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Automorphisms and Full Embeddings
of Categories in Algebra and Topology

E. Makai jun.

Abstract. We review some results on describing all automorphisms of certain categories, and on describing
all full embeddings between certain pairs of categories, for certain well-known categories in algebra and
topology. We reproduce in a simple case the proof, for one case in algebra, and one in topology, which are
however already somewhat characteristic for the proof methods. For other cases we give references, although
we do not claim to completeness. We also include a simple proof of a result not yet explicitly proved, namely
that each isomorphism of the category of commutative semigroups onto itself is naturally isomorphic to the
identity functor. This proof also leads to a new proof of the semigroup case. We give a modified (hopefully
simpler) proof for the Abelian group case, too. We also prove a new result, about full embeddings F of the
category of proximity spaces, or soine of its subcategories, into the category of “sets with systems of pairs of
non- empty subsets”, with morphisms the functions preserving these pairs (like at near pairs), showing that
each such F is.given by a “base” of the proximity, for near pairs. .Further we give analogues of this result
for full embeddings F of the category of topological spaces, or some of its subcategories, into the category
of “sets with systems of pairs consisting of a non-empty subset and a point of the set”, with morphisms the
functions preserving these pairs (like at pairs (A,r) with A3z), showing that each such F is given by a “base”
for all pairs (A,r) with A3z. Also we describe the full embeddings of the category of (normed) linear spaces
(with contractive, or bounded linear maps), into itself, and, for commutative field of scalars, we extend these
results to full embeddings of full subcategories of these categories into these categories.

§1
1.1. We will deal with two questions.

1) The first one is, intuitively, the following. Suppose we are given a category of some
structures. Let us consider this category as an abstract category only. The question is: does
this abstract category contain as much information, as if it were given actually? E.g., given
the category of semigroups, as an abstract category, can one identify (up to isomorphism) each
object of the category, what semigroup it actually is, and each morphism of the category.
what semigroup homomorphism it actually is. Categorically: given a category C, we ask
about the isomorphisms C — C (i.e. automorphisms of C), whether they are naturally
isomorphic to 1¢. or if not, how can we describe all automorphisms of C.

For the case of the category of semigroups the answeris evidently no. Namely for each
semigroup we can introduce a new multiplication » , the opposite multiplication, setting
r *y = yr. Then homomorphims w.r.t. * are the same as homomorphisms w.r.t. the

This work is an original contribution and will not appear elsewhere.
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original multiplication. Thus the functor carrying each semigroup to the same semigroup
equipped with the opposite multiplication, and each homomorphism to itself (as a set map),
is an automorphism of the category. However it is not naturally isomorphic to the identity
functor. Namely a semigroup S for which Vz Vy zy = z is carried to a semigroup 5°7 for
which Vz Vy zy = y, which are not isomorphic for |S| > 1.

2) The second question, intuitively, is the following. Describe all possible axiomatizations
of a category of some structures by means of some other (more general) structures. E.g. the
category of topological spaces has two different axiomatizations by set systems on the same
underlying set (a set system is a pair (X,7), X a set, 7 C P(X), while f : (X,7) — (Y,0)
is a set system morphism if f € YX and f~!(¢) C ), namely the one given by the open
sets, and the one given by the closed sets of the topological spaces. Categorically, given two
categories C and D, we ask about all full embeddings C — D, whether they are the ones

usually given, or not, and in the second case if we can describe all of them.

1.2. We will use the notations Set, Pos, Ab, Grp, Sgr, CommRng, Rng for the
categories of sets, partially ordered sets, Abelian groups, groups, semigroups, commutative
rings, rings, respectively. Further Top denotes the category of topological spaces, while
Top,;, Haus, Reg;, Tych,, Met, its full subcategories consisting of the Tl,Tg,Tg,Taé,
resp. metric spaces. Let SetSyst’ denote the category with objects (X,r), where X is
a set and {§,X} C 7 C P(X), and with morphisms f : (X,7) — (Y,0) characterized by
f € YX and f~'(0) C 7. Unif resp. Prox denotes the category of uniform spaces, resp.
that of proximity spaces (in the sense of Efremovi¢); the Ty axiom is not assumed at the
definition of uniform, resp. proximity spaces. For concrete categories (thus all categories
in this paper) U, or sometimes U’, will denote the forgetful functor to Set. (For SetSyst®
U(X,r)= X, Uf = f.) Undefined categorical notions cf. e.g. in [15], [1].

§2
2.1. We begin with

THEOREM 1. The automorphisms of the categories Set [9] p.29, Pos [9] p.30, Ab [9] p.30,
Grp [9] p.31, Sgr [3], CommRng [6], Rng [6] are naturally isomorphic to the respective
identity functor, or, for the cases Sgr, Rng to the opposite semigroup, or ring functor (carry-
ing a semigroup, or ring to the same semigroup, or ring, but with the opposite multiplication,
and same addition, in case of rings, and the homomorphisms, as set maps, to themselves)
resp. for the case Pos, to the functor reversing the partial order (and carrying the morphisms,

as set maps, to themselves).
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We note that [6] actually considered the category of (commutative) R- algebras, for R a
commutative integral domain with 1, and obtained a bit more complicated answer (taking in
account the automorphisms of R). Categories of modules are treated in [23] and [9] p.106,
(15] p.325, actually giving categorical characterizations of these categories (a more general
situation is treated in [9] p.120); these characterizations are rather similar to the categorical
characterization of varieties, resp. quasivarieties of finitary algebras in [23], resp. [17]. cf.
also [27], [15) §32, 38, {1] §23, 24. For the category of groups the opposite group functor was
not listed, since it is naturally isomorphic to the identity; for a group G and its opposite
group G°? there is an isomorphism p: G — G°P defined by ¢(z) = z™ 7, and this is a natural
transformation from identity to the opposite group functor. [54] has shown that all concrete
full embeddings Set — Sgr, resp. [category of totally ordered sets, with isotone maps] —
Sgr are given by defining zy as z, or as y, resp. as min{z,y}, or as max{z,y}, and there
are no concrete full embeddings Pos — [any category of universal algebras]. Similar results
are contained in [19]. [7] contains the proof of the statement, that any automorphism of the
category of locally compact Abelian groups, with continuous homomorphisms, is naturally
isomorphic to the identity (given there in the equivalent form that any isomorphism with the
dual category is naturally isomorphic to the usual duality given by hom (-,R/Z)). For more
details cf. the above cited works, and also [55] (where “polygon” means monoid action), [48]
p.539.

2.2. The method of proof of most of these statements goes back to P. Freyd [9], and
consists of three steps.

1) Identification of the free algebra F(1) on one generator. (E.g. it is regular-projective,
has some minimality property among these, etc.)

2) The underlying set functor U is then identified as (being naturally isomorphic to)
hom (1,U(-)) = hom (F(1), —), where 1 is a one-element set.

3) There remained to identify the algebraic structure on UC 2 hom(F(1),C), for each
object C of the category in question. Thus we have to define an algebra structure on a
hom-set hom (A, B), which would be evident if B had an algebra structure, but as yet it is
not known. However hom (A, B) is covariant in B, and contravariant in A, thus it suffices to
define on A a “co-algebra” structure. (Remind that e.g. at the definition of the homotopy
groups of topological spaces a group structure on the set of homotopy classes of base-point
preserving continuous maps S® — B is not obtained by any group structure on B, but by

maps on S".)

2.3. In more detail, let us consider the simplest case, the category of Abelian groups.
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Although in this case not the full power of the co-algebra concept is needed for the proof,
we will give a complete definition of them in this case, since in other cases this concept is
necessary for the existing proofs.

An Abelian group is a set X equipped with a multiplication m: X x X — X satisfying

among others the associative law, expressed by the commutativity of the diagram

(XxX)x X=X xXxX=Xx(XxX)

\ 1x xm

mx lx

XxX XxX

~

X

(where in the upper row the isomorphisms are the canonical ones). Considering hom
(F(1),C)), by contravariance, this will correspond to a “co-multiplication™ m*: F(1) —
F(1) + (F(1), satisfying a “co-associative” law, obtained by dualizing the above diagram.
More concretely, for an Abelian group C and two elements z,,z2 of UC 1,22 can be
identified as follows. Let z; correspond at the isomorphism UC 2 hom(F(1),C) to ¢; €
hom (F(1),C), i.e. ; is determined by carrying the free generator 1 (coming from the
adjunction) of F(1) into z;. Then we have a unique map [¢y,92]: F(1) + F(1) — C, which
composed with the injections y;: F(1) — F(1) + F(1) to the coproduct gives ¢;. Then
7172 = [p1,92)(1(1)p2(1)). In other words, letting m* be the morphism F(1) — F(1)+F(1)
defined by m*(1) = u;(T)u2(1), we have 7122 = [p1,p2Jm*(1), that is. 2,2, corresponds to

the composite homomorphism
F(1)™LFQ) + F()¥2%e.

The associativity of multiplication is expressed via m* in the following way. Let z; €
UC, i = 1,2,3, and let ¢; be the corresponding morphisms F(1) — C. Then (z,,z2)r3,
resp. T,(z2z3) correspond to the homomorphisms ([, p2]m*, walm™ = [[¢1.92]. p3l(m* +
1p())m® = [p1, 02, 3)¢' (" + 1p())m®, resp. to (1, [p2.palm*|m* = (o1, [p2, 3]l(1rq) +
m*m* = 1,02, 03)"(1p) + m*)m*, where /2 (F(1) + F(1)) + F(1) — F(1) + F(1) +
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F(1),":FQ1)+(F(Q1)+ F(1)) —» F(1)+ F(1)+ F(1) are the canonical isomorphisms. Equality
of these, for each Abelian group C and each ¢;.92.¢3 € hom (F(1), C) means that '(m" +
lpaym™ = "(1pqy +m*)m” (put C = F(1) + F(1) + F(1),; = the i-th injection F(1) —
F(1) + F(1) + F(1)). However this means exactly that the diagram, obtained from the
diagram expressing associativity of multiplication, by dualizing, and replacing X with F(1).

commutes:
(F()+ FQ)) + FQ) = F(1)+ F(1)+ F(1) 2 F(1) + (F(1) + F(1))
m® + 1rq) 1pa) +m’
FQ1)+ F(1) F(Q1) + F(1)

F(1)
This property of m* is called co-associativity of m®.
Similarly, commutativity of m can be expressed in the following way. We have, for

T1.Z2, 91, P2, p1, 42 @S above, [y, 2] (1) = 2125 = 2221 = 2. 1]m (1) = (1. 2]
[12. p1)m*(1), which is, like above, equivalent to the commutativity of the diagram, obtained
from the diagram expressing commutativity of m. by dualization, and replacing X by F(1):
F(Q1)+ FQ1)
?

[/-‘2:#1]

m* FQ1) + F(1)

F(1)

Comimutativity of this diagram will be called co-commutativity of m*.
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Using the commutativity of these diagrams, for 1 € F(1), we see that, denoting m*(1) =
p1(T) ua(1) € F(1) + F(1), co-associativity, resp. co-commutativity of m* is equivalent to
k2 =k, 2 =¢ resp. tok=¢.

We have beside m a unary operation ¢ (inverse) and a 0-ary operation e (identity). Like
above, we have for z in UC and ¢ like above (i.e., p(1) = z), 27! = ((1)7!). Let i* be
the morphism F(1) — F(1) defined by i*(1) = (1)~!. Then z7! = ¢i*(1), that is, z7?
corresponds to the composite homomorphism F(I)LF(I)—V*C. Similarly, let e* be the

unique morphism F(1) — sum of 0 copies of F(1) = initial object = one-element Abelian
group. Then e corresponds to the composite homomorphism F' (1)—2.—9 initial object — C,
where the second arrow is the unique one.

V= e = z7'z. We

We stil]l rewrite the remaining group axioms er = z = re, TZ~
have, with ¢ corresponding to z, @. to e (p.(1) = €), and ep(1): F(1) — F(1) denoting the
homomorphism with ep(;y(I) = the identity element of F(1), that wlepqy, Lrylm*(1) =
[pe,@lm*(T) = ez = z = (1) = ze = [p. ¢ Jm* (1) = pllrqy, eraylm™(1). Also, @i, 15(1)]
m*(1) = [pi*,plm*(I) = 27"z = e = pepqy(1) = 227" = [, 0 i"|m* (1) = p[Lpqr), i°)
m*(1). Therefore, the group axioms considered are equivalent to the commutativity of the
following diagrams, which arise from the diagrams expressing the respective group axioms,
by dualization, and replacing X with F(1):

F(1)

[eF(nvlm)]/ \[lm)’e”(”]
F(1) + F(1) 1rq) F(1)+ F(1)
m* m”

F(1)

resp.
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F(Q1)
/N
(2", 1r)) 1rq),i°]
F(1)+F(1) €F(1) F(l)+F(1)
F(1)

With m*(1) = u(1)* p2(1)%, i*(1) = (1) the commutativity of these diagrams is equivalent
tok=f€=1resp. to(j=-1, k=0 V([i=1k+€=0)V (k=£=0)

(We note that co-algebras are defined in (6] actually for any variety, i.e. equationally de-
finable class of algebras. Using the same correspondence UC = hom (F (1), C), and denoting
for z; € UC the corresponding homomorphism by ¢; - i.e. ;(1I) = zi, where 1 is the free
generator —, the value of an n-ary (possibly composite) operation f at z;,...,z, can be
determined as follows. Let us consider the n-fold coproduct F(1) + --- + F(1), with injec-
tions py,..., . Consider the morphism ¢ = [py,...,pn]: F(1) + -+ F(1) = C. Then
F@reza) = f@rDheenpa(@) = flomDyerpuaD) = @(Fur(D).....alT).
That is, letting f*: F(1) — F(1) + --- + F(1) be defined by f*(1) = Flpr (D), .., za(2)).
f(z1,...,2n) = wf*(1) corresponds to the homomorphism ¢f*. This specifies the op-
erations f, with the help of f*. It remains to rewrite the equations satisfied by the
operations. For notational convenience we make this only for an equation of the form
flor(ys, oo ymdhr s gnyns e ym)) = (11 ym)s ey gn(ns- .- ym)), where any
of the operations g;, ¢! can be equal to an operation of smaller arity, with variables a
subset of y;,....Yym, Tesp. to some of its variables. (The general case is done the
same way, but with notational complications.) Let y; = ¥;(1). ¢;: F(1) —» C. Then
(1, ¥m)(flg1,+ -1 9n))" (1) = f(g1(v1+-+ - ¥m)s- -+ gn(¥1,---,ym)). Further this equals
([B11s-- s ¥1mbre ooy [¥n1r e s ¥nml) (L 97) f7(1), where ¢;; = ¢, i = 1,...,n, (where
U et: 1, FQ) = 1I; (]_[J F(l)) is the morphism between the two n-fold coproducts equal
to the coproduct of the g7-s, i.e. [¥1,...,¥m][1FQ)+--+F1): -+ 1P(1) 44+ F (1))

(LI; 97) £ (1) (where the identity map of the m-fold coproduct, say F(m), appears n times).
Therefore the equation f(g1(Y1:.--s¥m)ree s @n(¥1s---,¥m)) = F(@1(¥1, o1 Um)se oo Gr(mn,
-+»Ym)) holds for each object C iff [1r(m),---. 1pm)l(L]; 97)f° = [(LF(m)s--- - 1F(m)]

(LL:(¢4)*)(f')" (where 1p(,») appears on the left hand side n times, on the right hand side n'

times).)
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2.4. Now we complete the proof in case of Abelian groups, by an elementary, partly ad
hoc argument. We have to identify the object F(1) € ObAb, and the co-multiplication
m*: F(1) - F(1) + F(1). (We note that in the paragraphs 2.4 - 2.6 the described proofs
follow the original proofs, i.e. the pattern described in 2.2, but we hope that the proofs given
here are in the details either more elementary, or simpler, than the original ones.)

