Algebra c Topology ?!

G. Richter

ABSTRACT. In his thesis [2], H. Bargenda constructed universal (E,M)-algebraic hulls $V:A \longrightarrow X$ for right adjoints $U:C \longrightarrow X$, i.e., X carries an (E,M)-factorization structure for sources [6,1], M a conglomerate of mono-sources, V lifts (E,M)-factorizations uniquely [1, 20.23], is right adjoint, and is universal with these properties. The construction needs enough E-projectives in X, although in case of $UF(E)\subseteq E$ (where $F\dashv U$) the E-reflective hull A generated by the image of the comparison functor in the associated Eilenberg-Moore category X^{UF} always serves as a universal hull. This paper deals with a common generalization of Bargenda's and the Eilenberg-Moore construction of A. Surprizingly, A lives in any M-topological [1, 21K] extension $Y \longrightarrow X$ of U which may be illegitimate and, therefore, is always available [7, 8], subject to minor technical assumptions on U.

0. Introduction.

The papers "Algebra ∩ Topology = Compactness" [9] and "Algebra ∪ Topology" [10] are serious reasons for the question mark in the title. Nevertheless, we shall prove

algebraic hulls C topological extensions.

therefore, the exclamation mark!

Throughout, let X denote a category together with a fixed (E, M)-factorization structure for sources in the sense of H. Herrlich [1, 6] and let M be a conglomerate of mono-sources. Furthermore, let $U: C \longrightarrow X$ denote a right adjoint functor (with left adjoint F) admitting a M-topological extension

$$C \xrightarrow{\text{inclusion}} Y, \text{ full,}$$

$$F \xrightarrow{\eta} \bigcup_{X} | | M - \text{topological }.$$

i.e., every | |-structured source in M has a unique | |-initial lift [1, 21K.].

Such a functor $U = |\cdot|_{\mathbf{C}}$ has to be faithful and amnestic, i.e., any C-isomorphism f whose underlying morphism Uf = |f| is an identity, has to be an identity itself. These more technical assumptions are not serious, because for any right adjoint functor there exists a

This work is an original contribution and will not appear elsewhere.

universal faithful and amnestic modification, which is right adjoint, too (see also [1, 5.33]). In what follows, the M-topological extension above need not be legitimate [1, 2.3, 6.16]. However, it always exists in some (possibly higher) universe (take for instance E^2 in [7,8]).

H. Bargenda introduced (E, M)-algebraic functors [2, 3] as a generalization of H. Herrlich's regular functors [5], in order to cover underlying space functors of universal topological algebras, which sometimes fail to be regular [12, 13]. A right adjoint functor $V : A \longrightarrow X$ is called (E, M)-algebraic, if it lifts (E, M)-factorizations of all sources $V((f_i : A \longrightarrow A_i)_I)$ uniquely. If this is the case. A turns out to be a $(V^{-1}(E), V^{-1}(M))$ -category, the morphisms in $V^{-1}(E)$ or the sources in $V^{-1}(M)$ being V-final or V-initial, respectively.

In the presence of enough E-projectives in X there exists an universal (E. M)-algebraic hull $V: A \longrightarrow X$ for each right adjoint $U: C \longrightarrow X$. The same holds, if $UF(E) \subseteq E$ (where $F \dashv U$) without any additional assumption on X. In this case, the E-reflective hull generated by the image of the comparison functor in the associated Eilenberg-Moore category X^{UF} solves the problem [2,3,4].

Section 1 contains a common generalization of both constructions divided into two steps. First of all, one gets a canonical extension $U': \mathbf{C}' \longrightarrow \mathbf{X}$ of U and a left adjoint F' for U' with $U'F'(\mathbf{E}) \subseteq \mathbf{E}$. After that, the Eilenberg-Moore machinery applies.

