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Free Structures

J. Retterman, V. Trnkovd

Abstract

We consider some situations where free structures (mostly free algebras) play a role; we discuss their
use, their existence and the methods how to construct them. It has not been our aim that the present
paper should exhaust the topic and also our references are only samples of existing literature.

1. Classical universal algebra

The importance of free algebraic structures was recognized in classical universal algebra [14],[9].
The latter deals with algebras of a given type € (which is a set of operation symbols with given
finite arities). An Q-algebra A is a couple A = (|A|,(04)sen) where |A| is the underlying set
and the a4’s are operations: if ¢ € Q has arity m then o4 : |A|™ — |A|. A homomorphism
f: A — B of Q-algebras is a map f : |A| — |B| commuting with operations in the sense
that

foalar..... an) =op(fai..... fam)
for every o € ) and every ay,...,a,, € |A] where m is the arity of o. All Q-algebras and their
homomorphisms form a category which will be denoted by Q-alg.

I.1. Absoclutely free algebras

We are going to introduce the concept of an absolutely free 2-algebra over a set X of generators.
Intuitively, this is an algebra the underlying set of which contains X and the operations of which
are defined as free as possible. It is constructed as follows.

Given a set T', denote by Q(T) the set of all formal expressions o(t),....tn) where o € Q is of
arity m and t;,...t,, € T. Define a chain of sets X; by induction:

.X() = .X:
if X; is defined put Xy = X U Q(X;): finally put
|X*] = UZo Xi

and define operations in |X*| by

O'XO(il... -tm) = U(tl,... ,tm).

This work is an original contribution and will not appear elsewhere.
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The algebra X* obtained is called the absolutely Q-free algebra over X. Its elements are called
-terms with variables in X.

Elements of X" can be visualized as finite trees whose leaves are labeled by elements of X and
other vertices are labeled by operation symbols. E.g., for £ consisting of one ternary operation
symbol o and one binary operation symbol §, the tree

RN
i l\\

represents the term o(6(a;, z2), 0(z1,22.73), 7). Observe that every term involves a finite
number of variables.

Theorem. The absolutely free algebra X* has the following universal property: For every
{L-algebra A and every map f : X — |A| there is 2 unique homomorphism f* : X* — A
with f*v = f where v : X — | X[ is the inclusion.

Proof. We have to construct a homomorphism f* : X* — A extending f. We proceed
by induction. On Xo. let f* coincide with f. If f* has been defined on X; and ¢ € 0(X;),

@) =0aaf ... . [tn).

Note that this means that frox-(t1..... tm) = a(f*t,..., f"1m) which forces f* to be a
homomorphism. It is unique for X" is obviously generated by X.

1.2. Equations.

Let us start with an example. A groupoid is an Q-algebra A where € consists of a unique binary
operation symbol ¢ = o. Let us write z; 0 z7 instead of o(z). ;). A is a semigroup if is satisfies
the associativity equation (z; 0 x3) 0 z3 = 1 0 (z2 0 z3). This means: if we replace the variables
z; by arbitrary particular elements of A and compute the expressions on both sides then the
results are the same.

Observe that the expressions in question are elements of X~ where X = {z,22.23....} and the
results of the computations are f*((z,0z2) 03}, f*(2; 0(z20x3)) where f is the map assigning
the particular elements of A4 to variables. This leads to the following general definition:

An equation for Q-algebras is a couple t = ¢’ where 1.t € X~ (where X~ is the absolutely free
Q-algebra over the countable set X = {z,,z2.a,...} of variables).

An Q-algebra A is said to satisfy an equation t = ¢/ if f*t = f~t' for every map f : X — |A|.

Let us turn our attention to derived equations. E.g., a semigroup A satisfies not only the basic
associativity equation but many other equations: the trivial ones, such as £, 0z, = z, 023, and
those which are formally deduced from associativity such as z,0(x,0(z30z4)) = (21022)0(z3024).
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Let us formulate general deduction rules:

(1) For every termt € X*. t = t;
(2) From equations t = u,u = v. one can deduce t = v and u = {:

(3) Let t,t' be terms in variables z,,.... Im. letty, ... .ty t],.... 1), be arbitrary terms. and
let s, s’ be terms obtained from ¢, t’, resp.. by replacing each z; by ¢, in ¢ and by replacing
each z; by t! in ¢'.