First we note that in Ab the monomorphisms are, up to equivalence at mono subobjects,
the embeddings of subgroups (and the same holds for Sgr and the category of commutative
semigroups as well). Further, the only Abelian groups, whose only subgroups are the one-
element group (the terminal object of Ab) and themselves (the embedding being the identity),
and are not one-element groups, are generated by any element other then identity, thus are
the cyclic groups of prime order, which constitute the class C;, say. Thus we can characterize
categorically the class C; of Abelian groups, without elements of finite order and different
from identity; namely these are the Abelian groups having no cyclic group of prime order as
a subgroup, i.e. are not the codomains of monomorphisms with domains in C;. Then the
infinite cyclic group F(1) is characterized as the only object of C,, which is non-terminal in
Ab, and admits a monomorphism to any object in Cs, non-terminal in Ab.

We yet have to identify the co-multiplication m*: F(1) — F(1) + F(1). However Ab is an
Abelian category, thus has canonically identified finite products and coproducts, namely the
biproducts. Now m* can be given as (1p). lp)): F(1) = F(1) x F(1) = F(1) + F(1).

2.5. Now we point out some modifications, by which one can prove that also for the cate-
gory of commutative semigroups each automorphism is naturally isomorphic to the identity.
However we note that this result can be proved also with some evident modification of the
proof of [3).

In the category of commutative semigroups the initial object is the empty semigroup,
the terminal object is the one-element semigroup. Note that a (commutative) semigroup
generated by an element z is either free, or there is a smallest n such that z” = z"~* for

some k > 0; then z,...,z"~

! are all elements of the semigroup generated by z, they are
distinct, and multiplication is performed in the obvious way. Also {z"7*,... 2" '} is a
cyclic group, hence has a one-element subgroup (namely {z!}, withn—k < ¢ <n, £ a
multiple of k).

Let us denote C, the class consisting of the terminal commutative semigroup. Again letting
C; be the class of all those commutative semigroups which do not have subsemigroups (i.e.,
do not have mono subobjects) belonging to the class C|, we see C, consists of all those

commutative semigroups, in which each element generates a free subsemigroup. F(1) is a
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subsemigroup of each non-initial element of C;, and the same holds for all subsemigroups
of F(1) as well. and (up to isomorphism) only for them. Let them constitute the class Cj,
say. Le., using further additive notation, Cj is the class of all subsemigroups of the additive
semigroup N.

Let C,D € C3, 9p:C — D. Then for m,n € C C N we have np(m) = @g(nm) = my(n).
i.e. p(n) = const - n, const > 0. In particular, y is a monomorphism. If p:C — D, then the
mono subobject p(C) — D is defined as the monomorphism factor in the regular epi-mono
(i.e., surjective-injective) factorisation of p. If C = F(1) = N, then, assuming for simplicity
C=N.wehave VD€ C; VYne€ D 3p:C — D, (1) = n, thus the union of the mono
subobjects ¢(C),:C — D, in the complete lattice of all mono subobjects of D, is D. Let
now C # F(1). Let us choose D = N € C3. For ¢:C — N let us consider the subobject
#»(C) — N. If, supposing for simplicity ¢(C) C N, we have 1 € p(C). then ¢(C) = N. thus,
@ being a monomorphism. C 2 F(1), a contradiction. Therefore ¢(C) is contained in the
subsemigroup {2,3,...} of N, thus the union of all mono subobjects w(C),p:C — D = N.
in the complete lattice of all mono subobjects of D, is not D = N. Thus we have shown that
C € C; is isomorphic to F(1) iff VD € C; the union of the subobjects ¢(C). € hom(C, D),
in the complete latice of all mono subobjects of D, is D. This identifies F(1) categorically.

It remains to identify m*: F(1) — F(1) + F(1), whose domain and codomain have already
been identified categorically, which commutative semigroups they actually are. 1 € F(1) is
the only element of F(1). generating F(1). m*(1) is characterized as the only element of
F(1)+ F(1), which can be written as a product of two elements. and of at most two elements
only, and if it is written as a product of two elements, then these elements are distinct. This
ends the proof that for the category of commutative semigroups each isomorphism is naturally

isomorphic to the identity.

2.6. Note that any semigroup, generated by one element, is commutative. Thus for the
category of all semigroups we can define the classes C;,Cy,C; word for word as for the
category of commutative semigroups. Thus like above we characterize categorically the free
semigroup F(1) on one generator, and hence also F(1} + F(1). The property characterizing
m*(1) above is now satisfied by two elements: z' = (,1)(g21), and z" = (u21)(1111), while
actually we have m*(1) = (u;1)(g21), cf. 2.3. Recalling from 2.3 that for a semigroup
C and its two elements z,,z,. with corresponding homomorphisms ¢; € hom (F(1),C) we
have 7125 = [p1. @a)((£11)(#21)) = [i1,92)(m"(1)). we see that z' gives the original mul-

tiplication on C, while z” defines on UC the opposite multiplication z; * 2, = z,,, since

[9’1-9’2]((#2T)(#1T)) = [‘r”l« sﬂzllﬂz-ill]((#lf)(l‘ﬁ)) = [‘PL‘PI]((I‘J)(#ZT))'
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2.7. The characterization of categories of modules in Freyd [9], p. 106 specializes to
categories Vecyk of vector spaces over some field K. Namely a category C is equivalent to a
category Veck iff it is a cocomplete Abelian category, having a small projective generator
Co (in the terminology of [9]) which additionally satisfies that hom(Cy, Co), which is a ring
by Abelianness, is actually a field (choose C; a one dimensional vector space). The proof of
[9] also yields that, for fields K, K3, Veck, and Veck, are isomorphic iff K; = K,, and
that any automorphism Veck — Veck is naturally isomorphic to a concrete functor Fy(¢)
preserving the additive structure of the vector spaces, but satisfying that for C € ObVeck.
z € UC, XA € F Az in C equals «(A)z in Fy(¢)C, where ¢: K — K is an isomorphism.

A small modification of Freyd’s proof yields the description of all full embeddings Veck —
Veck. Let NormVec, resp. NormVecy, denote the category of normed linear spaces (real
or complex), with all contractive linear maps, resp. all bounded linear maps, as morphisms.
Let further T;LocConv,, denote the category of T, locally convex spaces (real or complex)
having weak topology, with all continuous linear maps, as morphisms. For NormVec, resp.
NormVecy, or T;LocConv,, Fy(¢) is defined like above, but only for continuous automor-

phisms ¢, and additionally requiring that Fy(:) also preserves the norm, resp. the topology.

PROPOSITION 1. Let C be Veck, for a field K, or NormVec (real or complex) or
NormVecy, (real) or T;LocConv,, (real). Then each full embedding F: C — C is naturally
isomorphic to a functor Fy(1), where « = 1g for the real case, and : = 1¢ or ¢ = complex

conjugation for the complex case.

PROOF: We will identify for each object C € ObC and each morphism f € MorC the
object C and the morphism f (up to isomorphy). This identification will be such that it
can be applied to each F'C and each Ff as well, yielding that Fy(:)C and FC coincide, up
to isomorphy, and similarly for Fo(¢)f and Ff. Namely, we only will use objects from the
image subcategory F(C) (thus, e.g. we will not use universal properties in C, which can be
different in C and F'C, hence preservation of them by F is not immediate).

A) For any object C F carries the zero morphism Oc: C — C to the zero-morphism
Ofc: FC — FC. Then a one-dimensional vector space Cy is characterized by the property
that hom(Cp,C;) has more than one element and does not have non-trivial divisors of 0.
Hence dim FCy = 1 as well, thus FCy = C,.

B) Now we turn to the case C = NormVec. Let U;: NormVec — Set be the closed
unit ball functor. (For an object C U,C is its closed unit ball, for a morphism f: C;, — C,
Uif: UyCy — U, C; is the two-sided restriction of the linear operator f.) Then hom(Cy, —) &

Ui; for convenience we suppose hom(Cp, —) = U).
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A = hom(Cs, Co)\{0¢c,} acts on each hom(Cy,C) by composition. We can identify
U: NormVec — Set, and the usual natural monotransformation U; — U (in a way pre-
served by F) as follows. Let A € A, f € hom(Cy,C). We define f/) as the equivalence class
of pairs (f, A), under the equivalence (f1,A1) ~ (f2.X2) & fir2 = fod;. The set of all these
(f/A)sis UC. Then for g: C; — C; in NormVec U,g: U,C; — U,C; is extended to a map
Ug:UCy — UC; by (Ug)(f/2) =(gf)/A. The usual monotransformation U, — U is the set
inclusion (f — f/1¢,).

Now we identify NormVecy, (in a way preserved by F) as the category with the same ob-
jects as NormVec, and with hom-sets hom(C), C2) consisting of the elements (Ug/v €
(UC)VC, g: C; = C, in NormVec, v € A, where (Ug)/v)(f/2) = (gf)/(v}), and
(Ua1)/n1)X((Ugafv2) = (U(g192))/(v1v2). (This amounts to extend F to a full embedding
Fy: NormVec, — NormVecy,.

C) For Veck, NormVecy, T;LocConv,, we have U = hom(Cp, —).
D) Further we proceed like in [9], p. 106, (15], p. 313. Veck, NormVecy,

resp. T;LocConv,, are pointed categories with finite biproducts, which makes possible to
define categorically an addition on each hom(C;,C;) in the respective category, coinciding

with the usual addition of linear operators.

We have that this addition is preserved by F, provided F preserves biproduct diagrams.
Evidently F preserves zero-objects, zero-morphisms O¢c: C — C for any C € ObC, hence also
zero-morphisms in any hom(C), C3), as multiples of zero-morphisms in hom(C;, C;), i = 1,2.
Therefore biproduct diagrams for objects C, C2, with C; or C; 0-dimensional, are preserved
by F. Let now dim Cy,dimC; > 1. Then y;: C; = C, m;: C = C; (i = 1, 2) form a biproduct
diagram iff m;4; is a zero-morphism for 1 # j, mip; = l¢;, and 3 puim = 1¢ ([15]. p. 308).
We have then dim C = dim(C,® C,) > 2. However in this case the monoid hom(C, C) can be
made to a ring with a unique additive structure only (i.e., the additive structure of the ring
hom(C, C) is determined by its multiplicative structure), cf. [10], p. 864. This implies that
the condition Y u;7; = 1¢ is preserved by F, hence all biproduct diagrams are preserved by
F, thus the additive structure on each hom(C}, C3) is preserved by F as well. (An elementary
alternative proof is the following. For dimC; 2 1, y;: C; = C, m;: C — C; (1 = 1,2), mip;
a zero-map for i # j, mu; = l¢,, the condition Y p;m; = lc can be expressed. by the
multiplicative structure of hom(C,C) only, as follows. Denoting p; = pi7; (thus we have
0 # pi = p?, pipj = 0 for i # j, i,j € {1,2}), there does not exist p3, such that 0 # p; = p?.
pip; =0 for i #j,1,j € {1,2,3). Proof is straightforward, choosing ps =1 — p; — p2.)

E) Thus, in particular, hom(Co, Co) has a ring structure, preserved by F, and this is the
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respective field of scalars, K, R or C (for K this holds if we consider right vector spaces —
for left vector spaces this is K with opposite multiplication, but this also identifies K). Thus
we have identified K, R or C, up to an automorphism .

R only has the identical automorphism.

For C with C = NormVec, observe that we also know the subset of hom(Cy,Cy), in
the category NormVecy,, which is the hom-set hom(Cy, Co), in the category NormVec, i.e.
the subset consisting of the contractive linear maps (in other words. the extension Fj of F
preserves and reflects this subset). Thus ¢ is an automorphism, mapping {z € C | |z|] £ 1}
onto itself. However thus + maps each {z € C | |z| £ r}, r some rational number. onto itself.
Therefore |¢(z)| = |z|, hence ¢ is identical on R, and thus either ¢ = 1¢ or ¢ = conjugation.

F) Since hom(Cy, Cy) acts on each hom(Cy,C) by composition, thus we have identified the
multiplication by scalars on each UC, up to an above isomorphism ¢.

Addition on UC = hom(Cy, C) (in Veck, NormVecy,. resp. T,LocConvy,) is identified.
since hom(Cy, C) has an already identified additive group structure (i.e. one preserved by F)
in the respective category.

For NormVec, norm on UC can be identified, as usual, by ||z|| = inf{A € R | A > 0,
z€A-U,C}.

Since for each ¢ € hom(C;, C;) Ug has already been identified (using hom(Cjy, —)), the
proof for Veck, NormVec is finished.

It remained to show that F also preserves the topology in case of NormVecp, and
T2LocConv,,. This follows from [43], [44], whose considerations we repeat. For
T2LocConyv,, each C has the weak topology w.r.t. hom(C,Cy). For NormVecy a sub-
set A of UC is bounded iff Vf € hom(C, Cy) f(A) is bounded (Banach-Steinhaus); then a
subset V 3 0 is a neighbourhood of 0 iff VA ¢ UC bounded 3¢ >0 ¢4 C V. O

2.8. Using some more involved results of [21]. {2], [10], [43], [44] we can prove on the lines
of these papers, for commutative field of scalars, a statement stronger than Proposition 1 (cf.
also [62]).

