Category Theory at Work 199
H. Herrlich, H.-E. Porst (eds.)

© Heldermann Verlag Berlin 1991

199-215

Axiomatizing the Category of Compact Hausdorff Spaces

G. Richter

ABSTRACT. The process mentioned in the title includes a description of the varietal theory of compact
Hausdorff spaces in the sense of F.E.J. Linton [12]. This follows from an internal axiomatization of the Stone-
Cech-compactification of discrete spaces, regarded as endofunctor B: Set — Set of the category of sets. Since
the ultrafilter functor U: Set — Set fulfills the same axioms as 3, both coincide up to a natural isomorphism
even as monads. This reproves a wellknown result due to E.G. Manes [13,14]. Recall R. Bérger's nice external
characterization of U as being terminal among all endofunctors T' of Set preserving finite coproducts [4).
Now there are criteria available for injectivity or surjectivity of the unique natural transformation T — U,

corresponding to HausdorfTness or compactness of a certain topology on T, respectively.

0. Introduction

The Stone-Cech-compactification §X of any set (discrete space) X is wellknown to be a
Stone space (compact, Ty and zero-dimensional) [11]. Therefore it may be regarded in a

canonical way as closed subspace of the 2X-th power of the two element discrete space 2,
BX =BX c 2,
with respect to the product-topology, i.e., the initial topology given by the projections py :
22" 2 f € 2X. The universal injection
Bx: X — BX
is given by psfx := f, f € 2X_ and we have
BX = Bx(X).

In section 1, we consider endofunctors T of the category Set of sets, which preserve finite co-
products (including the empty one). They admit a canonical factorization via the underlying
set functor

Top — Set

This work is an original contribution and will not appear elsewhere.
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of the category Top of topological spaces. Using this, we show independently from R. Borger

f4]). that g is terminal among all such T.

Section 2 investigates the pointwise injectivity of the unique natural transformation T — S.
It turns out to correspond to Hausdorffness of the canonical topologies introduced in section 1.

Section 3 deals with the pointwise surjectivity of T — 8, which corresponds to compactness.
Combining both, bijectivity is characterized by internal properties of T in section 4. Since
the varietal theory of compact Hausdorff spaces in the sense of F.E.J. Linton [12] is just

8°P : Set® — f(Set)°? C Top®, full,

we get an internal description of this from its dual 3, simplified by means of the algebraic
properties of varietal theories. This enables to axiomatize HComp, the category of compact

Hausdorff spaces. Moreover. the ultrafilter functor
U:Set — Set

shares the characteristic properties of 8, hence U = 8 [13, 14].

For standard notations, terminology, and results see [1,10].

1. Terminality of 8

Throughout this section let T and T’ denote endofunctors of Set preserving finite coproducts.

R. Bérger [4] proved, that there is a unique natural transformation « : T — U, namely
rx(z):={SC X|z € T(S — X)(TS)}

for all sets X and r € TX. Unfortunately, it is by no means obvious, which internal properties
of T correspond to pointwise injectivity of x or surjectivity, respectively. Therefore, we change

from the ultrafilter side to the topological point of view.

1.1. Lemma. {T(S — X)TS)| S C X} is a basis of clopen sets in TX. Moreover, any
Tf:TX — TY, f: X — Y a map, becomes continuous with respect to the corresponding
topologies. The same holds for the components vx : T'X — TX of any natural trans-
formation v : T' — T. In case of T = f, the topology mentioned above is just the usual

one.
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1.2. Lemma. D := EJXT({::} — X)(T{z}) is dense in TX.

1.3. Corollary. Assume that every TX is Hausdorff. Then there exists at most one natural

transformation v : T' — T.

Proof. By construction, T'1. 1 := {0}, is indiscrete, hence T1 = @ or T1 = 1 by assumption.
This implies v{;y = p(;} for all natural transformations v, : T — T and any singleton
{z} € X. Therefore vx and px coincide on the dense subset D' C T'X (1.2.). Moreover,

they are continuous (1.1.), thus equal by assumption on TX.