Alternatively, there is a purely topological construction of the (E, M)-algebraic hull V in section 2 as the restriction of $|\cdot|: Y \longrightarrow X$ to a certain subcategory A, justifying the title of the paper. This has the advantage of unifying both. C and A, in a common extension Y. Considering $F \dashv U$ and $G \dashv V$ as functors $F, G : X \longrightarrow Y$, one may ask for natural transformations between them. In fact, there is a canonical one from G to F.

For standard notations, terminology, and results we refer to [1, 11].

1. Coreflectivity of E-monads.

In general, UF fails to preserve the E-class. Therefore, consider for every $e: X \longrightarrow \hat{X} \in E$

$$Fe = m_s s_s, |s_s| \in E, |m_s| \in M$$

and $m_{\epsilon}: Y \longrightarrow F\hat{X}$ the initial lift of $|m_{\epsilon}|$. Choose $m_{\epsilon} = idF\hat{X}$ if $UF_{\epsilon} \in E$.

1.1. Lemma. Let P be an E-projective X-object. Then η_P is |-orthogonal| to each m_e , $e \in E$, i.e., for every commutative square

$$P \xrightarrow{\eta_P} |FP|$$

$$g \downarrow \qquad |d| \qquad \downarrow |h|$$

$$|Y| \xrightarrow{\star \uparrow m_e|} |F\hat{X}|$$

there exists an unique diagonal $d: FP \longrightarrow Y$ in Y as indicated, rendering the triangles commutative.

Proof. By assumption on P, g factorizes via $|s_e|$, $g = |s_e|f$, and $f: P \longrightarrow UFX$ admits an extension $\overline{f}: FP \longrightarrow FX$, $U\overline{f}\eta_P = f$. Now take $d:=s_e\overline{f}$. Then $|d|\eta_P = |s_e|f = g$ and

$$U(m_{\epsilon}d)\eta_{P} = U((Fe)\overline{f})\eta_{P} = |m_{\epsilon}||s_{\epsilon}|f = |m_{\epsilon}|g = Uh\eta_{P},$$

hence $m_{\epsilon}d = h$.

If $UF(E) \subseteq E$, then every m_e is an isomorphism, and for any X-object X, η_X is | |-orthogonal to each m_e . $e \in E$. Therefore, in this section we require the following general

1.2. Assumption. There are enough objects P in X, such that η_P is $| \cdot |$ -orthogonal to each m_e , i.e., for every X-object X there exists such a $P = P_X$ together with $e_X : P_X \longrightarrow X \in E$.

1.3. Theorem. There exists a legitimate extension $C' \subseteq Y$ of C such that $U' := |\cdot|_{C'}$ has a left adjoint F' and $U'F'(E) \subseteq E$. Moreover, any concrete functor $D: (C,U) \longrightarrow (A,V)$ to an (E,M)-algebraic category (A,V) has a unique concrete factorization via the inclusion $C \hookrightarrow C'$:

Proof. Let $Z \subseteq Y$ denote the full subcategory generated by all Y-objects Z with the following properties:

- 1. The source of all Y-morphisms $Z \longrightarrow C \in \mathbb{C}$ is | |-initial and its underlying source is in M.
- 2. Each X-morphism $g: P \longrightarrow |Z|$, P as in 1.2., admits a unique extension $\overline{g}: FP \longrightarrow Z$, i.e.,

Obviously, $C \subseteq Z$. Next we construct a left adjoint $G: X \longrightarrow Z$ for $|\cdot|_Z$ using the factorizations $Fe = m_e s_e$ above:

Then GX fulfills property 1., because m is the initial lift of $|m| \in M$. Furthermore, for each X-morphism $g: P \longrightarrow |GX|$, P as in 1.2., there is an unique C-morphism $h: FP \longrightarrow FX$ rendering the following rectangle commutative:

$$P \xrightarrow{\eta_{P}} UFP$$

$$g \downarrow \qquad |\overline{g}| \qquad \downarrow Uh = |h|$$

$$|GX| \xrightarrow{\kappa - |m|} UFX = |FX| .$$

Therefore, the diagonal $\overline{g}: FP \longrightarrow GX$ exists. Moreover, it turns out to be uniquely determined by $|\overline{g}|_{\eta_P} = g$, because h is unique and $|m| \in M$. This proves property 2. for GX, hence $GX \in \mathbb{Z}$.