Then from t =¢'.4, = t{..... tm =t one can deduce s = s'.

Note that s and s’ above can be expressed as ft and g*¢', resp.. where f* : X — X* is the
unique homomorphic extension of any map f : X — |X*| with fz; = ¢; and analogously ¢" is
determined by g : X — |X*| with gz; = t. Then (3) implies

(3a) From ¢, =¢..... tm = t,, one can deduce
oxe(ti.... . tn) = ox-(t}...., ;) for every o € Q of arity m.

(3b) Forevery f: X — |X*|. from ¢ = {', one can deduce f*t = f*t".

1.3. Varieties

Denote by (€, E)-alg the full subcategory of Q1-alg consisting of all algebras satisfying a given
set E of equations. Denote by E* the set of all equations which can be deduced from E. Then
E* can be constructed by induction as follows:

Let E, be the set of equations consisting of the trivial equations ¢ = ¢ and of all equations from
E.

If E, has been defined. let E,;, be the set of all equations which can be deduced from equations
in £, using the above deduction rules (1) - (3).

Finally put E* = U2, E..

Remark. Every algebra A in (2, E)-alg satisfies all E”-equations.

{(Hint: Using the deductions rules, prove by induction on n that A satisfies all E,-equations.)

Definc a relation ~g on X* by t ~g t' iff t = t’ is an E*-equation.
Yy q

Proposition. The relation ~f is a congruence on X*,! and the corresponding factor-algebra
X*/ ~g ? satisfies all E-equations, i.c., X*/ ~g belongs to (Q, E)-alg.

Proof. ~g is an equivalence relation by (1), (2) and it is a congruence by (3a).

Let t = ¢’ be an E-equation. Denote by h : X* —s X/ ~¢ the canonical map. Let
f:X — X"/ ~g be any map. Choose g : X — |X*| with hg = f. Then hg* = f* because

1

i.e., an equivalence on |X*| satisfying ox+ (tu,....Im) ~g ox-(1},...,1,.) for all & € Q of arity m and
it e | X | witht; ~gtl,i=1,...,m,

*with [X*|/ ~g as underlying set and operations & given by &([t1},...,[tm]) 1= [ex+(t1,-..,1m)] for all
o € 2 of arity m and equivalence classes [t,],...,[tm) € X*/ ~¢
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both Ag* and f* are homomorphisms from X~ to X*/ ~g and they coincide on X. As ¢*t = gt/
is an E*-equation by (3b), one gets gt ~g g°t’. lence hg"t = hg"t', i.c.. f*t = f°1'.

Note that we have a natural map vg : X — |X*/ ~g |, viz the composition of the inclusion
v: X — |X*| and the canonical homomorphism h: X* — X"/ ~g .

Theorem. The algebra X*/ ~g together with the natural map vg : X — | X"/ ~g | has the
following universal property: For every (€, F)-algebra A and every map f : X — |A] there is
a unique homomorphism fz : X/ ~g— A with frvg = f.

Proof. f: X — |A| extends to a homomorphism f~: X~ — A:if t ~g 1’ je., if t =t'is an
E*.equation then A satisfies t = t' by the above Remark; hence f*t = f*t'. But then f* factors
through the canonical homomorphism h : X* — X"/ ~g in the sense that f* = fih for some
homomorphism fg as required.

According to the above universal property. we call X*/ ~g the free (2. E)-algebra over X.
I.4. Completeness theorem

Free algebras provide a useful tool in proofs. The applications of free algebras are based on
the fact that they are objects where syntax and semantics of an algebraic theory meet. This is
used to prove the important.

Completeness Theorem for Equational Logic: An equation for ()-algebras holds in all (2, E)-
algebras iff it can be deduced from E.