O

1.4. Theorem. There exists exactly one natural transformation A : T — B.

Proof. According to 1.1. and 1.3., it suffices to prove existence. To do this, we construct a
natural transformation ¢ from T to the double powerset functor 22° which factorizes via 3.
Using 2 = {0} [[{1} and the canonical maps ¢ : T{0} — {0}, d: T{1} — {1} as well as
the canonical isomorphism T2 = T{0} [[T{1} we get ox as the unique map rendering the

upper rectangles in the following diagrams commutative

()

T2 = T{0}[[T{1} — 2

l e\ fe2X,
TX —ccemmm e oo i ’_‘_, 22X
ThI T2,n! h:Y — X.
TY , 22¥
oy

The lower rectangles do commute for any map h : ¥ — X. Hence, 0 : T — 2?7 is
natural and, moreover, pointwise continuous by construction. Therefore, it suffices to show
ox{(D) C X, where D C TX is defined as in 1.2. To do this we abbreviate T; := T({z} —
X)T{z}), =z € X.and prove p/ax(T,) C{f(z)}). fe2X thusox(T:)C Bx{(X)CBX:

For z € f~1(0) C X we have

T. € T(f7(0) — X)T(f~(0))),
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hence
Tf(T:) C T({0} — 2)(T{0}),
because
T(.ﬂ]-l(o))
Tf~'(0) ——— T{0}
|ruro=x | Tuo-a
Tf

TX — T2

commutes. Moreover,

prox(Te) = eTf(T:)
C eT ({0} — 2)(T{0})
= ¢(T{0}) = {0} = {f(=)}

since eT({0} — 2) = ¢ by construction. The same holds for z € f~'(1) C X.

1.5. Corollary. (cf. R. Bérger [4]. 2.3.)

(i) There exist unique natural transformations 7 : idges — 8,4 : 808 — B, and (8.7, 4)
is a monad.

(ii) (8,7, u) is terminal among all monads over Set preserving finite coproducts with respect

to monad morphisms.

2. Injectivity and Hausdorffness

Again let T denote an endofunctor of Set preserving finite coproducts. The purpose of
this section is to find conditions, which are necessary and sufficient for the unique natural

transformation A : T — B to be pointwise injective. If so, then for 1 := {0} :
Ti=9 or T1=1

In the first case, TX = 9 for every set X, because there is a map T(X — 1): TX — T1.
In the second case, there exists a unique natural transformation 1) : idges —* T. This follows
immediately from Yoneda’s Lemma, because idset = hom(1, —), the covariant hom-functor,

hence

T1 = [idgee, T),
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the set of all natural transformations from idse. to T. Explicitly, n is given by

{1x(2)} = T{z} = X)(T{z}), ze€X.

By 1.2..  is pointwise dense with respect to the topology mentioned in 1.1. For the following

assume T'1 = 1.

2.1. Lemma. For any set Y and any continuous map h : TY — T2 there exists a unique

map g:Y — 2 with Tg = A.

Proof. By assumption. n; = idz up to a natural isomorphism. Moreover, T2 is discrete and
the following diagram commutes

g:=hny

Y —— 2

This shows h = T'g. because 7y is dense, as well as uniqueness of g.

G

2.2. Theorem. The following are equivalent (with respect to the topology mentioned in

1.1.):

(i) n: T — B is pointwise injective.

(ii) For any map f : X — TY and any source (f, : TX — T2),ezv such that (Tfy)nx =
(Tg)f, there exists at most one diagonal d in

x 2, rx

’

et
w

TY —— T2
Ty

i.e.. dnx = f and (Tg)d = Tf, for all g € 2Y.
(iii) TY is Hausdorff (1) for every set Y.
(iv}) The continuous maps h : TY — T2 form a mono-source for every set Y.

(v) (Tg)4ezv is a mono—source for every set Y.

Proof. Note, that Hausdorflness of TY follows from Ty, because there is a basis of clopen

sets. This yields (iii) = (iv), too. Moreover, (iv) = (v) by 2.1, and (v) = (i) = (ii) are
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easy using uniqueness of d in case of T = f and diagram chasing for the latter. For (v) =

(1) observe that the diagrams

Ay
TY — BY
TgJ' 1ﬂg. g € 2Y, commute,
Az
T2 _— B2

|
Ay Ay

T1]]T1 L BLII A

o

where (Tg),e,v is a monosource. Therefore, Ay is injective.