Futhermore, there is a canonical arrow $\delta_X: X \longrightarrow |GX|$ as diagonal in

Now consider any X-morphism $f: X \longrightarrow |Z|$ with $Z \in \mathbb{Z}$ and $g:=fe_X$. By condition 2., there exists an unique $\overline{g}: FP_X \longrightarrow Z$ with $|\overline{g}|\eta_P = g$. Furthermore, for any morphism $n: Z \longrightarrow C \in \mathbb{C}$ there is an unique extension $h_n: FX \longrightarrow C$ of |n|f with $Uh_n\eta_X = |n|f$.

The following diagram commutes

Hence the diagonal $\overline{f}:GX\longrightarrow Z$ exists, because $|s|\in E$, $(|n|)\in M$, and (n) initial. Its uniqueness is obvious. This shows $G\stackrel{\delta}{\dashv}|\cdot|_Z$.

Since $C \subseteq Z$ we get a canonical isomorphism $GX \cong FX$ if GX is isomorphic to some C-object. Therefore, choose GX = FX and $\delta_X = \eta_X$ in this case, $C' := C \cup G(X) \subseteq Y$, full, $U' := | \ | \ |_{C'}$, and F' := G. Now let $D : (C, U) \longrightarrow (A, V)$ where (A, V) is (E, M)-algebraic. For GX, $X \in X$, consider the unique lift of $VDFe_X = UFe_X = |m||s|$ along V:

Then D'GX = DGX for $GX \in \mathbb{C}$, because $m = id_{FX}$ in this case. Together with D'C := C for other $C \in \mathbb{C}$, this defines $D' : \mathbb{C}' \longrightarrow \mathbb{A}$ on objects.

For C'-morphisms $f: C \longrightarrow GX$, $C \in C$, consider g:=mf, which is a C-morphism. Now Dg is an A-morphism, such that VDg = Ug factorizes via |m| = Vn, n being V-initial. This yields an unique A-morphism $D'f: D'C \longrightarrow D'GX$ with VD'f = U'f.

For C'-morphisms $f: GX \longrightarrow C$, $C \in C$, consider g:=fs and use the finality of t. Combination of both yields $D'f: D'GX' \longrightarrow D'GX$ with VD'f = U'f for the remaining case $f: GX' \longrightarrow GX$ in C'.

As an (E, M)-algebraic functor, V is faithful and reflects identities. Therefore, the equation VD' = U' forces D' to be functorial. For similar reasons, D' is unique.

It remains to show, that $(U'F')(e) \in \mathbf{E}$ if $e: X \longrightarrow \hat{X} \in \mathbf{E}$. To prove this, consider

and ℓ initial with respect to $|\cdot|$. Then Z fulfills condition 1. above. For 2. abbreviate $\hat{m}:=m_{\epsilon,\gamma}$ and observe

$$|Fe||m|\delta_X = |Fe|\eta_X = \eta_{\dot{X}}e = |\hat{m}|\delta_{\dot{X}}e = |\hat{m}||Ge|\delta_X$$

hence $(Fe)m = \hat{m}(Ge)$ and so

$$F(ee_X) = FeFe_X = (Fe)ms = \hat{m}(Ge)s = (\hat{m}\ell)(rs),$$

thus $\hat{m}\ell$ equals m_{ee_X} up to an isomorphism. The square

commutes for any P as in 1.2. and each X-morphism g. Therefore, the diagonal $\overline{g}: FP \longrightarrow Z$ always exists as indicated. Its uniqueness follows from $|\overline{g}|\eta_P = g$ using uniqueness of h and the monomorphism $|\hat{m}\ell|$. This proves condition 2. for Z.

