Thus, G = D holds on A. O

Remark 4.3. As an application, we show that the algebraic property having ¢ rank < a
(see 1.4) is stable under the formation of a universal (E, M)-algebraic completion. Having
a rank < o is a categorical notion for the property of a'class of algebras having the arities
of their (proper) operations bounded by the regular cardinal a. We need the following

Lemma. IfU: A — X has a left adjoint F with unit n and X is an (E, M)-category such
that A is a (UY[E|, U~![M])-category, then F[E] C U™'(E]. (PROOF. Foranye: X =Y
in E, there exist r : FX = Ain U7'[E] and m : A —» FY in U~'{M] with Fe = mr.
By the diagonalization property for (E, M), there exists the diagonald: Y — UA in X
making the diagram
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e
Y
P
Ur Um
UA UFY
commutative,

So, there exists d : FY — A in A with d = Udyy. Hence U(dFe)nx = UdUFeny =
Udnye = de = Urnx, hence dFe = r. Together with Fe = mr it follows that dmr = r

X

nx

UFX

and Fe = mdFe, hence dm = id4 and md = idry, since r is an A-epi, ¢ an X-epi
(sce 1.2) hence Fe is an A-epi. So. m is an A-isomorphism. Since U~*[M] is closed under
A-isomorphisms, Fe = mr shows that Fe € U~![M].)

Theorem 4.4. Let U : A — X be faithful and a right adjoint. X an (E.M)-category with
enough E-projectives and let X have coproducts. Then (A.D) has a rank < o, if (A.U)

has a rank < a.

PROOF. Preliminaries: Let I be the category induced by an a-filtered partially ordered
set (I, <). For any categories C,D and functors V : C — D, let [I, C] denote the functor
category and [I,V] : [I,C] — [I,D] denote the obvious functor (defined for diagrams D :
I - Cby [ILVID = VD). Let I denote the discrete category induced by the set I. For
a diagram D : I — X, the restriction |D| of D to the subcategory I of I gives a functor
||+ [L.X] = [/,X]. Since X has coproducts, it is known that for each diagram G : I = X
there exists a | |-universal [/,X]-morphism G — |G| where G : I — X is defined on I-
objects by Gi = II(Gklk < 1) (see, e.g. [13: 17.1.6]). Moreover, | | is (E, M)-algebraic, since
obviously for the powers E! and M’ [I,X] is an (E', M')-category, and it is easy to check
that | | lifts (E',M')-factorizations uniquely. Hence, by 2.5. [I, X] is an (E', M")-category
where E' = | |'[E!] and M' = | [7'{M].

Now, let (b; : Di — B); be an a-filtered colimit of a diagram D : I — A in A. The functor
(L, 0] : [I,A] = [, X] has a left adjoint. namely [I, F] where F'is the left adjoint of T, also
|| : [ILX] = [1.X] has a left adjoint, say L. Thus, the composition |[I,U]| : [I.A] —
[I.X] of (I, ¥] with | | has [I, F]L as a left adjoint. So. since D is an [I, A]-object, by 1.3
there exist an E’-projective object P in [I.X] and an [I. A}-morphism e : [I. F]L(P) =
FLP — D in |[I,U)|"'[E"). By 25. A is a (U~'[E]. U~'[M])-category, hence [I,A] is a
(0‘1[E]l,B"[M]l)-category in the sense of the above Preliminaries. It is straightforward
to check that |[I,0)|'[E') = U-'[E]". Thus, e : FLP — D belongs to U~'[E}'. For
convenience, put P = LP. By assumption. X has coproducts and, by 1.2, coequalizers.
Hence X is cocomplete. Therefore, the colimit (z; : Pi — X); of P: 1 — X exists in X. It
is routine to check that X is the coproduct object of the Pi, i € I (using that by definition
Pi = II(Pk|k < 1)). Since all Pk. k € I, are E-projective and coproducts of E-projective
objects are E-projective, Pi and X are E-projective. Since the left adjoint F:X - A
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of U preserves colimits, (Fz; : FPi - FX); is an a-filtered colimit of FP : I — A
in A. By 3.5 we have FPi ~ EFPi and FX =~ EFX. Thus, we may assume that
(Fz; : EFPi - EFX), is an a-filtered colimit of FP in A. By 3.5, for each i € I there
exists an A-morphism a; : FPi — FX with Ee; = ﬁ‘z;. Now, (a; : FPi = FX); is an
a-filtered colimit of F'P in A. This follows immediately from the faithfulness of E (implied
by the assumed faithfulness of U), the U~'{E]-projectivity of FX (see 1.3) and from 3.5.
Since X is cocomplete, Ais cocomplete by 2.6. So, it is well-known that the canonical
embedding (the diagonal functor) A : A — [L,A] has a left adjoint, namely the colimit
functor colim : [I;i] — A. For the above e : EFP = D put ¢ = colim(e). Then the

following diagrams commute:

— —_ €; — Ue; -~
FP; EFP; D; UFP; UD;
a ‘ F‘x,- ] (*) b Ua; (*=) l [76,-
Ue
FX EFX B UFX UB

Recall from above that [I, A] is a (I ~![E],  ~![M]!)-category. and it is straightforward to
check that AT~ [E]] = U-'[E] and A-'[U-'[M]} = U-'[M] (using that I # ¢). Hence,
by the Lemma in 4.3 (applied to A and colim). ¢ = colim(e) € U~'[E), hence Uc € E and
therefore Uc is an X-epi (see 1.2). By assumption on U, (Ua; : UFPi — UFX); is an
episink in X. It follows from the commutativity of (**) that ((j’b; :0Di - IjB), is also an
episink in X. O

Example 4.5. (A.U) need not have a rank < a whenever (A.J) has one: Consider the
category A of complete separated uniform spaces and uniformly continuous maps with
the usual forgetful functor U : A — Set. The discrete uniform spaces are the surjective-
projectives in A. Thus, by the construction of (.&0), the universal (surjective, point
separating)-algebraic completion coincides up to isomorphism over Set with (Set,idse.).
Trivially, (Set,idge.) has a rank < a for each regular a. But we show that (A,U) has a
rank < a for no regular a : Let a be regular. Then « is a-filtered with respect to the
well-ordering of a. For each 8 < a, consider the interval DF = [0, §]. The topology on
Dp induced by the well-ordering of DJ, is compact and separated. Hence, this topology
admits exactly one uniformity on D which is complete. Therefore, there exists a diagram
D :a — A given by f— Df (where « is considered as the category induced by the well-
ordered set a). The embeddings DB — a + 1, 8 < a, into the uniform completion a + 1
of a form an a-filtered colimit of D in A. which is not sent by U to an episink = covering
sink in Set because U{D5|f < a} = a.
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5 Algebraic Completions:
Full Embedding and Reflectivity Criteria

Proposition 5.1. Let U : A — X be a right adjoint and X an (E, M)-category with enough
E-projectives. Then the following conditions are equivalent:
(a) the universal (E,M)-algebraic completion E : (A, U) — (fl, U) is a full embedding
(b) there ezists a full embedding D : (A,U) — (B,V) over X into an (E,M)-algebraic
(B,V)

(c) U is amnestic and reflects E-morphisms into U-final morphisms.

PROOF. (a) = (b) trivial.

(b) = (c) By 2.3, V is amnestic.. Also D, since D is a full embedding. Hence U = VD is
amnestic. Now, let e: A — B bein U™Y[E], f: UB — UC in X with B,C in A such that
fUeis an A-morphisma: A — C. Hence VDa = Ua = fUe = fVDe. By 2.4 applied to V,
De is V-final, thus f is a B-morphism g : DB — DC. Since D is full, there exists h : B — C
in A with Eh = g. Hence Uh = VDh = Vg = f and therefore U(he) = fUe = Ua. Hence
he = a, since U is faithful (because D and V (by 2.3) are faithful and U = VD).

(c)} = (a) Assume that E is full and faithful. Then, for each A and Bin A with EA = EB,
there exist a: A - Band b: B — A in A with Fa = idgy = Eb, hence E(ba) = Eid,
and E(ab) = Eidp and therefore ba = id4 and ab = idp, i.e., a is an A-isomorphism with
Ua = idy 4, hence a = id4 and therefore A = B. Thus, E is injective on A-objects. Now
we prove that E is in fact full and faithful: Let A, B be in A and f : EA = [P,Ue] —
[Q,Ud] = EB be in A. Hence there exists a: P — Q in A with fUe = UdUa = U(da).
Since Ue € E, e is U-final. Hence there exists g : A — B in A with Ug = f, hence Eg = f.
In order to show that U is faithful, it is sufficient to show that each U~![E]-morphism is an
A-epl, as the Proof of 2.3 (a) shows. Let e: A — B be in U7![E] and a,b: B33C bein A
with ae = be, hence UalUle = UblUe. Since Ue is an X-epi (see 1.2), Ua = Ub. Thus, for
g = Ua, gUe = U(ae), and since e is U-final, there exists exactly one g: B — C in A with
Ug=g and ge =ae. Henceg=a andg=b. (]