We note that if C, is a full subcategory of Veck, and F: C, — Veck is a full embedding
(or similarly with NormVec, NormVecy,, T,LocConv,, rather than Veck), then zcro
objects are carried by F to zero-objects. Further, for any Cy € ObC,;. dimCy = 1 we have
by the proof of Proposition 1 dim F'Cy = 1; and F establishes a bijection K 2 hom(Cy, Co) —
hom(FCy, FCy) = K (for right vector spaces), which is a semigroup isomorphism. Thus for
ObC; C {C € ObVeck | dimC < 1} a full embedding C, — Veck is, up to natural

isomorphism, completely determined by a multiplicative isomorphism ¢: K — K (i.e. an
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isomorphism of the multiplicative structure of K), which in turn can be arbitrary. Similar
statement holds for NormVee, NormVecy, T:LocConvy too, but in case of NormVec
we can make a reduction to NormVecy, like at Proposition 1, and thus ¢« must preserve and
reflect {z | |z] < 1} C R, resp. C. Then for R |¢| is a monotonically increasing semigroup
homomorphism, for z > 0 «(z) = «(/z)* > 0, thus «(z) = sgnz - ||, ¢ > 0, while for C ¢
preserves and reflects {z | |z] = 1}. and || restricted to {zr € R | 2 > 0} equals z°. ¢ > 0,
thus |¢(z)| = |z|°. ¢ > 0 (cf. also [8]).

We note yet that for NormVecy, if a full subcategory C; consists of finite dimensional
spaces only, it can be considered as a full subcategory of Veck. K =R, C, and its image by
a full embedding into NormVecy, also contains finite dimensional spaces only (cf. e.g. C)
of the following proof). Thus the full embeddings F: C; - NormVec,, are given by those
from C; to Vecx. K =R, C.

With the above notation Fy(¢) (¢.f. 2.7.) we have

PROPOSITION 2. Let C; be a full subcategory of C, C = Veck (for a commutative field
K), or C = NormVec (real or complex), or C = NormVecy, (real or complex, but in the
complex case supposing ObC, ¢ {finite dimensional spaces in C}), or T;LocConv,, (real).
Let ObC, ¢ {C € ObC | dim C < 1}. Then each full embedding F: C, — C is naturally
isomorphic to the restriction of a functor Fy(¢) to C,, where + = 1g for the real case, and

t = 1¢ or ¢ = complex conjugation for the complex case.

PROOF: Like at Proposition 1, we will identify each object C € ObC,; and each morphism
f € Mor C, (up to isomorphy), in a way as to be applicable to FC and Ff as well, which
will yield that Fy(:)C and FC coincide, up to isomorphy, and similarly for f.

A) First we identify the underlying set of the base field (resp. in case of NormVec that of
the subsemigroup of the base field, consisting of the elements of absolute value < 1). We have
for each C € ObC, that the centre of hom(C, C) consists just of the scalar multiples of 1¢ (for
NormVec it is {Al¢c | A € R, resp. C, |A| € 1}). For C',C" € ObC,. dimC'.dimC" > 1,
Nlgr, M1en (M. A" scalars) satisfy A' = A" iff for each f: C' — C" we have f(AM1¢/) =
(M1¢n)f (for NormVec ), A" are scalars of absolute value < 1). and this is an equivalence
relation among the (Alc)’s. Thus the elements of the base field (for NormVec {) € base field
| 1A] € 1}) bijectively correspond to the equivalence classes of the above equivalence relation,
and these are preserved by F. Thus F(Al¢) = ¢((A)1Fc, for some multiplicative isomorphism
t: K = K (resp. R = R, C — C; for NormVec ¢: {} € basefield | [A| £ 1} = {A €
base field | |A| € 1}).

B) Now we reduce the case of NormVec to that of NormVecy,. The objects of these
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two categories coincide, thus Ob C; can be considered as a subclass of ObNormVecy. For
C',C" € ObC,, we can identify the hom-set hom(C', C"”) in NormVecy, as follows. Let A
denote the set of the above equivalence classes of elements of the centres of hom(C.C)’s. C €
ObC,, dimC > 1 (in the category NormVec), minus the class consisting of the zero maps
0c:C = C.Ce0ObCy,dimC > 1. A acts on each hom(C'. C"), where dimC’', dimC" > 1,
by composition, namely if Algr, Alg~ belong to an equivalence class, the action is f(Al¢/) =
(Al¢n)f = Af. Then for f € hom(C',C"), dimC’,dimC"” > 1, A € A f/ is defined as the
equivalence class of pairs (f, A), under the equivalence (f1, A1) ~ (fz,A2) & fida = f2A,. The
set of these (f/A)’s. resp. the zero-morphism in hom(C’'.C"), if min{dimC’,dimC") = 0,

will form the hom-set hom(C’,C") in NormVecy.

The composition law is (fi/A)(f2/A2) = (ff2)/(A1A2), resp. (the mentioned) zero-
morphisms in NormVec act as zero-morphisms in NormVecy,. This identifies the class
Ob C, as a full subcategory of NormVecy,, which will then be denoted (C, )y, (and this iden-
tification is preserved by F). We extend F to the hom-sets hom(C’,C") in NormVecy, to a
map Fy, by Fo(f/A) = (Ff)/A for dimC',dim C" > 1, resp. for min(dimC’,dim C") =0 —
which implies min(dim F'C',dim FC") = 0 — in the unique way. Fj becomes a full embedding
(C1)» — NormVecy, if we define for C € ObC; F,C = FC.

C) In the following paragraphs C) to I) we will deal with Vecy, NormVec, and

TLocConvy,.

Now we identify the base field, showing that F induces a field isomorphism ¢: K — K
(resp. R = R, C — C), namely the mapping ¢ introduced in A). By hypothesis 3C € ©®bC;.
dimC > 2. For Veck by [10], p. 856, for NormVecy, real, by [43], for T;LocConv,,,
real, by [44], we have that for each C € ObC;, dimC > 2 each semigroup isomorphism
hom(C, C) — hom(FC, FC)is given by lifting U f — i(U f)i~?, where { is a bijection of UC to
U FC which is additive, is continuous together with i~! for NormVecy, real. TgLocCohvw‘
real, and {(Az) = a(A)i(z), A € K (R.C), z € UC. a an automorphism of the base ficld.
In particular, each semigroup isomorphism hom(C, C) — hom(FC, FC) is additive, thus is
a ring isomorphism. For the semigroup isomorphism hom(C,C) — hom(FC, FC) induced
by F we will denote i.a by ic, ac, resp., thus for dimC > 2 we have U(Ff) = ic(Ufigh,
where ic(Az) = ac(A)ic(z).

For NormVecy,, complex, by [10] p. 864, for each C € ObC, satisfying dim C > 2, each
semigroup isomorphism hom(C, C) — hom(FC, FC) is also a ring isomorphism. By [2] p. 34,
for each not finite dimensional object C, each ring isomorphism hom(C, C) — hom(FC, FC)
is given by lifting U f + (U f)i™!, i a bijection UC — UFC, which is additive, is continuous
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together with i™! and {(Az) = a(A)i(z), a = 1¢ or a = complex conjugation. For C not finite
dimensional, for the ring isomorphism hom(C, C) = hom(FC, FC) induced by F we denote
i, @ by ic, ac, resp., thus in this case U(Ff) = ic(U f)ig'. where ic(Az) = ac(N)ic(z).

For NormVecy,, complex, for 2 < dim C finite, C € Ob C; can be considered as an object
of Veck with K = C, thus by [10] p. 856 we have, like above. U(F f) = ic(Uf)ig'. ic. ac
satisfying the properties of i, a listed at the case Veck.

We have, using A), for C € ObC,, dimC > 2, in any of the above cases, U(¢(A)1pc) =
UF(Ac) = ic(Alc)ig!, hence U(«M)1rc)ic = icU(Ml¢), thus Vo € UC (N)ic(z) =
ic(Az). i.e. ac = . Since the semigroup isomorphism hom(C.C) — hom(FC, FC) induced
by F'is a ring isomorphism (cf. above), its restriction to the centre of hom{C,C). i.e. the
map Al¢ — (A}l pc, yields the field isomorphism ¢: K — K (resp. R — R, C — C). which
shows we have identified the base field.

For R we have ¢+ = 1g. For C with C = NormVec;,, we have either t = a¢ = 1¢ or
t = ac = complex conjugation, where C € ObC; is not finite dimensional. (This is the only

statement where we use the existence of such an object C.)

D) For C € ObC,, dimC < 1 we have FC = C, by the remarks preceding Proposi-
tion 2. For dim C > 2 we already know there is an i¢ such that F on hom(C.C) is given by
U(Ff) = ic(Uf)ig!, ic an additive bijection UC — UFC. ic(Az) = (\)ic(z), i together
with i~! continuous in case of NormVecp, T:LocConv,,. (For NormVecy, complex,
dim C finite. continuity of :. i~! holds by « = agc = 1¢ or ¢t = ac = conjugation. for C not
finite dimensional.) Thus F has been identified on the objects. and on hom-sets hom(C, C).
dimC > 2.

E) Supposing the one-dimensional vector space Cy belongs to ObC;. we will identify F
on hom(Cy, Cp). By hypothesis 3C € ObC;, dimC > 2. Then Ju: Cy — C. 37: C — C,.
mp = 1¢, (Hahn-Banach). From above we have an ic, and we define i¢c, = U(F7)ic(Ug).
This is additive, and ic,(Az) = «(A)ic,(z) for £ € UCy, A scalar. We have by ux € hom(C, C).
UF(ur) = ic(U(pr))ig that (Un)ig' U(Fp)-U(Fr)ic(Up) = (Un)lic' U(F(ur))ic)(Up) =
(Um)U(um)(U ) = luc,, and U(Fm)ic(Up)-(Ur)ig'U(Fu) = U(Fr)icU(un)ig' U(Fu) =
U(F=)UF(ur))U(Fu) = lyrc,. hence ic, is a bijection with inverse ia = (Un)ig'U(Fu).

We will show that for ¢ € hom(Cy.Co) UFp = icoU(c,a)iE.;. It suffices to
show U(Fp)ic,U(p)ig, = U(Fu)U(Fp), ie. UFpU(Fr)icU(n)U(p)U(n)ig'U(Fp) =
U(F)U(Fp). We have U(Fp)U(Fr)licU(ppr)ic' lU(Fu) = U(Fp)U(Fr)U(F(ppr)) -
U(Fu) = U(Fu)U(Fyp), as asserted. Thus F has been identified on each hom(C,C).
CeOhC,.
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We note that of course tc, may also depend on C, y and 7 (and the choice of ic), which
is not shown by notation. However, if an additive bijection ic, satisfies i¢,(Az) = ¢(A)ig,(z)
and Vi € hom(Cy, Co) UFyp =i, U (tp)ia, then any non-zero scalar multiple of i¢, satisfies
the analogous relations (note that (vig,)™! = (+7'(v))~'ig,, for v # 0 scalar). Further any
two i, ,ig,: UCo — UCo with the above properties are non-zero scalar multiples of each

other, thus ic, is unique up to a non-zero scalar multiple.

F) It remains to identify F on hom-sets hom(C',C"), where C',C" € ObC,. Zero-
morphisms O¢ € hom(C, C) are carried to zero-morphisms Op¢ (are preserved by F’), hence
zero-morphisms in any hom(C’,C") are carried to zero-morphisms as well, as right, resp.
left multiples of O¢, resp. O¢+. Thus for zero-morphisms the commutativity of the diagram
expressing natural isomorphism is evident (for any choice of the components of the natural
isomorphism). Henceforward we deal with non-zero morphisms f (for these F'f is a non-zero
morphism as well). In particular, for f: C' - C", C',C" € ObC,. we will thus suppose
dimC’, dimC" > 1.

First we deal with the case min(dim C’,dimC") = 1.

fdimCy = dimCy =1, C}.CJ € ObCy, f: Cy — Cf, f not a zero-morphism, then
f = ig. where g: Cj — Cy, and i: Cj — Cj is a fixed isomorphism. Then both UF:
and icgU(i)iEZ are non-zero morphisms FC, — FC{, where dim FC; = dimFCj = 1,
thus they are non-zero scalar multiples of each other. Therefore UFf = UF(i)UF(g) =
const - icy U(i)i(';z . icaU(g)iag = const - icy U(f)iz.z, the constant different from 0 and only
depending on Cy. Cy (and the choice of ic;,icy and i).

Now we turn to hom(Cy, C), hom(C, Cy), where dimCy = 1 < dimC, Co,C € ObC,.
Let f: Cy = C, g: C — Cy. We will show UFf = ic(Uf)iE:, resp. UFg = ic,U(g)ig!,
provided ic, has been defined just with this C' (and some pu, 7). For f we have. using fr €
hom(C. C), icU(f)iE: = [ic(Uf)Un)ig' \U(Fu) = UF(fr)U(Fu) = UF(f), as asserted.
Similarly for g we have, using pg € hom(C,C), ic,U(g)ic' = U(Fr)[ic(Up)(Ug)ig'] =
U(Fr)UF(ug) = UFyg, as asserted. Therefore, for ic, defined via an arbitrary C (and p, )
— then we have by the end of E) that thus ic, changes by a non-zero constant factor only
— we have UF f = const- icU(f)iE; , UFg = const -ic,U(g)ig', the constants different from
0 and only depending on ic,, C (and the choice of u,n for C).

G) There remained the case C',C" € ObC,, f € hom(C',C"), min(dim C’.dim C") > 2.
We are going to show that, like above, also in this case U(F f) = const - icn(U f)ig!. where
the constant is different from 0 and only depends on C',C" (but not on f).

For this we recall some parts of the proofs of [10], [43], [44] about the determination of C by
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the semigroup hom(C, C), for dim C > 2. (The statements about C, hom(C, C) will equally
apply to FC, hom(FC, FC).) Let us denote hom,(C,C) = {f € hom(C.C} | dim f(C) <
1} = {f € hom(C,C) | f = (=,z*)z, z € UC, z* € UC*}, where C~ is the algebraic, resp.
topological dual of C (for C = Veck, resp. for NormVecy or T;LocConv,,). This is the
minimal non-zero (semigroup) ideal of hom(C, C) (thus is preserved by F'). Then the minimal
non-zero right ideals of hom,(C, C) are of the form I(C') = {f € hom,(C.C) | f(C) C C'},

where C’ is some one-dimensional subspace of C. Evidently these also are preserved by F.

Let now f: C' — C", and C},C} be one-dimensional subspaces of C',C" (with corre-
sponding subspaces ic:C] C FC', icoCy C FC"). Let 0 # ' € UC}, 0 # 2" € UCY.
Then f(z') = 0 & (Vg € I(C}) fg = 0 € hom(C' . C")) & [VFg € FI(C}) =
{h € hom(FC',FC") | igl(Uh)ic:(C') C C}} = {h € hom(FC',FC') | h(FC') C ic:(C})} =
IGc(CY) (Ff)XFg) = 0 € hom(FC',FC")| ¢ (Ff)ic(z')) = 0. Further f(z') =
const - 2" # 0 & [Ig € I(C}),fg # 0 € hom(C',C"), 3h € I(CY). fg = hfg] &
[3Fg € FI(C}) = I(ic/(C;) (FfXFg) # 0 € hom(FC'.FC"), 3Fh € FI(CY) =
Iic(C)) (Ff)Fg) = (FRXFS)(Fg)] & (Ff)ic(')) = const - ig+(s") # 0. Henee,
choosing 2" = f(z'). we see Vz' € UC' (Ff)(ic'(z')) = const - ic+(f(z')), with a constant
depending on z', and always different from 0.