The following rectangle commutes in X:

Hence there exists the diagonal d as indicated and its extension \overline{d} . Futhermore,

$$|\ell||\overline{d}|\delta_{\hat{X}} = |\ell|d = \delta_{\hat{X}}$$

implies $\ell \bar{d} = id_{G\dot{X}}$, thus ℓ turns out to be an isomorphism and $|Ge| = (U'F')(e) \in E$.

1.4. Remark. The construction of G above yields also a natural transformation $\nu: F' \longrightarrow F$, which is pointwise initial and in $|\cdot|^{-1}(M)$. Choosing $e_P = id_P$ for η_P orthogonal to each m_{ε} , ν_P turns out to be an isomorphism and vice versa.

In terms of monads and their morphisms 1.3. translates as follows:

1.5. Corollary. Let $(T = UF, \eta, \mu = U\varepsilon_F)$ be the monad defined by the adjunction $F \stackrel{\eta}{\vdash} U$. Then there exists an E-monad (T', η', μ') on X together with a couniversal monad-morphism $\nu: T' \longrightarrow T$, which is pointwise in M.

Moreover, 1.3. yields a quick proof for existence of the (E, M)-algebraic hull, applying the Eilenberg-Moore construction to T' = U'F' [4].

1.6. Corollary. $U: \mathbb{C} \longrightarrow X$ posesses an universal (\mathbb{E}, \mathbb{M}) -algebraic hull $E: (\mathbb{C}, U) \longrightarrow (\mathbb{A}, V)$.

Proof. According to 1.3. the universal (E, M)-algebraic hulls of U and U' coincide. Using wellknown properties of the Eilenberg-Moore construction [4], the latter turns out to be the E-reflective hull generated by the image of the comparison functor $C' \longrightarrow X^{U'F'}$.

2. A topological construction of algebraic hulls.

The main result of section 1 enables one to assume that $UF(\mathbf{E}) \subseteq \mathbf{E}$. Just as in the proof of 1.3. consider $\mathbf{Z} \subseteq \mathbf{Y}$ with respect to all $P \in \mathbf{C}$.

2.1. Lemma. Z is closed under the formation of $(| |^{-1}(E), initial | |^{-1}(M))$ -factorizations.

Proof. By construction, $F = \frac{7}{4} | \cdot | \cdot |_{\mathbf{Z}}$. Consider

$$(Z \xrightarrow{r} Y \xrightarrow{m_i} Z_i)_I$$

 $Z, Z_i \in \mathbb{Z}, i \in I, |r| \in \mathbb{E}, (|m_i|)_I \in \mathbb{M}, (m_i)$ initial. Then Y fulfills condition 1. for Z-objects. To prove 2., observe that the following squares commute:

The existence of $d: F[Y] \longrightarrow |Y|$ as indicated follows from $UF[r] \in E$, $(|m_i|)_I \in M$, and $(m_i)_I$ initial.

Now take any X-morphism $f: X \longrightarrow |Y|$ and choose $\overline{f}:=dFf:FX \longrightarrow Y$. Then

$$|m_i||\overline{f}|\eta_X = |m_i||d||Ff|\eta_X = |\varepsilon_{Z_i}||F|m_i||Ff|\eta_X = |\varepsilon_{Z_i}|\eta_{|Z_i|}|m_i|f$$
$$= |m_i|f,$$

for all $i \in I$, hence $|\overline{f}|\eta_X = f$. Furthermore, \overline{f} is uniquely determined by the latter equation, according to $(|m_i|)_I \in M$ and universality of η_X .

2.2. Lemma. Let $r: Z \longrightarrow \overline{Z}$ be a Z-morphism with $|r| \in E$. Then there exists a $|\cdot|_{Z}$ -final lift $\hat{r}: Z \longrightarrow \hat{Z}$, $|\hat{r}| = |r|$.