Proof. Every (2, E)-algebra satisfies all E"-equations by the above Remark. Conversely, let an
equation ¢ = ¢’ be satisfied in all (R, E)-algebras. Then it is satisfied in the free (2, E)-algebra
X*/ ~g and for the canonical map vg : X — |X*/ ~g | we have vt = vit'. But vg is
nothing else but the canonical map h: X* — X*/ ~g for both v; and h are homomorphisms
extending vg. Hence ht = ht', l.e.. t ~g t'. thust = t' is an E*-equation.

I.5. Syntax semantics relation-operations

The completeness theorem above establishes a canonical relation between syntax and seman-
tics of classical algebraic theories in case of equations. The following result of Lawvere [19]
essentially does the same for operations. Its proof is based on free algebras.

Given an (2, E)-algebra A, every Q-term ¢t € X* with variables z;..... z, induces an n—ary
operation t, : |A|* — |A], viz

taay.....a,) = kph(t)

where k : X — |A| is any map with k(z;) = a; (i = 1....,n), kg : X°/ ~g— A isits
canonical extension and h : X* — X"/ ~g is the canonical map.
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Observation. The operations t4 constitute a natural transformation ¢ from |—[* to | — | where
| = |: (9, E)-alg — Set is the underlying functor. i.e., the diagram

n ta
|A] 1Al

fr /

n tB
| B]

|B|

commutes for every homomorphism f : A — B of (9, E)-algebras.

Proof. Let a;,...,a, € |A| and let k : X — |A| be a map with k(z;) = a; (: = 1....,n).
Then fta(ay,...,a,) = fkph(t) = (FE)Lh(t) = ts(fay,. .., fas).

Theorem. Every natural transformation 7 : | — [* — | — |, where | — | : (R, E)-alg — Set
is the underlying functor, is induced by an f-term.

Proof. Denote by F' the free (£, E)-algebra X*/ ~g and by h : X* — F the canonical
homomorphism. Choose t € X* with ht = 7r(ve(z1)....,vE(z.)). We claim that 7 is induced
by ¢. Indeed, let A be an (Q. E)-algebra and a,,....a. € |A|. Consider any map

k: X — |A| with k(z;) = a; ( = 1,...,n) and the induced homomorphism kg : X* — A.
Then 74(a1....,a,) = Ta(k(z1),- .., k(zn)) = Talkpve(z1),. .. . kpve(z.)) =
kp(rr(ve(z1),...,ve(Za))) = kph(t) = talar,....a.).

I1. Infinitary universal algebra

The first presentation of infinitary universal algebra is due to Slominski [29]. There appears
that many results on finitary algebras generalize to the case that 1 is a set of operation symbols
whose arities are arbitrary cardinal numbers rather than just finite ones. In particular, free
algebras exist and can be used both to prove the completeness theorem for infinitary equational
logic and to establish a canonical correspondence between terms and transformations. This
remains true even if ) is a proper class but, for every cardinal n, n-ary terms taken modulo
E form a set only (see Linton [20] who generalized the above mentioned Lawvere’s approach).
Note that these proper class algebraic theories with the smallness property are called varietal.
Examples of varietal theories are that of compact Hausdorff spaces and of frames.

For non-varietal theories free algebras need not exist; this is the case for the theory of complete
lattices whose operations are joins and meets of arbitrary arities, and equations are infinitary
analogues of the lattice theory laws; analogously for complete Boolean algebras. The non-
existence of free complete lattices and free complete Boolean algebras was proved by Hales
[15) and Gaifman [13]. Still the statement of the completeness theorem holds for both theories
(15]. However, the correspondence between terms and transformations fails [27): there are
transformations which are not induced by terms: in fact, there is a proper class of such wild
transformations. Thus the equational theory induced by the forgetful functor of the category of
complete lattices is larger than the original theory of complete lattices. It is an open problem
whether the category of algebras for the larger theory is equivalent to the category of complete
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lattices. Another open problem: do complete Boolean algebras admit wild transformations?
III: Many-sorted algebras: dynamic algebras

Many-sorted algebras are used in various applications of algebraic methods. These algebras
have no more just one underlying set but a collection (X,) of underlying sets where s runs
through a set S of sorts. A classical example is given by vector spaces over fields: a vector
space X over a field R can be regarded as a two-sorted algebra: its underlying sets, X and
R, are equipped with operations defined on X and on R and with an inter-sort operation
a€RzeXv—azxeX.