Suppose now that there are z},zj, € UC', with f(z}), f(z}) # 0, such that the re-
spective constants, say A;, A2 (# 0) are different. Then z},z) are linearly indepen-
dent (this follows from ic/(Az') = (A)ig:(z'), ic(Az") = (A)ic~(z")). Suppose first
f(z3) = Af(z}). Then f(z; — Az}) = 0, hence 0 = (Ff)(ic(z3 — Az})) = (Ff)lic(22)) -
(ANF flic(21)) = Jicn f(z3) — (M icn(f(21)) = icw[e7H(A2)f(a2) — A™H(A)f ()
therefore ¢ =1(A2)f(z5) = Ac™'(A1)f(z}). Since also f(z5) = Af(z}) # 0, :}(A2) = 7 A1)

thus A; = A, a contradiction.

Second suppose f(z}), f(z,) are linearly independent. Then for some A we have
Micn(f(21)) + daic(f(23)) = (Fflic:(z) +23)) = die(f(z) + 23)) = Aic-f(z)) +
Aico f(z4). By our hypothesis also i f(z!), ic f(z}) are linearly independent (since ic»
is a bijection, we have f(z}) = vf(z)) & icuf(z}) = «(v)icn f(x})), thus Ap = A = Ay,
a contradiction. Therefore (Ff)(ic:(z)) = Aigr(f(z')), where A only depends on f, and
A#0.

H) Now we show that, in case min(dimC',dimC") > 2, for all f: C' — C" we have
(U(Ff)icr = dien(Uf), with A # 0 only depending on C',C" (multiplication by a scalar
meant pointwise, in the respective vector space). Suppose therefore that, for j = 1,2, 0 #
f; € hom(C’',C") we have (U(Ff;))ic: = Ajic(Uf;), where Aj # 0. Let 0 # z' € UC',



234 E. Makai jun.: Automorphisms and Full Embeddings of Categories in Algebra and Topology
042" € UC"), 0 # 2" € UC", 0 # 2" € U(C™). Letting ¢' = (—,2")a', ¢" =

"

{—,z"*)z", we have ¢"f;g' = (—,z'"}{fjz',z"*)z". Letting h = (—,2"*)z", this implies
(Fg") Ff;)(Fg') = F({f;z',2"")h) = «({fjz',2"*))F(h) (since for A scalar, f: C' — C" we
have F(\f) = F(Mcnf) = FAlen)F(f) = dNircrF(f) = (NF(f). Here U(Fg') =
ic(Ug'ig!, U(Fg") = icn(Ug")igh, U(Fh) = XicnU(h)ig! for some A # 0, hence we
have Ajicn(Ug"U f;)(Ug)ig! = U(Fg"U(Ff)U(Fg') = d{fz' 2" ))hic-U(h)ig!. That
means (since ¢" f;g' = (fjz',z"*)h), ({fiz', 2" NAjicaU(h)igh = «({fiz',z"*))AicnU(h)ig,.
This implies by h # 0 that «({f;z’,2"*))A; = «({fjz',z"*))A. Now fix z'*,2", thus X is also
fixed. We have f}, f # 0, hence 32', z' ¢ fl_l(O)UfQ'I(O), thus f;z' # 0, j = 1,2. Then 32",
(fiz'.z"*} #0, j = 1,2. Then both above equations can be shortened, yielding A, = A = Ag.

This shows that for all f: C' — C" we have (U(Ff))ic: = MC',C")ic(Uf). with
0 # MC',C") only depending on C'.C" (f = 0 included), for min(dimC’',dimC") > 2.
By F) the same holds for min(dim C’,dim C") < 1, thus we have this relation always (for
min(dim C’,dim C") = 0 trivially).

I) Now we show that F is naturally isomorphic to  Fp(¢) | C,, for Veck.
NormVec,, T;LocConv,,. Let C'.C".C" € ObC;. each of dimension >
1. Then we have AC' . C")MC".C™) = XC',C"), since choosing f: C' —
C", g:C" — C™, gf # 0, we have MC',C")icnU(gf)igt = UF(gf) =
UF(g)UF(f) = MC",C")ic(Ug)igh X(C',C")ic(U f)igt . Therefore for C*,C" € ObCy,
dimC',dimC" > 1 we have A(C',C") = A(C")/MC'"). for some non-zero scalars A(C),
C € ObC,. Thuswehavefor f: C' = C".C'.C" € ObC,,dimC'.dimC" > 1 U(Ff)ic: =
MCYAMC))icu(U f), or U(FFIA(C')igcr = AM(C")ic (U f), i.e.. the functions AMC)ic, for
C € ObC,,dimC > 1, resp. the unique functions for C € ObC,, dimC = 0, can be lifted to
the components of a natural transformation (Fo(:) | C;) — F. (These will be morphisms in
the respective category by the very definition of Fy(:), since A(C)ic(Az) = «(A)MC)ic(z).)
By C), D) each AC)ic is an isomorphism in the respective category Veck, NormVecy or

T,LocConv,,.

J) In B) we have reduced the case of NormVec to that of NormVec,. However, for
NormVecy, complex, we have not supposed 3C € ObC,, C is not finite dimensional, which
hypothesis was however only used for establishing ¢+ = 1¢ or ¢ = complex conjugation. Now,
for NormVec we can determine ¢, like in Proposition 1. Namely, for any C € ObC,, dimC >
1. F, preserves and reflects the contractive elements of hom(C, C) (F;: (C; )b — NormVecy,
is the full embedding constructed in B), which is the extension of F: C; — NormVec).

Therefore Fy preserves and reflects the contractive elements of the centre of hom(C, C), thus
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¢ maps {z € C | |z] = 1} onto itself, implying like above ¢ = 1¢ or ¢ = conjugation.

By what has been proved above we have that F} is naturally isomorphic to Fy(t) | (C))b.
However the components of the natural isomorphism are isomorphisms in NormVecy, not
in NormVec. Let us take some C € ObC,, dimC > 1, and some z € UC, ||z|]| = 1.
Then VC' € ObC, {z' € UC' | 3f: C — C' (in NormVec), f(z) = '} = U,C' =
{z' € UC’ | ||&'|] € 1}. Namely on the one hand each considered f is a contraction; on
the other hand for any z’ € U,C’ we can choose an f of the form (—,z*)z’, where ||z*|| =
1 = {z,z*). Therefore, by naturality, we have A\(C')ic:U;C' = {MC")ic'f(z) | f: C —
C' (in NormVec)} = {(Ff)(A(C)icz) | f: € — C' (in NormVec)} = {g(M(C)icz) |
g: FC — FC' (in NormVec)} = || AM(C)ic(2)l|{g(MC)icz/I|M(C)iczll) | g: FC — FC' (in
NormVec)} = ||MC)icz||U, FC'. Hence AMC')i¢c lifts to an isomorphism Fy(:)C' — FC'
(in NormVecy) which is |[|]A(C)icz|| times an isometry. Therefore A(C')ic/||A(C)icz|| is
an isometry, which lifts to a natural isomorphism (Fp(¢) | C1} — F in NormVec. O

§3

3.1. Till now we have considered automorphisms of categories, mainly from algebra. Now
we turn to results about full embeddings of categories, in topology. Clearly, the description
of all full embeddings F: C — D includes the description of all automorphisms F;:C — C
(provided there exists such a functor F), since if F is fixed, F) is arbitrary, then all composite
functors FF;:C — D yield full embeddings. Also one can compose with automorphisms
F: D — D, but these may act like identity on the image of F'.

The reason that for categories in topology one can also describe full embeddings, is that we
have all constant mappings, and thus full embeddings are concrete. In contrast, for categories
in algebra, one has in general full embeddings, which can be constructed with a rather great
degree of arbitrariness, cf. the book [47].

THEOREM 2. Let F:C — D be a full embedding. Then for a) C = Top, D = SetSyst?, b)
C = Top,, D = SetSyst®, ¢) C = Haus, D = SetSyst®, d) C = Reg;, D = SetSyst°.
e) C = Met,, D = SetSyst?, f) C = Pos, D = Top, g) C = Prox, D = Unif, h)
C = D = Unif F is naturally isomorphic to the concrete functor, given on the objects
C € ObC by a) either FC = (UC, { open sets of C}) or FC = (UC.{ closed sets of C}) (9]
p.32, [16] p.563, [52], [5], [51] Proposition 6, b) either FC = (UC, { open sets of C}) or FC =
(UC,{ closed sets of C}) [51] Proposition 5, c) either FC = (UC. some open subbase of C)
or FC = (UC, some closed subbase of C) [51] Corollary 9, d} (provided there is no mea-
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surable cardinal; which is consistent with ZFC, provided ZFC is consistent) either FC =
(UC, some open subbase of C) or FC = (UC, some closed subbase of C) [51] Proposition
10, Lemma 6, e) either FC = (UC, {open sets of C}) or FC = (UC, {closed sets of C}) [51]
Proposition 13, f) either FC = topology on UC, defined by ACUC = A= {z € UC|3a €
A, z < a} or FC = topology on UC, defined by AC UC => A= {z € UC|Ja € A, z > a}
[45], [33], 8) FC = the unique compatible precompact uniformity (proved by M. Husek - J.
Pelant, their proof appearing in [42] §7), h) F = luynis (proved by J. Pelant - J. Reiterman,
their proof appearing in [42] §7). i) For C = Tych, D = SetSyst? there are as many not
naturally isomorphic concrete full embeddings C — D, as there are subclasscs of a proper
class [41] Corollary 4.

We note that both [16] and [52] actually characterized the category Top among all (ab-
stractly given) categories, the characterization of [52] being based on a similar characterization
of Set by [24]. A simpler characterization of Set has been given by [55], and a characteriza-
tion of Pos by [58]. For i) and some similar situations the existence of a proper class of not
naturally isomorphic concrete full embeddings was shown earlier by [16] p. 561, [51] pp. 545,
547; a statement similar to i) cf. also in [14].

There are some results on non-existence of full embeddings C — D, where C is a category of
structures, whose usual definition uses more complicated structures than the usual definition
of D. E.g. there is no full embedding of the category of proximity spaces (in the sense of
Efremovi¢) to SetSyst® [42] §5, 6. Similar results cf. in (3], [48] p.537, [4].

We also note that for i) and similar situations the above mentioned proofs used full embed-
dings, which were differing from each other on “large” spaces. Therefore the result of [50] is
of interest: even the full subcategory of Tych, consisting of finite simplicial complexes (actu-
ally the one consisting of all locally connected T3§ spaces) has infinitely many not naturally
isomorphic concrete full embeddings into SetSyst®, which are different on each non-discrete
space C. One of these full embeddings has object part (UC, {A C UC|A is the intersection of
an open and a closed set in C, and the components of A are closed in C}).

Some further results of the type of the results in Theorem 2 cf. [9] p.32, [16] (especially
pp- 560-561), [594], [51], [59B], (4], [39], [14], [41]. [42]. ([59B] was unavailable to the author,

but [59A] by the same author means by convergence structures the neighbourhood spaces =

Cech closure spaces.)

3.2. The method of proof of most of the statements in Theorem 2 goes back in a special
case to P. Freyd [9] p. 32, and in the general case to M. Huiek [16), and consists of three

steps.
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1) First one shows F:C — D is naturally isomorphic to a concrete functor. (This is an
easy step. cf. later.) From now on for notational convenience we will suppose F itself is

concrete,

2} Choose some class C; C ObC, which either projectively, or inductively generates C.
Then prove for each C; € ObC, that the fact that U hom (FCy, FCy) equals U hom(C,,C))
(C (UC1)VC"), implies that the structure (D-object) FC; on UC} is uniquely determined. or
there are at most two possibilities, for the restriction of F to C,. (In applications, inductively
generating classes usually consist of nearly discrete structures, while projectively generating
classes are more diverse, but often the space (0,1} plays a role there. We mention that a
D-object D in a concrete category D is called special, it for any other D-object D' with
UD'=UD U hom(D',D') = Uhom(D,D) implies D' = D. Results about speciality of
certain classes of objects in some categories were proved e.g. in [56]. [29], [30], [57]. [31], [32],
[61], [49]. [40), [37], [38], [42]; cf. also the surveys [33], [11], [34], [35], [36], and also more
recent papers of K. D. Magill Jr. and his collaborators. Cf. also the works of the Baku
school of topology. e.g. E. A. Babaev, M. I. Burtman, R. B. Feizullaev, F. A. Ismailov, V. $.
Jusufov (Yusufov), A. A. Mahmudov (Makhmudov), F. H. (Kh.) Muradov, L. G. Mustafaev,
mainly in Izv. Akad. Nauk Azerbaidzan SSR Ser. Fiz. - Tehn. Mat. Nauk, from about 1965,
who also deal with structures other than semigroups of self-maps. in categories of topological
spaces, linear spaces (here without preassigning the underlying set), etc. For (more or less
unique) determination of linear spaces, or normed linear spaces by their endomorphism rings,
endomorphism semigroups, linear homeomorphism groups, etc., cf. e.g. [8]. [28], {10], [43].
and also many more special papers, e.g. in more recent volumes of Lincar Algebra Appl.,
that operations on certain sets of matrices, preserving some properties, are of certain special
form. A more special problem is that of determining e.g. a topological space by its auto-

homeomorphism group, cf. e.g. {25], [26].)

3) Now we turn to an arbitrary object C € ObC. If, say, C; projectively generates C,
then C has a C-initial structure w.r.t. some morphisms {p,} to objects of C; (more exactly,
w.r.t. {Ugq)). Then FC is finer than the D-initial structure w.r.t. the morphisms {Fg,}.

A) In many cases there is some other class C; C ObC inductively generating C, and
then one similarly obtains that F'C is coarser than the D-final structure w.r.t. morphisms
{Fi3), ¥4's some C-morphisms from objects of C, to C. If the above D-initial and D-final
structures on the set UC coincide, then FC is identified, as being cqual to both of them.

B) In some other cases, choosing some concrete full embedding F3: C — D, one can con-

sider C as a subcategory of D. It may happen that, beside that C; C ObC projectively
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(C-) generates C, also C,, as a subclass of ObD, projectively (D-) generates D. (In par-
ticular, this holds for C = D.) Then any C-object C has the C-initial structure w.r.t. all
C-morphisms from C to C;-objects, and also FC € ObD has the D-initial structure w.r.t.
all D-morphisms from FC to C;-objects. Supposing the restriction of F' to C; (consid-
ered as a full subcategory of C) is the concrete embedding C; < D, we have that FC is
projectively (D-) generated by all morphisms to objects FC,, Cy € C,, i.e. by the class
of morphisms U{hom (FC,FC,)|C, € C:}. However, since F is a concrete full embed-
ding, U hom (FC, FC;) = U hom(C, Cy). Thus C is projectively C-generated by the source
U{U hom (C,C,)|Cy € C,} in Set, and FC is projectively D-generated by the same source
in Set. This may suffice to show the equality FC = C (actually FC = FyC). (This second
approach is mainly applicable for the case C = D, but below it will be used for C = Top,
D = SetSyst®. Of course, there is a “dual” of this approach, using inductive generation.)