Proof. For each C-object C consider the set

$$H_C = \{h|h \text{ is an X-morphism and } h|r| = |g_h| \text{ for some Z-morphism } g_h : Z \to C\}$$

 $\subset hom(|\overline{Z}|, |C|).$

The source

$$(|\overline{Z}|,h)_{h\in H_C,C\in C}$$

contains every |m|, $m: \overline{Z} \longrightarrow C \in \mathbb{C}$ a Z-morphism. According to condition 1. on Z the source above belongs to M [6]. For its |-initial| lift in Y.

$$(\hat{Z},\hat{h}:\hat{Z}\longrightarrow C),$$

there exists a Y-morphism $\hat{r}: Z \longrightarrow \hat{Z}$ such that $|\hat{r}| = |r|$ and $\hat{h}\hat{r} = g_h$ for all h, hence by 2.1., $\hat{Z} \in \mathbb{Z}$.

Now consider any X-morphism $f:|\hat{Z}|\longrightarrow |\check{Z}|, \check{Z}\in \mathbf{Z}$, such that

$$f|\hat{r}| = |g_f|, g_f: Z \longrightarrow \tilde{Z}$$
 a Z-morphism.

and the initial monosource of all Z-morphisms

$$n: \tilde{Z} \longrightarrow C \in \mathbf{C}$$
.

Then $h_n := |n|f$ has a lift $\hat{h}_n : \hat{Z} \longrightarrow C$ with

$$\hat{h}_n \hat{r} = n q_f.$$

hence

$$|\hat{h}_n||\hat{r}| = |n||g_f| = |n|f|\hat{r}| \Rightarrow |\hat{h}_n| = |n|f.$$

Initiality of the source (n) yields a Z-morphism

$$\hat{f}: \hat{Z} \longrightarrow \hat{Z}$$
 with $\hat{h}_n = n\hat{f}$,

hence

$$ng_f = \hat{h}_n \hat{r} = n\hat{f}\hat{r}$$
 for all n .

consequently

$$g_f = \hat{f}\hat{r}$$
 and $|\hat{f}| = f$.

2.3. Corollary. Let $s: T \longrightarrow X$ be a morphism in X such that $|Fs| \in E$. Then Fs is final with respect to $|\cdot|_{Z}$.

Proof. Consider the $|\cdot|_{\mathbf{Z}}$ -final lift $\hat{e}: FT \longrightarrow \hat{Z}$ of |Fs|. Then $id_{|FX|}$ has a lift $b: \hat{Z} \longrightarrow FX$, $b\hat{e} = Fs$, and there exists a Z-morphism $c: FX \longrightarrow \hat{Z}$, such that

$$X \xrightarrow{\eta_X} |FX|$$

$$\downarrow^{\eta_X} \qquad \downarrow_{|c|} \text{ commutes}$$

$$|FX| = |\hat{Z}|$$

Furthermore, $|b||c|\eta_X = \eta_X$, hence $bc = id_{FX}$, thus b is an isomorphism.

Next we consider for every Z-object Z its counit

$$\varepsilon_Z: F|Z| \longrightarrow Z$$

and the $|\cdot|_Z$ -final lift of $|\varepsilon_Z|$, thus getting

$$\hat{\varepsilon}_Z: F|Z| \longrightarrow \hat{Z}$$
 final. $|\hat{\varepsilon}_Z| = |\varepsilon_Z|$.

The Z-objects \hat{Z} constitute a full legitimate subcategory $A \subseteq Z$. Moreover, the identities $id_{|Z|} = id_{|\hat{Z}|} : |\hat{Z}| \longrightarrow |Z|$ have a unique lift

$$b_Z: \hat{Z} \longrightarrow Z, \quad b_Z \hat{\varepsilon}_Z = \varepsilon_Z.$$

Abbreviate the restriction of | | to A by $V : A \longrightarrow X$.