The following Criterion makes use of the notion of a semifinal solution (Tholen [14],
{1: 25.7]). A U-structured morphism r : X — UB is called a semifinal solution of a U-
structured morphism e : UA — X provided that re is an A-morphisma : A — B and
whenever f : X — UC is a U-structured morphism such that fe is an A-morphismb: A — C
there exists exactly one f: B — C in A with Uf = f and b = fa.

Proposition 5.2. Let U : A — X be a right adjoint, X an (E.M)-category with enough
E-projectives and let the universal (E. M)-clgebraic completion E : (A,U) — (A, 0) be a
full embedding. Then the following conditions are equivalent:

(a) E:(A,U)— (A.D) is reflective
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(b) there exists a reflective full embedding D : (A.U) — (B,V) over X into an (E,M)-
algebraic (B, V)

(c) every (E,M)-structure quotient has a semifinal solution.

PROOF. (a) = (b) trivial.

(b) = (c) Let e : UA — X be any (E, M)-structure quotient. Then e : UA = VDA — X
is an (E, M)-structure quotient with respect to V. So, e has a V-lift € : DA — X. Let
r: X — DB be the D-reflection. Since D is full, there exists a : A — B in A with Da = ré.
We show that Vr : X — UB is a semifinal solution of e with respect to U: Let f: X — UC
be a U-structured morphism such that fe is an A-morphism b: A — C.

Ve=¢e — Vr r
UA=VDA VX=X VDB=UB X DB
f f
Ub= VDb | Df
UC =VvDC DC

Since € is V-final by 2.4 and fV& = Ub = VDb, there exists f : X — DC in B with
VF = f. Since r is the D-reflection, there exists f' : B — C in A with f = Df'r. Hence
f=VF=UfVr. Since U is faithful, Vr is a semifinal solution of e.

(c) = (a) Let [P.e] be in A. Then e: UP — X has a semifinal solution r : X — UA.
Hence, there exists a : P — A in A with Ua = re. Let FA = [Q,Ud). Since P is U™[E]-
projective and d € U~'[E], there exists b: P — Q in A with db=a,i.e.,r:[Pe]— EAis

in A.
€ f
UpP X UB
o ‘ k \ r /
Ud Uk
U@ UA
r:[P,e] — EA is the E-reflection in A, since for any f : [P,e] — EB in A there exists
g: P — Bin A with fe = Ug, hence, since r is a semifinal solution, there exists h : A — B
in A with f = (Uh)r. Hence f = (Eh)r holds in A. Since r : X — UA is a U-epi,

r:[P,e] = EAis an E-epi. O

The regular, i.e., (regular epi, monosource)-algebraic functors (see 2.2) are one of the

most important types of algebraic functors (see [1: 23.]). Complementing a well-known
topological result (see the Introduction), the two preceding Propositions allow an internal
characterization of those (A, U) which are fully and reflectively embeddable into a regular
(B, V) over X:
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Theorem 5.3, Let U : A — X be a right adjoint functor. X a (regular epi, monosource)-
category with enough (regular epi)-projectives. Then the following conditions are equiva-
lent:

{a) the universal regular completion E : (A,U) — (;&,(7) is a reflective full embedding

(b) there ezxists a reflective full embedding D : (A,U) — (B,V) over X into a regular
(B,V)

(c) A has coequalizers, U is amnestic and reflects regular epimorphisms.

PROOF. (a) = (b) trivial.

(b) = (c) By 26, the regular functor V reflects regular epis. Since D is a reflective
full embedding, D reflects colimits. in particular regular epis {see. e.g.. [1: 13.30]). Hence
U = V D reflects regular epis, and since B has coequalizers by 2.5 and 1.2, A has coequalizers,
too.