3.3. As the probably simplest case, we will reproduce the proof from the papers listed
at Theorem 2, a), and [53], for the case of full embeddings F: Top — SetSyst®, show-
ing that F' is naturally isomorphic either to the concrete functor, given on objects C as
(UC,{ open sets of C}), or to the concrete functor, given on objects as (UC. { closed sets of
C}). We follow the steps as described in 3.2.

1) Observe that in SetSyst®, like in Top, all constant functions underlie morphisms.
Denote by 1, resp. 1', the up to isomorphism unique object on a one-point set in Top,
resp. in SetSyst®. 1 is identified categorically, up to isomorphism, by the fact that it is
a terminal object a Top. In particular, |hom(1,1)] = 1, and. since F is a full embedding,
|lhom (F1,F1)| = 1 as well. Note that for any D € Ob SetSyst® with [UD| > 2 we have
jhom (D, D)| > 3, since U hom (D, D) contains beside 1y all constant functions UD — U D.
Therefore |U(F1)| < 1. Therefore either, up to isomorphism, we have F1 =1', or F1 =0' =
object of SetSyst® on the empty set. However in the second case for any C € Ob Top.
C £ 1 we have FC £ 0', and 1 = |hom(C, 1)] = |hom (FC,0')| = 0, a contradiction. Hence
the first case holds. We have for the forgetful functors U: Top — Set, U’:SetSyst? —
Set U = hom(l,-), U’ = hom(1',—) = hom(F1,-). Thus U'F & hom(F1, F(-)).
However, since F is a full embedding, hom (F1, F(-)) = hom (1. —) (the restriction of F to
hom (1, C) giving the component of the natural isomorphism hom (1, —) — hom (F1, F(-))
at C), showing U'F = U.

From now on we will suppose for notational convenience that actually U'F = U, i.e. F is

concrete.

2) Let us consider the Sierpiriski space C; on the set {0,1}, with {1} as the only non-
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trivial open set. Then {C,} projectively generates Top, since YC € ObTop we have
{¢7'(1)l¢ € hom(C,C1)} = { open sets of C}, thus in particular is an open subbase of
C. We are going to determine F'C,. We have |hom (C;, C1)| = 3, thus [hom (FC,, FC,)| =3,
and U'(FC,) = {0,1}. There are four SetSyst® structures D = ({0,1},7) on {0,1}. The
ones with 7 = {@,{0,1}}, = = P({0,1}) satisfy |hom (D, D)| = 4, thus FC) must be one of
({0,1},{0.{1},{0,1}}) and ({0, 1}, {8, {0}, {0,1}}). Note that D, = ({0,1}. {9, {1}.{0,1}})
€ Ob SetSyst? projectively generates SetSyst®, since VD € Ob SetSyst® we have D =
(U'D, {$~'(1)|¢ € hom(D, D,)}) (actually this is equivalent to projective generation).

3) In the first of the above cases, i.e. when FC, = D; we have VC € Ob Top FC =
(UC,{$~(1)l € hom (FC, FCy)}) = (UC, {¢~}(1)|p € hom(C,C1)}) = (UC,{ open sets
of C}). Now suppose we have the second case, i.e. FC, = ({0,1}, {#.{0}, {0,1}}). Then let
us define the concrete automorphism G: SetSyst® — SetSyst® by setting for (X,7) € Ob
SetSyst? G(X,7) = (X,{A C X|X \ A € 7}). Then GF:Top — SetSyst® is a concrete
full embedding, satisfying GFC, = D,. Hence, by what has been shown above. VC € Ob
Top GFC = (UC, { open sets of C}), thus FC = (UC, { closed sets of C}), which finishes
the proof of the characterisation of full embeddings F:Top—SetSyst°® .

3.4. As we have seen above, there are several results about full embeddings of some inter-
esting categories in topology into SetSyst® (cf. also the papers cited in 3.1 after Theorem 2),
so this case can be considered as rather well understood. However there are a lot of structures,
considered in topology, which are defined in a more involved way, than by set systems. E.g.
proximity spaces (we mean these in the sense of Efremovié, cf. [18]) are defined by systems
of pairs of subsets. uniformities by systems of subsets of the square of the underlying set (if
defined by entourages), or by systems of systems of subsets (if defined by uniform covers, like
in [18]).

E.g. we may ask the following. Let F be a concrete full embedding of the category
Prox of proximity spaces into the category SetPairSyst; with objects (X.A), X a set,
A some set of unordered pairs of subsets of X, where for technical reasons we suppose
(A", A" e A= A’ 4" # 0, and with morphisms f:(X,,4,) — (X3, A2) characterized by
fe XX and(4', A"| € A, = (f(A"), f(A")) € A;. (For SetPairSyst, the forgetful functor
is defined by U(X, A) = X, Uf = f, and similarly for analogous categories.) We will show
in 3.5 that in this case for each proximity space C FC = (UC. A), with A in a natural sense
a base (for near pairs) of C. (A reason for supposing A'. A” # 0 is the following: if it were
not supposed, then a concrete full embedding could be obtained by setting for C € ObProx
FC = (UC,{(A.A")|A', A" C UC, A'6A"} U {(A',B)|A', as a subspace of C, belongs to
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any class of proximity spaces, closed under proximally continuous images }), hence in this
case A ¢ { near pairs of subsets of C }. Also, all information about § in its usual definition is
carried by the pairs (4’, A") with A', A" # 8. Since such pairs, as well as pairs of the form
(A',8) are preserved by any function, the question would fall into two parts, and it is not clear
if (UC,{(A', A") € A|A', A" # B}) gives a concrete full embedding Prox — SetPairSysto,
where FC = (UC, A); although we conjecture this holds.)

The case of uniform spaces seems to be more complicated. Let D denote the category with
objects (X, B), X a set, B C P(P(X)), where for similar technical reasons we assume {B,|y €
e B=Vyel B, ##, and with morphisms f : (X,,B;) — (X3, B2) characterized by
f € XX and {B,4|y € T} € By = {f(B,)ly € T} € By. Then there are two very different
concrete full embeddings F:Unif— D. One is given by all near systems, i.e. by all systems
{B+ly € T} € P(X), such that for each entourage V we have N{VB,|y € '} # @ (where
VB, = {z; € X|3z, € B., (z:,22) € V}), or. equivalently, for each uniform cover V we
have N{st(B,,V)|y € T} # 0. The other concrete full embedding is given by all micromeric
systems of non-empty sets (cf. e.g. [20]), i.e. by all systems {B,|y € T} C P(X), such that
Vy €T B, # 0, and for each entourage V 3y € I' By x B, C V, or, equivalently, for each
uniform cover V 3y € T, 3W € V, B, C W. Is it true that each concrete full embedding
F:Unif— D satisfies for each C € Ob Unif FC = (UC, B), with B in some sense a (sub)base
for all near systems, or satisfies for each C € Ob Unif FC = (UC, B), with B in some sense
a (sub)base for all micromeric systems of non-empty sets, or are there many more concrete
full embeddings?

Of course, since by now a lot of categories have been investigated in topology (cf. e.g.

[13]), there arise many more questions on automorphisms and full embeddings of these.

3.5. Besides Prox we also deal with a full subcategory of Prox. Let Prox,,. denote the
category of those proximity spaces whose completion is a compact pseudometric space. (For
C € ObProx we mean by the completion yC of C the compact proximity space that contains
C as a dense proximity subspace, and for which two of its points have the same closure only
if both belong to UC. We mean by a pseudometric space a space obeying the same axioms

as a metric space, but that different points may have distance 0.)

LEMMA 1. Let C € ObProx. Then hom (C,C) = (UC)YC iff C is either indiscrete or

discrete.

PROOF (cf. [40], Lemma 1). If C is not indiscrete, then for some z,,z;, € UC {z,}6{z,}.
Then for any A C UC define ¢:UC — UC, by ¢(A) C {z1}, p((UC)\ 4) C {z2}. Since ¢
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underlines a proximally continuous map, AS((UC) \ A). a

LEMMA 2. Let (X;.A,;), (X2, A;) € ObSetPairSyst,. Then each constant function y: X,
— X, belongs to U hom ((X, A1), (X2, A42)) iff A1 # 0 = {({z}, {z})lz € X2} C Az.

PROOF is obvious. O

COROLLARY 1. Each concrete full embedding F: Prox — SetPairSysty satisfies VC €
Ob Prox {({z},{z))|z € UC} C A, where FC = (UC, A). Conversely, if F: Prox —
SetPairSyst, is a full embedding, for which YC € Ob Prox {({z},{z})|z € UFC} C A,
where FC = (UFC, A), then F is naturally isomorphic to a concrete functor. The same
holds also for Prox,. rather than Prox.

PrOOF: Let C; € Ob Prox be non-discrete, non-indiscrete. Then by Lemma 1 U hom(C),
C1) # (UC)VC, thus U hom(FCy, FCy) # (UC;)VC either, hence A, # 9, where FC, =
(UC1, A1). Choosing (X1,4:) = (UC),A). the “only if" part of Lemma 2 gives for each
C2 € Ob Prox, with FC; = (UCy. Az) = (X2. A2). that {({z}. {z})lz € UC,} C A..
Conversely, by the “if” part of Lemma 2 each constant function ¢:X; — X, belongs
to U hom ((X1, A1), (X2, A42)). if {({z},{z})|lz € X2} C A;. Then proceeding like in 3.3.
1), and noting that each set X with |X| < 1 carries a unique structure (X,.A) satisfying
{({z}, {z})lz € X} C A, further that between two such objects of SetPairSysty each
constant function gives a morphism, we obtain the statement of Corollary 1. For Proxm.

the some proof works. O

We let SetPairSyst] be the full subcategory of SetPairSystg , consisting of the objects
(X, A), satisfying {({z},{z})lz € X} C A. We will investigate full embeddings F: Prox
— SetPairSyst] , resp. Proxm. — SetPairSyst) . For F fixed we will denote FC as
(UFC, A(C)) (or. if F is concrete, which can be supposed, we will write (UC, A(C))); the
same notation will be used later with analogous categories.

Before turning to the propositions we recall projectively and inductively generating classes
for Proxme , resp. Prox. For both of them {[0,1]} (with the usual proximity) is projectively
generating, since C € Ob Proxme (ObProx), A', A" c UC, A'§A" = 3f:C — [0,1]. f(4') C
{0}, f(A") c {1}.

For Proxp,. the “Cauchy sequence” space, i.e. N* = {n~!|n € N} with its usual proximity
forms a one-element inductively generating class. Namely for C € ObProx,,. ,A',A" CUC,
A'64" the closures of A’. A" in the completion ¥C of C have a common point, and 4’, A"
contain sequences (z2x—1 |k € N), resp. (z2x|k € N) in UC converging in 4C to this point.
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Then define a map f: {n"!ln € N} = C by f(n™!) = zn.

For Prox an inductively generating class can be given as follows [46]). Let us call an
ultraproximity a proximity space obtained as follows. Let X be a set, |X| > 2, and let
U,.U; be two different ultrafilters on X (both can be, independently. fixed or free). Let
A" A" C X be near iff either A'NA" # Bor A' € Uy,A" € Uy or A' € Up. A" € U,.
(This corresponds to the “compactification”, meant here as a dense map of X to a compact
T; space, obtained from the Stone-Cech compactification of X with discrete topology. as a
quotient by identifying the points corresponding to U),Uz, the map being the canonical one.)
Then the class of all ultraproximities is an inductively generating class for Prox. Namely let
C € ObProx. B'.B" Cc UC, B'6B", where we may suppose B' N B" = @. There is a point
y in 4C belonging to the closures of B'. B" in ¥C. The trace of the neighbourhood filter
of y on UC is a filter F on UC, each of whose elements intersects both B’ and B”. Thus
Fu{B'} cUu,, FU{B"} C U, for some ultrafilters U ,U; on UC, which are different. From
the ultraproximity on UC, constructed with U;,U; the map identical on UC is proximally
continuous to C. In fact, if A’, A" are two disjoint near sets in the ultraproximity, say A' € U,
A" € Uy, then their images in C. i.e. A'. A" are near, since their closures in ¥C both contain
y. Further B’ € U;, B" € U, are near in the ultraproximity, and their images are the subsets
B',B" of UC. This shows that C is inductively generated by all ultraproximities on UC.

PROPOSITION 1. Each full embedding F: Proxq,. — SetPairSyst) is naturally isomorphic
to a concrete functor Fy, satisfying for C € ObProxyme . FoC = (UC, A) that {(A’, A")|
ALA" CUC A'6A" in C) = As(C) D AD A (C) = {(ALA")|A". A" cUC | |A'| = |A"| =

Ro. A' U A" yields a Cauchy sequence in (the compatible precompact uniformity of) C'} U
{(4',AM)| A, A" CUC, 1 < |4'| < Ry, |A"| =Ro, A" yields a sequence converging to some
aed inClu{(4,AMA", A" c UC, 1< A |A"| < R, 3a' € 4',3a" € A", {a'} =

{a"} in C}. (Thus A is in an evident sense a base, for near pairs, of 6.)

Before the proof we note that the map F* defined on objects by F*C = (UC, A;(C)) is
actually the object part of a concrete full embedding Prox,,. — SetPairSyst] . In fact for
f:Cy = C; in Prox,c we have that U f, being uniformly continuous between the respective
compatible precompact uniformities, lifts to a morphism (UCy.A;(C1)) — (UC2, A;(C2))
in SetPairSyst] . Conversely, if p:UC; — UC; does not lift to a proximally contin-
uous map, then it does not lift to a uniformly continuous map between the compatible
precompact uniformities, thus there are ¢, € UC), ¢! € UC,. d;(c,,ch) — 0. such that
da(p(ch,), ¢(ch)) > const > 0 (d; denotes a compatible pseudometric on the completion

of C;). By precompactness we may assume that ¢/, form a Cauchy sequence, in which
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case the sequence cj,c{....,ch,ch,... also is a Cauchy sequence. Also we may suppose
c,, are either all distinct or all coincide, and the same for ¢!. Similarly we may assume
that p(c),) form a Cauchy sequence, with all terms distinct or all terms coinciding, and the
same for p(c). Then letting A’ = {c},}, A" = {c} we seec v does not lift to a morphism
(UCy, A5(Ch)) — (UCy, A5(C2)).