- 2.4. Proposition. The following holds for A:
- (a) $F(X) \subseteq A$, hence $F \stackrel{\eta}{\vdash} V(= |\cdot|_A)$ with the same unit η and counit ε as in case of $F \stackrel{\eta}{\vdash} |\cdot|_Z$, restricted to A.
- (b) A is bicoreflective in Z with coreflections $b_Z: \hat{Z} \longrightarrow Z$.
- (c) For each $A \in A$, the source of all A-morphisms $A \longrightarrow \hat{C}, C \in C$, belongs to $V^{-1}(M)$.
- (d) All morphism in $V^{-1}(E)$ are $| \cdot |_{\mathbf{Z}}$ -final.

Proof. For each $X \in X$ the following holds

$$|\varepsilon_{FX}||F\eta_X|\eta_X = |\varepsilon_{FX}|\eta_{|FX}|\eta_X = \eta_X \Rightarrow \varepsilon_{FX}F\eta_X = id_{FX},$$

hence ε_{FX} is a retraction, thus final and $\widehat{FX} = FX$ as well as $b_{FX} = id_{FX}$. This proves (a).

By construction, $\varepsilon_A: F|A| \longrightarrow A$, $A \in A$, is final, because for $Z \in \mathbb{Z}$ with $\hat{Z} = A$

$$\begin{split} |\hat{\varepsilon}_{Z}| &= |\varepsilon_{Z}| \text{ and } |\hat{Z}| = |Z| \\ \Rightarrow |\hat{\varepsilon}_{Z}|\eta_{|F|\hat{Z}||} &= |\varepsilon_{Z}|\eta_{|F|Z||} = id_{|F|Z||} = id_{|F|\hat{Z}||} = |\varepsilon_{\hat{Z}}|\eta_{|F|\hat{Z}||} \\ \Rightarrow &\hat{\varepsilon}_{Z} = \varepsilon_{\hat{Z}} : F|\hat{Z}| = F|Z| \longrightarrow \hat{Z}. \end{split}$$

Now consider some Z-morphism $f:A\longrightarrow Z, A\in A$. Then the following rectangle commutes, according to $\varepsilon_Z=b_Z\hat{\varepsilon}_Z$

$$F|Z| \xrightarrow{\hat{\epsilon}_Z} \hat{Z} \xrightarrow{b_Z} Z$$

$$F|f| \uparrow \qquad \qquad \uparrow f$$

$$F|A| \xrightarrow{f} A \qquad .$$

The dotted arrow exists by means of $|b_Z| = id_{|Z|}$ and finality of ε_A . This proves (b).

(c) is immediate from (b) and condition 1. for Z.

Let $s: A \longrightarrow B$ be in $V^{-1}(\mathbf{E})$. Then $|F|s| \in \mathbf{E}$, hence F|s| is final, by 2.3., and the following diagram commutes

$$F|A| \xrightarrow{F|s|} F|B| , \text{ final,}$$

$$\epsilon_A \downarrow \qquad \qquad \downarrow \epsilon_B , \text{ final } .$$

$$A \xrightarrow{s} B$$

Hence s is final.

By construction, the restriction E of the coreflector $H: \mathbb{Z} \longrightarrow \mathbb{A}$ to C fulfills VE = U.

2.5. Theorem. (A, V) together with E is a universal (E, M)-algebraic hull of (C, U).

Proof. By 2.4.(a), V is right adjoint. Consider any source $(A \xrightarrow{f_i} A_i)_I$ in A. An (E, M)-factorization of the corresponding underlying source in X admits a lift to Z, using 2.1.. Application of the coreflector H yields a $(V^{-1}(E), V^{-1}(M))$ factorization of (f_i) in A, which is uniquely determined by its underlying (E, M)-factorization, according to 2.4.(d).