Many-sorted algebras have been exploited in several branches of computer science, e.g., in
algebraic specification [12]. We shall consider another example in detail: dynamic algebras.

Dynamic algebras were introduced by Kozen {17] and Pratt [26} to form models of propositional
dynamic logic. Dynamic logic deals with propositions whose truth value varies. Consider, e.g.,
a command in a program, “if z > 0 then z := —z.” Here “z > 0" is a proposition the validity
of which can be changed by commands such as “z := —z". This can be formalized as follows.

We are given a set S of states of a computer and a set B of propositions. Each proposition
can be identified with the set of states in which it holds. Then the usual operations with
propositions, conjunction, disjunction and negation, coincide with the set-theoretical operations
union, intersection, complement. Thus B is a Boolean algebra of subsets of S. Further, we
are given a set R of (in general: non-determinsitic) acfions. They enable the computer to
move from one state to another and thus they can be described as binary relations on S.
Operations with actions are choice (a,b — a U b), composition (a,b — ab) and iteration
(a — a*). The influence of actions on propositions is expressed by means of an intersort
operation p € B,a € R — ap € B the meaning of which is “p can be true after the application
of a”. The resulting pair (B.R) with the above operations is called a Kripke structure. It can
be viewed as a two-sorted algebra satifying the axioms

(BA,V,0 is a Boolean algebra a0 =0

a(pVg)=apVag (ab)p = a(bp)
pVaa'p<a'p<a’(ap—p) (aVblp=apVibp

These are the axioms of dynamic algebras which form an equational variety of two-sorted alge-
bras. As in the one-sorted case, free algebras in a variety exist. Their use can be demonstrated
by an algebraic proof of the completeness theorem for dynamic logic. The theorem states that
the tautologies of the propositional dynamic logic are precisely those which can be deduced from
Segerberg’s axioms [30]. Equivalently: a Boolean equation holds in all finite Kripke structures
iff it can be deduced from the above axioms of dynamic algebras. The theorem is an immediate
consequence of the following result of Pratt [26]: every free dynamic algebra can be embedded
into a product of finite Kripke structures. Indeed, it follows that equations which are valid in
finite Kripke structures hold in free dynamic algebras as well. And, as in the one-sorted case,
a free algebra satisfies precisely those equations which can be deduced from the axioms of the
theory.

The theory of dynamic algebras can be extended by adding a further operation, the test
?: B — R, satisfying the axiom (?p)g = p A g. Using this operation, constructs like “if then
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else” or “while do” are incorporated to dynamic logic. The resulting algebras - test algebras
- are investigated in [28). It is proved that a free test algebra can be embedded into a product
of finite test structures, but the situation is more complicated. E.g., for dynamic algebras, one
can confine onesell to separable algebras — those in which distinct actions have distinct effects
( a # bimplies ap # bp for some p). Surprisingly, free separated test algebras do not exist; free
test algebras (unlike free dynamic algebras) are not separable [28].

IV. Algebras with more general carriers

In topological algebra, the carriers of the algebraic structure are topological spaces rather than
just sets and the operations are continuous. This is the case for topological groups or topological
vector spaces. Free algebras do exist in equational varieties of topological algebras. Sometimes
these are just the ordinary free algebras equipped with a suitable topology but often no explicit
description of that topology in known [23], [25].

Here we shall consider another type of algebras - those whose carriers are posets (= partially
ordered sets). The idea of using ordered algebras in computer science originated with Dana
Scott [10] who modeled flow diagrams as members of a complete lattice the operations of
which preserve joins of directed sets. Markowski, Rosen and Reynolds used ordered algebras to
investigate semantics of programming languages. The most general approach in this direction
was proposed by the ADJ’s [1] who considered a quite general concept of order-continuity:

A subset system is a rule Z asigning to each poset P a family Z[P] of its subsets such that, for
every order preserving map f : P — @, A € Z[P] implies f[A] € Z[Q)]. A poset P is called Z-
complete if every A € Z[P] has a join in P. An order preserving map of posets is Z — continuous
if it preserves joins of Z-sets. A Z — continuous algebra (of some type Q) is an algebra (of that
type) whose carrier is a Z-complete poset and whose operations are Z-continuous.