PrOOF OF PROPOSITION 1. By Corollary 1 we may and will suppose F is concrete.
The proof will consist of three steps. First we investigate the above introduced space
N* ={n"!In € N} and A(N"). Second we show by using projective generation that ¥C € Ob
Proxme A(C) C As(C) = {(4',A")|A',A" Cc UC, A'8A" in C}. Lastly. once more in-
vestigating A(N*) and using inductive generation, we show the remaining statement of the
proposition. We note that the first and second steps work equally well in case of a full
embedding F: Prox — SetPairSyst .

1) We have U hom (N*,N*) = {p € (UN*)UN | lime(n~1) = 0}u{pe (UN*UN|
Ing €N, n 2 np = p(n7!) = ‘p(n(',")} (consider for f: N* — N* its extension g:yN* —
yN*(= N~ U {0}) and distinguish the cases that ¢(0) = 0 or ¢(0) € UN*).

Suppose A(N*) C {(A, A)|A CUN"}U{(4",4")|A", A" C UN*, min(JA'|.]A"]) = 1}. If
(4', A") € A(N*) then, since Vf: N* — N* Uf underlies a morphism (UN*, A(N*)) —
(UN*, A(N*)), we have Vf: N* = N* (f(A').f(A")) € AN*). If (A, A) € A(N"), then
BCUN* 1< |B| £|4] = (B,B) € A(N*). In fact, for |4| < R obviously B = f(A).
thus (B, B) = f(A), f(4)), for some f:N* — N*; for {A| = Ry > |B| B = f(A) with an
fiN* = N* satisfying 3ng[n > ng = f(n~!) = f(ng')}: for [4] = |B| =Ry B = f(A)
with an f: N* — N* satisfying im f(n~!) = 0. Hence {4 CUN"|(A.A) € A(N*)} = {AC
UN*|1 € |4] < a}, for some o, 1 < a € ;. If (4',4") € A(N*), min(|4"},|4A"]) =1 —
say. |[A’| = 1 — then we can have two cases. Either for this (A'. A”) we have A’ C A", or
A'NA" = §. For A’ C A" we see similarly like above that B' ¢ B" CUN", |B'|=1<|B"| £
|A"| => (B’,B") € A(N*). For A'nN A" = @ we see similarly that B',B" CUN*,|B'| =1<
|B"| £ |A"| = (B',B") € A(N”). Hence {(4',4") € A(N")||A'| =1} = {(A",4")]| A’ C
A" CUN", |A1=1<|A"| < U {(4',A")|A", A" CUN"*, |A'| =1 < |A"] < 4} for some
B.7.1 <9 < B <N, 1< B Hence under our hypothesis we have A(N*) = {(4.A)|A C
UN*, 1<|A| <a}U{(A A")|A C A" CUN"JA|=1<|A"| < BYU{(A",A")|A". A" C
UN* |A'l =1 < |A"| < 74}. Thus U hom ((UN*, A(N*)), (UN*. A(N*)) = (UN")UN",
while U hom (N*.N*) # (UN*)V¥" by Lemma 1, a contradiction.

Thus we have shown 3(A4', A”) € A(N*). A' # A", min(4']|.|4"|) > 2.

2) Let us now suppose that for some C € ObProxmc (resp. C € ObProx) we have
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3(B',B") € A(C), B'6B". Then, since B',B" # @ (by the definition of SetPairSystg ),
3f: C = [0,1], f(B') = {0}, f(B") = {1}. Thus ({0}, {1}) € A([0.1}).

We also have ({0}, {0}), ({1}, {1}) € A([0,1]), by the definition of SetPairSysty . We are
going to show that also ({0,1}, {0,1}), ({0},{0,1}), ({1},{0,1}) € A([0,1]).

Actually we will show that for any D € ObProxm,c (resp. D € ObProx), and any
a.be UD, a# bwehave ({a,b}, {a,b}), ({a},{a,8}), ({8}, {a,b}) € A(D). For this observe
that U hom (N*,D) D {p:UN* — UD|3N, C N, N, is finite,[n € No = ¢(n7?) =
b], [n € N\ Nop = p(n~1) = d]}.

We have an (4',A") € A(N*), A' # A", |A'|,|A"|22. f A'NA" =0, then 3f:N* = D,
F(UN*) C {a.b}. such that f(A') = f(4") = {a.}}, and f(n~!) = a except for finitely
many n. The same holds for [A' N A" > 2, and also for |A' N A”| = 1. This implies
({a, b},{a, b}) € A(D).

Once more consider (A4’, 4") € A(N*®), A’ # A", |A'|.|A"] 2 2. Let us suppose e.g.
A'\A" #0, and let A'\ A” 3 n;'. Let f: N* — D be defined by f(ng') = b. f((UN*)\
{n5'}) = {a}. Then f(A’) = {a,b}, f(A") = {a}. Hence also ({a}.{a,b}) € A(D), and
similarly ({b}, {a.b}) € A(D).

Recapitulating, we have shown that each pair of non-empty subsets of {0,1} belongs to
A([0.1]). Then however each ¢ € (U[0,1])V%!] with ([0.1]) C {0.1} underlies a morphism
in hom ((U]0, 1]..A(][0.1))), (U[0, 1], A([0, 1]))). However the same is not true for morphisms
in hom ([0,1],[0,1]), a condradiction. This shows that for every C € ObProxmc (resp.
C € ObProx) A(C)cC {(B',B")|B'.B" CcUC, B'6B" in C} = A4(C).

3) Once more we consider N* and A(N*). Suppose A(N*) C {(A',A")| A", A" C UN",
A'NA" #0). Let a,b € UN".a # b Let ¢ € (UN")YN" be any function, such that
@(UN*) C {a,b}. v underlies a morphism in hom ((UN*. A(N*)),(UN*, A(N"))), provided
V(A',A") € A(N*) (p(A"),p(A")) € A(N*). However we have p(A') N p(A") # 0 by
hypothesis, which means (¢(A4'),9(4")) can only be one of ({a, b}, {a.b}), ({a}, {a,b}),
({5}, {a,b}), ({a},{a}), ({b}.{d}). However, as shown in step 2) (choosing D = N*), we
have ({a, b}, {a.b}), ({a}.{a,5}). ({6}, {a,b}) € A(N"), as well as ({a}, {a}), ({8}, {8}) €
A(N*®). Therefore any function ¢ € (UN*)U¥", such that o(UN*) C {a,b}, underlies
a morphism in hom ((UN*, A(N*)), (UN*, A(N*))). However, the same is not true for
hom (N*,N°*), a contradiction. This contradiction shows that our hypothesis A(N*) C
{(A",A")|A", A" C UN*. A'N A" # 8) is false, i.e. 3(B',B") € A(N*), B'NB" = 9. Also
B'§B", since (B',B") € A(N*) C As(N"*), as shown in step 2). Therefore B’ and B" are
disjoint infinite subsets of UN*.
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Now let C € ObProxp. , (A',A") € A;(C). We will show (A4', A") € A(C). Clearly
in any of the three cases, in the definition of A3(C). there exists an f: N* — C, satisfying
f(B'y = A'. f(B") = A". Since (B',B") € A(N*), we have (A', A") € A(C). Therefore
A3 (C) € A(C). a

Now we turn to investigate how many not naturally isomorphic full embeddings F: Prox .
— SetPairSyst) there are. We again may and will suppose F concrete. If Ty is not sup-
posed, we have at least a proper class many such functors F, namely we can take A(C) as
{(A",A")| A" A" C UC, A'6A" in C, |A'|,|4"| < a}, for any cardinal a > Ry. (Remind
that for any C € ObProxm,. any two near sets A', A” in C have near subsets of cardinalities

< Rg.) Now we turn to the Ty case.

PROPOSITION 2. The cardinality of the set of non-naturally isomorphic (concrete) full em-
beddings F' from the full subcategory of Proxmc . consisting of the Ty spaces contained in

it, to SetPairSyst] is exp exp exp R.
PROOF: We may suppose concreteness by Corollary 1.

In the considered subcategory of Proxm. each space C is a proximity subspace of the
Hilbert cube. thus there are at most expexpR; non-isomorphic such spaces, and each of
them has a cardinality <expRg. For each infinite set X the family of sets A4 of unordered
pairs of subsets of X has a cardinality exp exp | X|. Thus there are at most exp exp exp Ry ways
of choosing an A for each isomorphism class of C’s, thus also at most this many (concrete)
full embeddings between our considered categories.

Conversely, we have to construct exp expexp Ry not naturally isomorphic (concrete) full
embeddings. We use the well-known technics of strongly rigid classes of spaces cf. e.g. [14].
By {12] R? contains expexp Ry connected subspaces Do, |UDgs| > 1 (thus |UD,| = ezpRo).
such that any continuous g: Do, — Da, is either constant, or is an identity (with a; = a3).
Each of these D, 's. as a separable metric space, has a metric compactification, which induces
on it a Ty proximity space C, € ObProxy,. . We also have that any f: Co, = Cq, is
either constant, or is an identity (with a; = a;). and {UC,| =exp ®o. Let {C.} = C, where
|C| =expexp Rq.

We have two different concrete full embeddings Fy, Fj between the considered categories.
namely the ones given on objects by FyC = (UC, A;(C)), FiC = (UC, As(C)), satisfying
A;(C) C As(C). These are different, and, in fact, not isomorphic, for any C, € C, since
(A", A") € A;(Cy) = |A'|.|A"| < Ry, while for 45(C,) this is not true. by |Cy| = expRq.

Let C' C C be an arbitrary subclass of C. We define for each Ty-space C € Ob Proxme
Ac:(C) = A;(C)UU{f(As(Ca))ICa € C', f:Cy — C}. One easily verifies that Ac/(C)
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consists of near pairs, and is in the evident sense a base for all near pairs, for each C (i.c.,
beside Ac:(C) C As(C), we have [A', A" c UC, A'6A" in C = 3(B',B") € Ac:(C), B' C
A', B" ¢ A")). Thus if : UC, — UC, underlies a morphism (UCy, Ac/(Cy)) = (UCy,

Ac(C;)), then also it underlies a morphism C; — Cj. One easily sees, by the definition
of Ac/(C), that also the converse implication holds. Therefore C +— (UC, Ac/(C)) is the
object part of a concrete full embedding Fc' between our categories. Further, since any
f:Ca, = Ca, is either constant or is an identity, we have for Ca € C' Ac(Ca) = As(Co).
while for C, € C\ C' Ac(Cq) = A;(Cq). This means that for different C'-s the
respective concrete full embeddings Fc are not naturally isomorphic. Since C' can be chosen
in exp exp exp Ry ways. we have this many not naturally isomorphic concrete full embeddings

between our considered categories. a

PROPOSITION 3. Fach full embedding F:Prox — SetPairSyst] is naturally isomorphic to
a concrete functor Fy satisfying, for C € ObProx, FyC = (UC. A) that {(A',A")|A", A" C
UC, A'6A" in C} = As(C) D A, and [(A',A") € As(C) = 3(B'.B")e A, B'C A'. B" C

A"). (Thus A is. in an evident sense a base, for near pairs, of §.)

PROOF: As noted in the proof of Proposition 1. steps 1) and 2) carry over for the case
F:Prox — SetPairSystd , which we will suppose concrete. Thus we have VC € ObProx
A(C) C As(C).

It remained to show that YC € ObProx A(C) is in the above sense a base, for near pairs.
of 6. For |[UC| <1 this is trivial.

Let |[UC| = 2. e.g. UC = {a,b}. Then by step 2) of the proof of Proposition 1, we
have ({a, b}, {a,8)), ({a}, {@b}). ({6}, {a,b}) € A(C), and of cousse, ({a}, {a}), ({1}, {b}) €
A(C). For C = Cy discrete, this amounts to As(Ca) C A(C4). Since we already know
A(C4) C As(Cy), we have A(Cq) = As(Ca). For C = C; indiscrete, on UC = {a, b} we
have that 1(, ) underlies a morphism C4 — C;, but not conversely. Thus the same holds for
({a,b}. A(C4)) and ({a, b}. A(C:)). hence A(C;) = {(A",A")|0 # A', A" CUC} = As(Cy).

Let now |UC| > 2. and let Af, Ay C UC. AyéAy in C. If Ay N Af contains some b € UC.
then B' = B" = {b} can be chosen. Let now Ay N A7 = @. Then, as mentioned before
Proposition 1, there is on UC an ultraproximity Cp finer than C, in which Aj and Af are near.
Let f:Co — C be the morphism with Uf = lyc. Then it is enough to show that for some
B' C A}, B" C A} (B',B") € A(C,), since this implies (B’, B"} = (f(B'). f(B")) € A(C).

Therefore it is enough to investigate Cy, and to prove the statement for Cy, rather than C.
and for A}, AY. Let a,b € UC,, {a}§{b} in Cy. These exist because of |[UCqy| > 2. As shown
in step 2) of the proof of Proposition 1, we have ({a, b}, {a,b}). ({a}, {a,8}). ({b},{a.b}) €
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A(Co), and, of course, ({a}, {a}), ({b},{b}) € A(Co). Analogously as in Proposition 1, if
we suppose A(Co) C {(A', A")|A", A" C UCqy, A'N A" # 0}, then Vp € (UC,)VC, such
that @(UCo) C {a,b}, underlies a morphism in hom ((UCs,.A(Cy)).(UCo, A(Cp)), since
by our hypothesis V(4’, A") € A(Cos) w(4') Np(A") # 8, thus (p(A'),p(A")) € A(Co).
However if for each € (UCo)VUC?, such that ¢(UCo) C {a, b}, {a}é{b} in Co. we have that
¢ underlies a morphism in hom ((UCy, A(C))), (UCo, A(Cp))), thus a one in hom (Cq, Co)
too, then Cy is discrete, a contradiction. This contradiction shows our hypothesis A(Co) C
{(A',A"]A',A" C UCy, A'N A" # 8} is false, i.e. (A}, AY) € A(Cy). A} N A} = 0. Also,
(A}, AY) € A(C)) C As(Co) implies A| 647 in Co.

Let U;,U, be the ultrafilters used for defining Cy. Then, since also it has already been
supposed that our investigated pair (Ap, Ay), with Ag. Ay C UC, AbAy (in Cy), satisfies
Ay N Ay = 0, we have that one of Ay, Ay belongs to U;. the other to Uz, and similarly for
A{, A (by the definition of the ultraproximity). We may suppose Ag. A} € U, Aj. A} € U,.
Then we will choose 8 # B' = AgN A} C 4}, 8 # B" = 45 N AY C 45.