For the remaining part (ii) = (iii) assume that TY fails to be T for some set Y, i.e. there are
different points s,t € TY sharing the same neighbourhoods. By construction and T1 = 1,
ny(Y) C TY is a discrete open subspace, hence s,t € TY \ ny(Y). Moreover, Tg(s) = Tg(t)
for every g € 2V, otherwise s.t could be sperated by a clopen set, because T2 = 2 discrete.

This yields two diagonals in the following diagram

ny
Y —— TY
/,//
nYl idryd J’Tg, ge2v,
w L7
L 4
TY ——— T2
Ty

d(t) := s, d(u) := u otherwise.
0

2.3. Remark. Every diagonal d in the diagram 2.2.(ii) is continuous, because the topology
on TY is initial with respect to (Tg),ezv. Obviously, conditions (i) and (iii) in 2.2. imply
T1 =0 or T1 = 1. But this cannot be concluded from (v). hence neither (iv) nor (ii) (with

respect to all natural transformations 7). T := idget | [ idset serves as counterexample.

3. Surjectivity and Compactness

It would be nice, if existence of the diagonal d in 2.2.(ii) would imply pointwise surjectivity
of A: T — B. In fact, this turns out to be a necessary condition. It fails to be sufficient, as
T := idge, shows. But there is a wellknown property of §, shared by all T with pointwise

surjective A : T — 8, which suffices together with the existence of d.
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3.1. Lemma. Let X be a set of infinite cardinality card X. Then
(ﬂ(s — X)(ﬂs))sgx,cards<cardx
fails to cover B.X.

Proof. If not, we have a cover of clopen sets, hence a finite subcover, thus even one subset
S5 C X with cardS < cardX such that 8(S «— X) is surjective. This is impossible.
a

The following considerations enable us to restrict our attention again to the case T1 = 1.

3.2. Lemma. Let ¢ : T — T* be a natural transformation between endofunctors of Set

preserving finite coproducts and X a set, such that ox is surjective. Then
TX compact < T*X compact
(not necessarily Hausdorff, with respect to the topology introduced in 1.1.).

Proof. Obviously, ox induces a bijection between the bases of clopen sets in TX and T°.X,

respectively:

ox(T(S = X)TS)) = T*(S — X)(T"S).
o (T*(S = X)T*S)) = T(S = X)(TS).

Moreover. coverings consisting of such sets are carried over in coverings by ox and o'.
respectively.

a

3.3. Proposition. Let T be any endofunctor of Set. Then there exists a universal natural
transformation ¢ : T — T* to a functor T* : Set — Set with T°1 = 1. Moreover, T*

preserves finite coproducts. if T does.

Proof. In case of T1 = @, T* := idge¢ has the desired properties using the Yoneda lemma
just as in the beginning of section 2. If T1 # @, take the (generalized) coequalizer of [idset . T)

for 0 : T — T°. Note [idset,T] = T1 # @ by Yoneda's Lemma. Any natural transformation
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v:T — T with T'1 2 1 coequalizes [idset, T], because T'1 = [idsee, T']. Hence, there exists

a unique factorization
-4
T — T

\ l”.
TI
Moreover, T* inherits all colimit preservation properties from T.

By construction, A : T — f is pointwise surjective iff this holds for A*: T* — 8.

3.4. Theorem. Let T be an endofunctor of Set preserving finite coproducts with T'1 = 1.
Then the following are equivalent (with respect to the topology mentioned in 1.1.):
(i) A: T — B is pointwise surjective. '
(ii) (a) Existence of the diagonal d with the same assumptions as in 2.2.(ii) and
(b) (T(S — X))scx,cardS<cardx fails to be an epi-sink for every set X with (regular)
infinite cardinality.

(iii) TY is compact (not necessarily Hausdorff) for every set Y.

Proof, For simplicity assume A, = id,. For (a) consider the following commutative cube

id, X
/"lx‘ I / ’

X ————'O TX Ax ,/

- ’
AY!//' ¢ /, ﬂfl
7 i
7 d /, J' i T/I
// ¥
Ay JBY < | 82

'

¢ I}
T}’4—+ T2 /
g

The diagonal e in the back exists according to universality of 8x. Commutativity of the top
yields nx to be injective, while Ay is surjective by (i). Thus, there exists amapd: TX —
TY such that

d(nx(z)) = f(z), reX
and  d(t) € A (e(Ax(1))) . t€ TX \ nx(X).
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By construction, the upper triangle in the front commutes. The same holds for the lower

triangle, because

Tg(d(nx(z)) = Te(f(z)) = Tfy(nx(z))

forz € X and for t € TX \ nx(X)

Tq(d(t)) = Bg(Av(d(2))) = Bg(e(Ax(t)))
=Bfo(Ax(1)) =Tf(1).