Z-continuous algebras were used in such a way that their type represents the syntax and the
initial Z-continuous algebras represents the semantics. The initial algebra is defined to be an
algebra with just one homomorphism to any other algebra; thus it is nothing else but the free
Z-continuous algebra over the initial Z-complete poset. The ADJ’s constructed [1] the initial
Z-continuous algebra in the special case of a finitary type and Z = w (where w[P] is the set
of chains in P indexed by non-negative integers). Its members are trees labeled by operation
symbols (as in classical universal algebra) but they have possibly infinite branches. A complete
description of free Z-continuous algebras (for any type and any subset system Z) was given
in [3]. Their elements are still more complicated labeled trees. However, the existence of free
continuous algebras in equational varieties is an open problem. They do exist in the finitary
case but the description can be very complicated, see, e.g., that for free continuous semilattices

[5].

A different but similar type of algebras are separately Z-continuous algebras whose operations
are required to be separately Z-continuous (i.e., Z-continuous in each of its variables). Free
separately Z-continuous algebras need not exist [4].
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V. Functor algebras

We are going to explain now one of the categorical approaches to algebras. Consider, e.g., a
groupoid, i.e., an algebra X with one binary operation. Its operationisamapé: X x X — X
with (z,y) — - y; equivalently, § : FX — X, where F is the functor from the category of
sets into itself with

FX=XxX, Ff=]x/.

A homomorphism from a groupoid X to a groupoid Y is a map f: X — ¥ such that fz-fy =
f(z - y) for each couple z,y in X. If the groupoids are described as § : FX = X x X — X,
o:FY =Y xY — Y, this equation can be written as a(f x f) = f§, in other words, as

(*) cFf=fé

Analogously, bigroupoids (algebras with two binary operations) can be expressed as maps
FX — X and their homomorphisms are characterized by (*) using the functor

FX=XxX+XxX Ff=fxf+fxf
where + denotes the disjoint union - the coproduct in the category of sets.

Actually, all algebras considered in the preceding paragraphs are special instances of functor
algebras: Given a category K and a functor F: K — K, an F-algebra is a K-map

8 : FX — X where the K-object X is called the underlying object. A homomorphism from
an F-algebra é: FX — X to an F-algebrao: FY — Y is a K-map f : X — Y satisfying
(*). F-algebras and their homomorphisms from a category F-alg with a natural underlying
functor to K.

Note that, in the examples of algebras considered above, K was the category Set of seis in case
of classical or infinitary algebras; it was Set x Set for two sorted algebras (more generally: Set®
for S-sorted algebras); and it was the category of Z-complete posets and their Z-continuous
maps for Z-continuous algebras.

Not every variety of classical algebras is of the form F-alg. However, varieties of functor
algebras can be defined to include all classical cases. In general, reasonable properties of the
category of functor algebras and their varieties are guaranteed if free algebras exist.

Given a functor F: K — K a free F-algebra over a K-object X is an F-algebra

¢ : FX* — X" equipped with a K-map v : X — X" with the following universal prop-
erty: for every F-algebra § : FY — Y and every K-map f : X — Y there is a unique
homomorphism f* : X* — Y from FX* — X" to FY — Y with f*v = f.

Free F-algebras need not exist. A typical example is provided by the functor
F =P :Set — Set - the (covariant) power set functor

PX={Y|Y CX}, Pf(Y)=f(Y)

which does not admit a free algebra over any set X.
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VI. Existence and construction of free algebras

There are essentially two methods to prove the existence and to construct free algebras. The
former is based on the bounded generation principle. A typical theorem, in terms of functor
algebras, is the following:

Let the category K be complete, wellpowered and co-'wellpowered. If every K-object X gener-
ates, up to isomorphism, only a set of non-isomorphic F-algebras then the free F-algebra over
X exists for every K-object X.