We only have to show (B', B") € A(Cy), where we know (A}, AY) € A(Cy)). For this we
define g: Cy — Cy as follows: g is identical on B'UB", g(A} \ B') C B', g(AY\ B")C B", ¢
on (UCy) \ (A} U AY) is arbitrary. ¢g: Co — Cy holds since each near pair of subsets of UCy
with empty intersection, say (B, BY'), with B} € Uy, BY € U,, is carried by g to a near pair,
because of g(B{) D B'NB] € Uy, g(BY) D B"NB; € U,. We have g(A}) = B, g(4Y) = B",
hence (B', B") € A(C)), as was to be shown. O

Now we turn to the analogues of Propositions 1 and 3 for 0-dimensional proximity spaces
(i.e. proximity spaces C for which A', A" C UC, A'8A" = 3B Cc UC. A' C B, A" c (UC)\
B, BE((UC) \ B))). Let Proxg, resp Proxm.o denote the full subcategories of Prox, resp.
Proxp,. consisting of their zero-dimensional objects. The category SetPairSyst is defined
in the same way as SetPairSyst, , but without requiring (A’. A”) € A => A', A" # 0.

We have

LEMMA 3. Let (X, 4;), (X2, A2) € Ob SetPairSyst. Then each constant function : X,
— X3 belongs to U hom ((X), A;). (X2, A2)) if [3(A",A")e 4, A A" #0=Vze X,
({z} {zD € A2, [3(4,0) € Ay, A#£B=Vz € X; ({z},0) € Ag]. [X] #0, (0.0) € 4,
= (0.9) € A,).

PROOF: is obvious. O

Observe that step 1) of the proof of Proposition 1 actually gives that for any concrete
full embedding F: Prox — SetPairSyst 3(4’. 4") € A(N"). A' # 4", min(|4),|4"|) > 2.

(In the contrary case by the same proof A(N®) is the union of the system given in step
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1) of Proposition 1, and possibly of {(4,0)|4 C UN*, 1 < |A| < ¢}, where 1 < € < N,
and possibly of {(0,8)}; in each of these cases U hom ((UN*, A(N*)), (UN* AN*))) =
(UN*)UN" & contradiction.) Also, for any concrete full embedding F: Prox — SetPairSyst,
if 3C € ObProx, 30 # A C UC, (A,0) € A(C), then by Lemma 3 VC € ObProx Vz €
UC ({z},0) € A(C).

COROLLARY 2. Each concrete full embedding F:Prox — SetPairSyst either factorizes
through the embedding SetPairSyst, < SetPairSyst, and then VC € ObProx {({z}. {z})|
z € UC} C A(C), or else [3C, € ObProx, 38 # A C UGC,, (4,0) € A(Cy) =
VC € ObProx {({z},{z))|z € UC} U {({z},9)lz € UC} C A(C)]. and [3C, € ObProx,
(0.8) € A(C)) = VC € ObProx (UC # 8 = {({z},{z})lz e UC} U {(8.9)} C A(C))).
Conversely, if F:Prox — SetPairSyst is a full embedding. either factorizing through Set-
Pair

Systy — SetPairSyst, and then satisfying VC € ObProx {({z},{z})lz € UFC} C A(C),
or else satisfying VC € ObProx {({z},{z})lc € UFC} C A(C), and [3C, € ObProx,
30 # A CUFGC,, (A,8) € A(Cy) = VC € ObProx {({z},0)lzr € UFC} C A(C)], and
[3C, € ObProx, (8,8) € A(Cy) = VC € ObProx (UFC # 8 = (8,0) € A(C))), then F
is naturally isomorphic to a concrete functor. The same holds for Proxmye , Proxg. Proxmco

as well, rather than Prox.

Proor follows from the observations before Corollary 2 and the proof of Corollary 1. The
only difference is that in the converse direction, when we show that each constant function
X1 — X; belongs to U hom ({X), A1), (X2, 42) ((X:i, Ai) = FC;j, for some C; € ObProx),
we have to exclude the case (X;,.4;) = (8, {(8,0)}), (X2, 42) = (9,0). However these are
two non-isomorphic objects, such that no object £C, C' € ObProx, non-isomorphic to both
of them, admits a morphism to any of them, which is a contradiction, since F is a full
embedding. a

We let SetPairSyst? be the full subcategory of SetPairSyst, consisting of the objects
(X.A). satisfying {({z}. {z})|z € X} U {({z},8)lz € X} U {(0.8)} C A. (We might have
required (0, 0) €A, or (8,8) € A < X # @, but each of these makes the full embedding F
naturally isomorphic to a concrete functor, and preserving the pair (0. 8) is no restriction for

a function X; — X3, thus a full embedding remains one, if. for each (X. A) in the image, we

add to A (9,9).)

PROPOSITION 4. Each full embedding F' of ProXmco resp. Prox, into any of SetPairSyst®
or SetPairSyst) is naturally isomorphic to a concrete functor Fy, satisfying for C €
ObProxmee As(C) D A(C)N{(A’,A")|A’, A" CUC, A’ A" # 8} D A;(C), resp. for C €
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ObProxe As(C) D A(C) N {(A', A")|A", A" C UC, A',A" # B} and [(A',A") € As(C) =
B(B’,B”) € A(C)! 0 # BI C A’, 0 # BII C A”].

ProOF. By Corollary 2 we suppose F' concrete. We first restrict ourselves to the full
subcategories T¢ Proxp,.o resp. To Proxg of Proxyco resp. Proxg, consisting of their Tp
objects, and investigate the restriction of F to them. The projectively generating class for
Ty ProXmeo or Tg Prox, will be { Cantor set } (referred to further as constructed in [0,1] in
the usual way). The inductively generating classes for Tg Proxmeco, resp. ToProx, will be
the same, as for Proxp,., resp. as for Prox, but excepting the ultraproximities constructed
with two fixed ultrafilters (by the same proof, noting that for C Tj. the ultraproximities
constructed at proving inductive generation cannot be ones constructed with two fixed ultra-
filters).

Suppose first that for the case of SetPairSyst’ we have VC € ObT; Proxmeo resp.
ObTyProx, (A.0) € A(C) = |A] < 1. Then {A|(A.0) € A(C)} = {{z}|z € UC} U
{8}, and ¢ € U hom (((UCi, A(C1)), (UC:2, A(C7))) <= ¢ € U hom ((UC), A(C1) N
{(A}, AN)|AL, AT C UGy, AL AT #0)), (UC2, A(C2) N {(4, A3)| A3, A3 CUC,. A, 4
9})). Therefore this case is reduced to that of SetPairSyst] , and thus in the case of
SetPairSyst® we may and will assume 3C; € Ob Ty Proxco. resp. Ob ToProx,, 3(A4;,8) €
A(Cy), |41] 2 2.

We have N* € ObToProxmeco C @b Ty Proxg and the result of step 1) of the proof of
Proposition 1 remains valid, as noted after Lemma 3.

For step 2), supposing that for some C € Ob Ty Proxmeo resp. ObTy Prox, 3(A',A") €
A(C), A", A" # 8. A'SA" in C, we obtain for the Cantor set ({0}, {1}) € A (Cantor set). If
we consider SetPairSyst] , we see like in Proposition 1 that each pair of non-empty subsets
of {0,1} belongs to A (Cantor set), which leads to a contradiction like in Proposition 1.
If we consider SetPairSyst®, beside each pair of non-empty subsets of {0,1} also ({0},9),
({1},0). (9,9) belong to A (Cantor set). If also ({0,1},0) € A (Cantor set), we get a
contradiction like in Proposition 1. However, consider the above space C; and 4; C UC),
with (4,.9) € A(C)), |41] > 2. Since Ci € Ob Ty Proxmeo, resp. Ci € ObTy Proxg,
3f:C; — Cantor set, f(UC,) = f(A1) = {0,1}. By (4,,0) € A(C;) we have ({0,1},8) €
A (Cantor set), which leads to the desired contradiction.

Thus we have shown YC € Ob T Proxmco, resp. Ob Ty Proxe, A(C)N{(4’,A")|]A" A" C
UC, A',A" #8} C As(C).

For step 3), we first consider the case of To Proxpmco. Suppose A(N*)N{(4',A")]A", A" C
UN* A" A" #0} C {(A",A")|A', A" CUN*, A'nA" # §). For the case of SetPairSyst}
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we proceed like at Proposition 1, and obtain a contradiction. For the case of SetPairSyst?
we have with the notations of Proposition 1, step 3) ({a},®), ({8}, 9),(9,8) € A(N*). If also
({a,b},0) € A(N*), we get the contradiction like above. However, like above, 3f:Cy = N*,
f(UCy) = f(A)) = {a,b}. By (4,,8) € A(C)) this implies ({a,b}.0) € A(N"), leading
to the desired contradiction. This implies 3(B’, B") € A(N*), B',B" # @, (thus B'6B" in
N*), B'n B" = 0, which in turn implies YC € Ob T¢ Proxmeo (actually VC € Ob Proxmco)
AC)N {(4',A")A' A" cUC, A’ A" # 8} D A;(C), like in Proposition 1.

Now we deal with step 3), in case of Ty Proxg, and will show (A3, A7) € As(C) =
3(B',B") € A(C), 8 # B' C A}, 8 # B" C Aj. Like at Proposition 3, we assume AgNA4g = 0.
The case of spaces C with |[UC| < 2 is evident, because they are now discrete. For [UC| > 2
we turn to the ultraproximity Co on UC, constructed in Proposition 3 for Ay. 45 C UC,
which, as noted above, also belongs to ObT( Prox, . Suppose A(Cp) N {(A', A")|A", A" C
UCo, A", A" # 0} C {(A",A")|A", A" CUCy, A'NA" # 8}. For SetPairSyst] , proceeding
like in Proposition 3, we get a contradiction. For SetPairSyst® we have for a,b € UG,
{a}6{b}, that ({a},8),({6},0), (9,8) € A(Cy) by definition, while ({a,b},0) € A(Co) by
using Cy, as above with N*. This gives a contradiction like at Proposition 3. Thus both
for SetPairSyst) and SetPairSyst® we gain 3(A4}, A}) € A(Ch), 4], A # 0, AN A} =0,
and hence VC € ObTyProxg (A, 45) € As(C) = 3HB',B") € A(C), § # B' C A,
@ # B" C A}, like in Proposition 3.

Up to now we have dealt with the subcategories To Proxmeo , To Proxg only, and have
shown that for their objects the statement of the proposition holds. As step 4), we extend the
result for Prox,co , Proxg . The inclusion concerning A;(C) has already been shown above.
For the remaining three relations observe that the mentioned subcategories both projectively
and inductively generate the respective categories. Namely, for any non-T; object C we can
consider its Ty-reflection map C — rC = the Tp-reflection of C, for projective generation;
and any right inverse of this map, and maps of N* to two-point indiscrete subspaces of
C, for inductive generation. Thus the respective relations for A(rC), and the fact that
J(B',B") € A(N*). B',B" # @, B'n B" = 8 (implying that, for any given two-point
indiscrete subspace {¥', 8"} of C. 3f: N* = C, f(N*) = {'.4"}. f(B') = {¥'}, f(B") = {v"})
prove the remaining three relations for A(C), too. a

REMARKS. 1) By Proposition 4, for the full embeddings of Proxmco , resp. Proxg into
SetPairSyst? {A|(4,0) € A(C)}, where C € ObProxmco , resp. ObProxg , can be an
arbitrary system of subspaces, containing all subspaces with < 1 points, and preserved by

all morphisms f:C; — C; in the respective category, even if A(C) N {(4',4")|A", A" C



E. Makai jun.: Automorphisms and Full Embeddings of Categories in Algebra and Topology 251

UC, A’ A" # 8} is fixed for each C.

2) This also implies that there are at least a proper class of not naturally isomorphic
concrete full embeddings of any of Prox,c , Proxmeo , Proxy to SetPairSyst? (take
A(C) = As(C) U {(4,0)[A Cc UC, |A] < a} for some cardinal a > 1). For Prox there
are even as many not naturally isomorphic concrete full embeddings to SetPairSyst? , as
there are subclasses of a proper class. Namely by [22] there is a proper class D = {D,}
of T, 3 spaces, hence also a proper class C = {C.} of proximity spaces, with the property
that any mapping between them is either constant or is an identity, and |UD,|,|UC4| > 1
(choosing for each D, a compatible pradmity C,). Considering now any subclass C' C C,
we let for C € ObProx Ac/(C) = As(CYU{({z},0)|z e UCIU{(8.8)} U{(f(Aa),d)|As C
UCq. |Aa] £ 2, C, € C', f:Coq — C}. Like at Proposition 2 it follows that in this way
we obtain concrete full embeddings with object parts C — (UC,.Ac/(C)), which are not
naturally isomorphic for different subclasses C' of C.

3) The analogue of Proposition 2 for full embeddings of Prox, Ty Proxm,.o . Proxg
to SetPairSystg remains open. A lower bound for the case of Ty Prox,co would fol-
low if one found a large set {Coa} C ObT;Proxmeo , such that |[UC,| = expRe and
[ay # a7z = Vf:Ca, = Ca, |f(UCa,)| € Rg] (by replacing in the proof of Proposition
2A4;(C) by {(A.AM)|A". A" CcUC, A'§4", |A',|4"] < ¥ }).

3.6. An analogue of the question treated in 3.5 is that about the full embedings of Top
into the category SetPointSyst, whose objects are of the form (X, A4), X a set, A a set
of ordered pairs (4,z), 4 C X 3 z, and whose morphisms f:(X;,4;) = (X2.A4;) are
characterized by f € X3, f(Ay) C Az. One concrete full embedding F is given of course
by FC = (UC,{(4,2)]A CUC 3 z, A3 z}), where C € ObTop. (The forgetful functor for
SetPointSyst is defined by U(X,A) =X, Uf = f.)

We note that such an A, as above, is an element of 22" XX 2¢ (2X)2* o (22")X (9 =
P(Y')). This shows that the category SetPointSyst is concretely isomorphic to the category
with objects (X.9), X a set, ¢:2%X — 2% and morphisms f:(X,,¥;) — (X2,%;) charac-
terized by f € X', 4 € X; = f(¥1(4)) C ¥2(f(A)); and also to the category with
objects (X, ¥), X aset, T: X — 22x, and morphisms f:(X;,¥;) — (X3, ¥,) characterized
by fe X'z e X, = f(¥1(z)) C ¥2(f(z)). Thus the above concrete full embedding
F:Top — SetPointSyst goes over to the concrete full embedding given by ¥(A) = A4; resp.
to that given by ¥(z) = {A|A CUC 3 z, A 3 z}. where C € ObTop. well known from the
elements of topology. For convenience we will use among these three concretely isomorphic

categories SetPointSyst.
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We are going to show the analogues of Propositions 1, 2, 3, 4 for full embeddings of Top,
and certain subcategories of Top, to SetPointSyst. The proofs are rather similar to the

above proofs, and also are simpler, so some details will be left to the reader.

LEMMA 4. ([61], proof of Theorem 4.1). Let C € ObTop. Then hom (C,C) = (UC)VC iff

C is either indiscrete or discrete. 0O

LEMMA 5. Let (X,,4,), (X3, A4;) € ObSetPointSyst. Then each constant function ¢: X,
— X; belongs toU hom ((X1, A1), (X2,A43)) iff[3(A. 2) € A, A#0=Vze Xy ({z},2)
€A;Jand[3z e X;, (B,z2) e Ay, = Vz € X3 (B,z) € A, a

For a full embedding F: Top — SetPointSyst we denote FIC = (UFC, A(C)), and the

same notation will be used for analogous situations.