(c) = (a) We show that U reflects E-morphisms into U-final morphisms (then, by 5.1. E
is a full embedding): For the counit ¢ belonging to U, each £4,A in A, is a (regular) epi
in A, since Ue, is a retraction, hence a regular epi in X and U reflects regular epis. Thus, U/
is faithful (see [1: 19.14]). Now, a faithful functor which reflects regular epis, reflects regular
epis into U-final morphisms (see [1: 80] or [12: I1.1.22 (a)]). Now we prove that each (regular
epi, monosource)-structure quotient has a semifinal solution (then, by 5.2. E is reflective):
Let e: UA — X be a (regular epi. monosource)-structure quotient. ¢ is the coequalizer of a
pair (z,y) : Y3UA in X. There exist T, : FY33A in A with z = Uzny and y = Ugny.
By assumption, the coequalizer ¢ : A — B of (Z.7) exists in A. Since Uc equalizes (p.q),
there exists r : X — UB with Uc = re. We prove that r is a semifinal solution of e:

UB

V Ug
r

Y z UA uc
y Ua
| s \ /
Uy

UFY X

Let f: X — UC be a U-structured morphism such that fe is an A-morphisma: 4 — C.
The U-universality of 5y implies the identity ¢Z = a7. Hence there exists g : B — C in A

with a = ge. Since U is faithful. r is a semifinal solution. a
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6 Universal Algebraic Completions: Examples

Since we consider here categories (A, U) over Set and Set has only one (proper) factorization
structure. namely (surjective, point separating) and every set is surjective-projective, we
call universal (surjective, point separating)-algebraic completions of (A, U) simply universal

algebraic completions of (A,U). The following criterion can be used to verify our examples:

Proposition 6.1. Let E: (A.U) — (B.V) be a functor over Set and let F be a left adjoint
of U and G be a left adjoint of V. Then the following conditions are equivalent:

(a) E is a universal algebraic completion

(b) (B.V) is algebraic, E is dense with respect to monosources and EFX = GX for all
sets X.

PrROOF. (a) = (b) We may assume that E is of the form E : (A, U) — (A.0). We
show that E is dense with respect to monosources: Let [P.e] be in A. Then there exists
a monosource (= point separating source) (m; : X — UA;)r such that all m;e are A-
morphisms a; : P — A;. By definition of E, FA; = [UA;, Ud;] with d; : P, — A.. Since P
is U~'[E]-projective and d; € U~}[E], there exists b; : P — P; in A with a; = d;b;. Hence,
(m; : [P.e] = EA;)ris an A-source. As a faithful functor, U reflects monosources. Thus,
(m; : [P,e] = EA;) is an A-monosource. The rest follows from 3.5.

(b) = (a) Let D : (A.U) — (C,W) be over Set into an algebraic (C,W). Let B be
any B-object. By 1.3, there exists a surjective-projective cover ¢ : GX — B in B. Since
GX = EFX, we may write e : EFX — B. There exists a monosource (m; : B — EA;);
in B. As a right adjoint, V preserves monosources. Hence. Ve : VEFX = UFX — VB
is a structure quotient with respect to U and also W because WD = U. Thus, there
exists a unique W-lift : DFX — B of Ve. Thus. B — B defines a (well-defined) object
assignment D : Ob B — Ob C. Now, proceed as in the Proof of 4.2 (with the obvious change
of denotations) to define a unique functor D : (B.V) — (C.W) over X with D =DE. O

Example 6.2. U : Cat — Set
Let Cat be the category of all small categories and functors between them, and let U
denote the functor which assigns the morphism set to each small category. Cat is (up
to isomorphism over Set) the category of small directed graphs with identity, i.e.. the
category of all algebras (X.d, c) where d,c are unary operations on the set X satisfying
cd=d*=danddc=c? =c. E:Cat — Cat is properly forgetful (E forgets the partial

operation “composition of morphisms”).
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Example 6.3. O : Ban, — Set

Let Ban, be the category of all Banach spaces over R (or C) and all non-expanding linear
maps, and let O be the closed unit ball functor defined by O(B) = {z € B| | z ||< 1} for
Banach spaces B. From 6.1 and results of Pumplin/Rahrl [11: §11], Ban, is the category

of the separated totally convex spaces.

Example 6.4. Hom (-, S): Top®P — Set
Hom (-, S) denotes the contravariant Hom-functor on Top determined by the Sierpinski

space S. 'fo\pop is the well-known category of all spatial frames.

(1)

2

31
(4
(5]
(6]

(7

(8
(9

[10]
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