The latter method simulates the classical construction of absolutely free algebras using terms.
The formulation for functor algebras is a follows.

Free algebra construction. Suppose F' : K — K is a functor where K is a complete category.
Let X be a K-object. Define a chain Xo — X; — X; — ... — X; — ... (where ¢
runs over ordinals) consisting of K-objects X; and K-maps v;; : X; — X, using induction, as
follows:

Xo = X;
X, = X+ FX, (where + denotes the coproduct)
vg1 : Xo — X is the coproduct injection

Xz = X+FX;: viz=1x 4+ Fug : Xi — Xy

Xo = X +colim¢, FX; the colimit of the chain

FXo-' F‘Yl ... FX. - ...

Viw = lx + ¥i, where

Yiw : FX; — colimi¢, F X; are the colimit maps.
X 4 colimj; FX; for every ordinal i; the maps v;; are

defined similarly as for i = w.

X;

We say that the free algebra construction stops (or converges) if vi;y1 : Xi — Xiy is an
isomorphism for some i. One can prove that then FX; — X;;; — X; (where the former
arrow is the coproduct injection and the latter is (v;;41)7?), together with X, — X, is the

free F-algebra over X.
A typical convergence theorem, this construction is based on. is the following:

If F: K — K preserves colimits of chains of length o (a a limit ordinal) then, for every X in
K, the free algebra construction over X stops and yields the free F-algebra over X.

For details, finer variants and references, see [6]. [18].
VII. The most general situation and the dualization

Let us consider the most general situation of structures over a category K where structures are
not specified. i.e., we have only a category S the objects of which are thought as K-objects
equipped with some structure and morphisms are K-maps preserving these structures. This
is expressed by a faithful functor U : S — K. (An alternative approach to mathematical
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structures was investigated by the French school see e.g., Bourbaki [8], Ehresmann [11].) Then
an object X* of S is a free S-structure over a K-object X iff there is a K-morphism v :
X — UX" (insertion of generators) such that for every S-structure S and every K-morphism
f: X — US there is a unique S-morphism f*: X~ — S with Uf*, v = f. As we have seen,
free structures need not exist, they do not exist even in reasonable cases. However, if a free
S-structure X* over X does exist for every K-object X, we obtain a pair of adjoint functors

s K K3S

The investigation of adjoint functors is one of the main streams in category theory which is
included in every textbook or monograph [24], [16], [2].

The famous Adjoint Functor Theorem is the abstract version of the construction of free struc-
tures based on bounded generation, mentioned above for special cases. The highly developed
theory of monads (see. e.g., [24],[22]) handles algebras in this way - the existence of free alge-
bras is already incorporated into the definition of monads and adjoint situations are the main
tool of the theory. What is still reasonable to do in concrete cases (and we tried to persuade
you into it) is to decide whether free structures do exist or not, and to find some construction
of free structures (like the free algebra construction from the preceding paragraph) which not
only gives their existence but also enables us to investigate their internal structure. The latter
is important — let us recall the case of free test algebras: the fact that they are not separable
cannot be derived from their existence — one needs their explicit description. Also, the existence
of a free S-structure over a K-object X can depend on X; (e.g., for every cardinal a there exists
a functor F, : Set — Set such that a free F,-algebra over a set X exists iff card X < a), in
which case the ‘global approach’ using adjoint functors fails.

As a final remark let us mention cofree structures. The abstract categorical level has the
advantage that everything can be dualized. The formal dualization of the notion of a free
structure is that of a cofree structure. Though the cofree structures also appear naturally in
mathematics and in computer science (e.g.. in connection with the observability of automata,
see [6]), their role seems to be much more limited than that of free structures. Since adjoint
situations are selfdual the abstract theory can be applied both to the free structures and to
the cofree ones. However, in particular cases, there is no relation between free structures and
cofree structures. Nevertheless, the unified approach makes our insight deeper and this is the
main goal of category theory.
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