Now let (B, W) be (E, M)-algebraic over X and $K : C \longrightarrow B$ a functor with WK = U. For each Z-object Z there is a canonical $(| |^{-1}(E), initial | |^{-1}(M))$ -factorization

$$F|Z| \xrightarrow{\varepsilon_Z} Z \xrightarrow{m} C \in \mathbf{C}$$

of the C-source $(F|Z| \xrightarrow{mez} C)$, m running through all Z-morphisms $Z \longrightarrow C \in C$. The unique lift of the (E, M)-factorization

$$|F|Z|| \xrightarrow{|\epsilon_Z|} |Z| \xrightarrow{|m|} |C|$$

of $(|m\varepsilon_Z|) = (Um\varepsilon_Z) = (W(Km\varepsilon_Z))$ along W defines an assignment on objects

$$Z \mapsto LZ \in \mathbf{B}, \quad WLZ = |Z|,$$

which extends K, because id_Z is one of the m's, if $Z \in \mathbb{C}$. Using the $(W^{-1}(\mathbb{E}), W^{-1}(\mathbb{M}))$ -diagonalization property in \mathbb{B} , there is an assignment on morphisms

$$Z' \xrightarrow{f} Z \mapsto LZ' \xrightarrow{Lf} LZ$$

with WLf = |f|, extending K as well. (E, M)-algebraicity of W and WLf = |f| force L to be functorial and unique.

It remains to show, that L factorizes via H. This is automatically unique, because H is surjective on morphisms, although not full, in general. Therefore, consider an A-morhism $h: \hat{Z}' \longrightarrow \hat{Z}$, and a Z-morphism $f: Z' \longrightarrow Z$ with Hf = h, i.e.,

$$\hat{Z}' \xrightarrow{b_{Z'}} Z'$$

$$\downarrow f \quad \text{commutes} \quad .$$

$$\hat{Z} \xrightarrow{b_{Z}} Z$$

where $|b_{Z'}| = WLb_{Z'}$ and $|b_Z| = WLb_Z$ are identities. But W is uniquely transportable, hence, $Lb_{Z'}$ and Lb_Z are identites and Lf = Lh. This shows Lf = Lg for any two Z-morphisms f, g with Hf = Hg =: h, thus L factorizes via H. For the same reasons as in case of L, this factorization is functorial.

Remark. In general, the associated Eilenberg-Moore category cannot be recovered as a full extension of A in Y. even for the underlying set functor | |: Top - Set of the category of topological spaces [14].

References

- J. Adámek. H. Herrlich, G.E. Strecker, Abstract and concrete categories, Wiley, New York (1990).
- [2] H. Bargenda, Algebraische Hüllen rechtsadjungierter Funktoren, thesis, Universität Bremen (1987).
- [3] H. Bargenda, Universal algebraic completions of right adjoint functors, this volume,
- [4] S. Eilenberg, J.C. Moore, Adjoint functors and triples, Illinois J. Math. 9 (1965), 381-398.
- [5] H. Herrlich, Regular categories and regular functors, Can. J. Math. 26 (1974), 709-720.

- [6] H. Herrlich, Topological functors, Gen. Top. Appl. 4 (1974), 125-142.
- [7] H. Herrlich, Initial completions. Math. Zeitschrift 150 (1976), 101-110.
- [8] H. Herrlich, Initial and final completions, Springer Lect. Notes Math. 719 (1979), 137– 149.
- [9] H. Herrlich, G.E. Strecker, Algebra \(\cap Topology = Compactness\), Gen. Top. Appl. 1 (1971), 283-287.
- [10] H. Herrlich, G.E. Strecker, Algebra U Topology. Springer Lect. Notes Math. 719 (1979), 150-155.
- [11] H. Herrlich, G.E. Strecker, Category theory, 2nd ed., Heldermann-Verlag, Berlin (1982).
- [12] L.D., Nel, Universal topological algebra needs closed topological categories, Top. Appl. 12 (1981), 321-330.
- [13] G. Richter, Kategorielle Algebra, Studien zur Algebra and ihre Anwendungen 3, Akademie-Verlag, Berlin (1979).
- [14] G. Richter, Characterizations of algebraic and varietal categories of topological spaces, Topology Appl., to appear.