COROLLARY 3. A full embedding F:Top — SetPointSyst is naturally isomorphic to a
concrete functor iff VC € ObTop {({z},z)lz € UFC} C A(C), and [IC, € ObTop 3z €
UFCy (8,2) € A(Co) =>VC € ObTop Vz e UFC (B.z) € A(C)]. The same holds for
the full subcategories of Top, with objects all T\, Tychonoff, 0-dimensional, pseudometric,

resp. pseudometric and 0-dimensional spaces, rather than Top.

PROOF is similar to that of Corollary 1, noting for the “only if” side that C non-discrete,
non-indiscrete implies by Lemmas 4 and 5 that 3(4,z) € A(C), A #£ 0. a

We let SetPointSyst, , SetPointSyst] , SetPointSyst® be the full subcategories of
SetPointSyst consisting of the objects (X, A), satisfying [(A,z) € A = A # ], resp.
[((A,z) € A=> A #0) and {({z},z)|lz € X} C A}, resp. [{({z},z)lz € X} U {(D,z)|z €
X} C A]. We are interested in full embeddings Top — SetPointSyst§ , and Top —
SetPointSyst? (resp. in the same for the subcategories of Top listed in Corollary 3). How-
ever preservation of pairs (8, z) is no restriction for a function f: X; — X, thus the concrete
functor I with object part I(X,A) = (X, AU {(8,z)|]x € X}) is a concrete isomorphism
SetPointSyst] — SetPointSyst® . Hence the questions of full embeddings into these two
categories are equivalent; for convenience we will treat SetPointSyst] .

The full subcategories of Top, listed in Corollary 3, will be denoted in that order by Top,
Top,, Tych, 0-dim, PsMet., PsMet0-dim.. Following [51], we will use the following
projectively and inductively generating classes for them (listed in the above order). For
projective generation we use {Sierpiriski space}, {infinite spaces with cofinite topology }.
{(0,1])}, {N}, {[0,1]}, {N}. Here N = {n~'|n € N} U {0} with its usual topology. For
inductive generation we use { topological ultraspaces } for Top, { free topological ultraspaces }
for Top,, {free topological ultraspaces} U { topological sums of a two-point indiscrete space
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and an arbitrary discrete space} for Tych, 0-dim, {N} for PsMet,, PsMet0- dim.. A
topological ultraspace is obtained as follows (cf. e.g. [51]). Let X be a set, |X| > 2, and let
U be an ultrafilter (free or fixed) on X, z € X, U # the fixed ultrafilter corresponding to
z. Each point in X \ {z} forms an open set, and the neighbourhood system of z is given by
{V U {z}|lV € U}. We say that this topological ultraspace is free, if U is a free ultrafilter.

PROPOSITION 5. Each full embedding F of Top, Top,, Tych, 0-dim, PsMet, resp. PsMet
0-dim, into SetPointSyst) is naturally isomorphic to a concrete functor Fy, satisfying for
FoC = (UC., A) (C any object of the respective category) {(4,z)/ACUC >z, A3z} =
Aa(C) D A, and [(A,z) € A(C) = 3(B,z| € A, B C A]. (Thus A is, in an evident
sense, a base for A.(C).) For PsMet. and PsMetO-dim. we have more exactly that A D
A(C) = {(A,z)|A CUC 3 z, |A| = Ro, A yields a sequence converging to z}U{(A4,z)|A C
UC 31z, 1< |A|l < Xo, 3a € A, {a} = {z}}. Further the map F* defined an objects by
F*C = (UC, A3(C)) is itself the object part of a concrete full embedding of PsMet, resp.
PsMet0-dim, to SetPointSyst) .

PROOF: By Corollary 3 we suppose F concrete. The proof consists of three steps. First we
investigate N and A(N ). Second we show by projective generation that for each object C
we have A(C) C Aq(C). Third by inductive generation we show the remaining statements
of the proposition.

1) A) N is an object of each of the six categories. Supposing A(N) C {(4.z)]4 C UN >
z, |A] = 1} we gain like at Proposition 1 that A(N) = {({z},z)lz € UN} or A(N) =
{({y}, 2)ly, = € UNY}, implying U hom (UN, A(N)), (UN, A(N))) = (UN)¥ # U hom
(N,N). a contradiction. Therefore 3(Ao, zo) € A(N), |Ao] > 2.

B) This implies for any D, object of the respective category, and any a.b € UD, a # b that
({a, },a) € A(D). In fact, N is zero-dimensional, hence for two distinct points of Ag (4o, o)
taken from A)) there is a clopen set B of N containing exactly one of these points. Then
either zo € B or zo € (UN)\ B, and we may suppose zo € B. Define f: N — D, f(B) = {a},
f((UNY\ B) = {b}. Then Uf lifts to a morphism (UN, A(N)) — (UD, A(D)), hence by
(40,20) € A(N) we have ({a, b}, a) = (f(4o), f(z0)) € A(D).

C) This further implies that for any non-discrete, non-indiscrete object D of the respec-
tive category 3(A,z) € A(D), = ¢ A. Namely otherwise for a non-indiscrete two-point
subspace {a,b} of D each o:UD — UD, such that ¢(UD) C {a,b}, underlies a morphism
(UD, A(D)) = (UD, A(D)). In fact, we then have for each (A,z) € A(D) A 3 z, hence
{a,8} D ¢(A4) 3 p(z). Thus (p(A),¢(2)) is one of ({a,b}.a). ({e,b}.8), ({a},a), ({3}.0).
However, by B) and by definition, each of these belongs to A(D), showing that in fact ¢
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underlies a morphism (U D, A(D)) — (UD, A(D)). Then each such ¢ underlies a continuous

map D — D as well, and, since {a, b} is not indiscrete, D is discrete, a contradiction.

D) The result of B) also implies that for any non-discrete object D of the respective
category, and any a,b € UD, a # b, such that {a,b} is not an indiscrete subspace of D, it
cannot hold that both ({a}, b), ({b},a) € A(D). Namely otherwise each :UD — UD. such
that @(UD) C {a,b}, underlies a morphism (UD, A(D)) - (UD, A(D}). In fact, then for
each (A, z) € A(D) we have p(4) C {a,b} 3 p(z), and each pair (B,y) with B C {a,b} 3 y
belongs to A(D), by B), by definition, and by our hypothesis. Therefore in fact ¢ underlies
a morphism (UD, A(D)) — (UD,.A(D)). Then each such ¢ underlies a continuous map
D — D as well, which gives a contradiction like at C).

E) Now we show in any of the six cases that for any 0-dimensional object C of the respective
category V(A,z) € A(C) A 3 z (i.e. A(C) C Au(C)). Namely otherwise there is a
clopen set Bof C, z € B, BNA =9. Let a,b € UN, a # b. Recalling that 4 # 0 by
definition, define f,g:C — N, f(B) = g((UC)\ B) = {b}. 9(B) = f((UC)\ B) = {a}. Then
(4,2) € A(C) implies ({a}.b) = (f(A). f(z)) € A(N), ({8}, a) = (9(A). g(z)) € A(N). This
gives a contradiction by D).

F) By C) we have 3(4,,z;) € A(N), z; ¢4,. For this (4,, ;) therefore by E) z; € A, \A4,.
Hence z; =0, and 4, C (UN)\ {0}, A, is infinite.

G) For the case of Top consider f: N — § = Sierpifiski space on {0,1} — with {1} as
the only non-trivial open set —, defined by f(0) = 0, f(UN)\ {0}) = {1}. We have from
F) an (A;,7,) € A(N), for which we have ({1},0) = (f(41), f(z1)) € A(S). Hence, also
using B), we have A(S) O {({0}.0),({1},1),({1},0).({0,1},0).({0,1},1)}, and by D) here
actually equality holds.

2) Now we show for each of the six categories that for any object C' A(C) C A(C). For
0-dim, PsMet0-dim, this follows from 1E). We turn to Top. Top,, Tych, PsMet.. Let
us suppose the contrary. i.e. 3(A.z) € A(C),(8 #)A p z. Consider in each of these four
cases continuous functions from C to the following spaces (in the above order): §; Ceoy =
a space of cardinality [UC| + Ry. with the cofinite topology; [0,1]: [0,1], resp., as follows.
f(A) = {0}. f(UCY\A) = {1}; f,g satisfying f(4) = {9(2)} = {a}, 9(A) = {f(2)} =
{b} for some a,b € UC.oy, a # b, while the restrictions of f,g to (UC)\ (AU {z}) yield
injections into (UCeoy) \ {a.b}; in the last two cases f,g satisfying f(4) = {g(z)} = {0}.
9(A) = {f(z)} = {1}. Then the images of (4,z) by these functions will belong to A
(codomain of these functions). Thus we have in each of the four cases, respectively: ({0},1) €
A(S), contradicting 1G); ({a}, b), ({b}, a) € A(C.or), contradicting 1D); in the last two cases
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({0},1), ({1},0) € A([0,1]), contradicting 1D).

3) Now we show for each of the six categories that A(C) is in the given sense a base for
Aa(C).

First we deal with PsMet., PsMetO-dim.. By 1F) 34, ¢ (UN)\ {0}, |4,] = R,.
(A;,0) € A(N). Clearly any (4,z) € A3(C), C € ObPsMet. or ObPsMet0-dim, is of
the form (f(A,), f(0)) for some f: N — C, thus (A,z) € A(C). The fact that the map F*
defined on objects by F*C = (UC, A%(C)) is the object part of a concrete full embedding to
SetPointSyst) , is evident.

Second we deal with Top, Top,, Tych, 0-dim, where the inductively generating class was
{ topological ultraspaces } for Top, { free topological ultraspaces } for Top,, {free topological
ultraspaces} U {topological sums of a two-point indiscrete space and an arbitrary discrete
space} for Tych and 0-dim. Let C be an object of one of these categories. For |[UC| <1
evidently A(C) = Ay(C). Let [UC| > 2, and let Ag C UC 3 o, Ag 3 9. We will show
3(B,z) € A(C), B C Ag. We suppose Ay Pz, since otherwise we can choose B = {z,}.

Let the neighbourhood filter of zqo in C be F. Then F U {Ag} C U for some ultrafilter &
on UC. If U is fixed, then the point u € UC corresponding to U satisfies u € Ag, and since
zo ¢4, To # u. In case of Top; U is free, since z € (UC)\ {zo} = (UC)\{z} e FCU.
and (UC)\ {z0} D Ag € U. Let Cy denote the topological ultraspace on the set UCy = UC,
constructed with 2/ and zp (where U/ # the fixed ultrafilter associated with z¢, since otherwise
Ao 3 2¢). We have that 1pyc lifts to a continuous map f:Cy — C, and z¢ € ‘Ag holds also in
Cy.

In case of Top and Top; we let Cy = Cj. Also in case of Tych and 0-dim, if U is
free, we let Co = Cj. In case of Tych and O-dim. if U is fixed. say MU = {u}, we let Cy
the topological space with UCy = UC}, where each point # zo,u forms an open set, and a
neighbourhood base of zg, as well as of u, is {zq,u}. We then have in Cj {u} 3 zo. thus the
same holds in C as well. Since now the Ty-reflection of C (€ ObTych or Ob0-dim) is T},
we have m 3 u as well, thus also here 1yc lifts to a continunus map f: Cy — C, and, since
Cy is coarser than Cj, z¢ € Ao holds also in Cy.

Like in Proposition 3, it is enough to show 3B C Ay. (B, z) € A(Cp). since then (B, z9) =
(f(B). f(z0)) € A(C). Thus we turn to Co.

First we deal with the case Cp = CJ. By 1C) 3(4,,z;:) € A(Cy). 1 ¢4,. By 2) z, € 4,
in Co. Thus z; € A, \ 4;. which implies z, = zo. Thus we have 7, € Ag. To =1, € Ay
in Cy, which implies by 7y Ao, o = z; §A; that Ag. 4, € U. Then we choose § # B =
AoNA; C 4p. It remains to show (B, zy) € A(Cp). For this we define g: Cy — Cj as follows:



256 E. Makai jun.: Automorphisms and Full Embeddings of Categories in Algebra and Topology

g is identical on B U {zo}, 9(A1 \ B) C B. g on (UCy) \ (A1 U {z0}) is arbitrary. Thus
(B, z0) = (9(A1). 9(z0)) = (g(A41).9(z1)) € A(Cp). as was to be shown.

Second we turn to the case Cy # Cj, when, as mentioned above, Cj is the topological sum
I + D, I is a two-point indiscrete space {zq,u}, D is a discrete space, zo §4¢ 3 u. We are
going to show ({u},z0) € A(Co), which is sufficient, since {u} C Ay. We define h: N — Co,
h(0) = zo, A((UN)\ {0}) = {u}. By 1F) we have ({u},z0) = (h(41), k(0)) € A(Co), as was
to be shown. a

PROPOSITION 6. There exists a proper class of not naturally isomorphic concrete full em-
beddings PsMet. —SetPointSyst] , resp. PsMet0-dim. —SetPointSyst) . Moreover,
if there does not exists a proper class of measurable cardinals (which is consistent with ZFC,
provided ZFC is consistent), then there exist as many not naturally isomorphic concrete full

embeddings PsMet. — SetPointSyst] , as there are subclasses of a proper class.

PROOF: Analogously to the remarks before Proposition 2. we have concrete full embeddings
F, from PsMet. or PsMetO-dim, to SetPointSyst] , defined on objects by F,C =
(UC,{(A,2)lACUC >z, A3z, |A| < a}) — where > R is any cardinal —, which are

pairwise not naturally isomorphic.

If there does not exist a proper class of measurable cardinals, then by [60] there exists a
proper class C = {C,} of metric spaces with [UCq| > 1, such that any g: Cs, — Cl, is either
constant or is an identity (with @) = a). Evidently each C, is connected, hence |UC,| >
expRo. If C' C C is any subclass, define for C € ObPsMet, Fo.(C) = {(4,z)]ACUC 3
2, Adz, |[A| S RJUU{(f(B), fW)IBCUC,3y, B3y, Ca€C', fiCa — C}. Like at
Proposition 2 we see that this is_the object part of a concrete full embedding PsMet, —
SetPointSyst] , and that these are not naturally isomorphic for different subclasses C' of
C. a

Analogously to Remark 3 after Proposition 4, we would have as many not naturally isomor-
phic concrete full embeddings PsMet0-dim, — SetPointSyst) , as there are subclasses
of a proper class, provided there was a proper class {C,} C ObPsMet0-dim,, such that
|[UCa| > Ro, and [a) # a3 => Vf:Ca, = Ca, |f(UCa,)| < [UCa,l] (using the formula for
Fc(C) from Proposition 6).
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