Using 3.1., (b) is immediate from (i). thus (i) = (ii).

Now assume (ii). To prove (iii), it suffices to show, that every p-sequence f in TY has a
cluster point, where p runs through all infinite regular cardinals [2]. Therefore, consider
the open ordinal space (0,p[ and the following diagrams. which do commute according to
N2 = zdz :
1x
X=[0,p — TX

-

/J ¢ lT(m)n. ge2¥

-
-’

Y " —— T2
Ty
By assumption (ii) (a), there exists a diagonal d, which is continuous (2.3.). Hence, if the
p-sequence nx has a cluster point in TX, then so does f = dnx in TY. For any ordinal a < p

we have

TX = T([0,af— X)T(0,a) | | T((a. plm X)(Tle. o),
hence  TX = (Y T([0. al— X)(T(0, ) | [( 0 T(lex, ol X)(Tar. p])).

By (ii) (b), the first summand is different from TX, thus the second nonempty. Now

r]x([a, p[) = T([av P['—" X)(n[a,p[([as p[))
2 T([e, pl= X )(nja,pi([e; p])
= T(la, p[— X)(T{a, p[).

because 7, , is dense, hence

) £,

which means that nx has a cluster point in TX.
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(i11) = (i) holds, because

Bx =Axnx, X aset,

is dense. hence Ax : TX — BX is dense. too, thus surjective by compactness of TX and

Hausdorffness of 8 X.
O

4. Characterizations

Following the good old tradition to formulate axioms as weak as possible, we observe

4.1. Lemma. The following are equivalent for every endofunctor T of Set :
(i) T preserves finite coproducts.

(i) T preserves cosquares X [[ X.

Moreover, T1 =1 T2 2 f TQ1[J1)=T1[]T1.

Proof. The latter and (i) = (i)’ are obvious. Assume (i)’. Now 8 — 1[]1 factorizes via
both coproduct injections i.j : 1 < 1]] 1, hence T(® — 1]]1) via Ti and Tj, which are
disjoint. Consequently, T8 = 8. It remains to show, that T preserves the coproduct X of two
nonempty sets Y and Z:

0£Y

Yiiz=Xx.

0#£2Z
The injections are coretractions, i.e., ru = idy and sv = idz for some r and s. Consider the
cosquare

x%x“x
]

which is preserved by T. Then the following holds,
T(r [ [ 9)Ti = T(r ] [ s)i) = TuTr,

and similar T(r [[s)Tj = TvTs. But T(X [] X) is the (disjoint) union of the images of T4
and Tj, hence T(Y || Z) as image of T(r [] s) is the union of the images of Tu and Tv. The
latter are disjoint, because

T(Y — )] [(2 — 1)
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separates them. Therefore.
TY

(v [12)

T~
S

TZ

is a coproduct.

The following is immediate from the preceding results.

4.2. Theorem. Let T be any endofunctor of Set. Then T = g iff
(o) T1=1.
(i) T preserves cosquares.

(ii) For any map f: X — TY and any source (f, : TY — T2),¢,v such that the squares

nx

X — TX
Il d/’/, Jvaﬂv 962V
TY —— T2

Ty

commute for every natural transformation 7 : idsee — T, there exists a unique diagonal
d, rendering all the triangles commutative.
(1) (T(S — X))scX.cardS<cardx fails to be an epi-sink for every set X with regular infinite

cardinality.

These axioms (o)-(iii) are independent, as the following examples show (the proofs are left

to the reader).

(o) Interpret T := §]] B as monad of the category of compact Hausdorff spaces X together
with one continuous, indempotent, unary operation w: X — X, ww = w.

(i) Let ¥ be a strongly-rigid compact Hausdorff space [6], T0 := §. and

TX = Y(Yx\{c:X—oY|c constant})

for every nonempty set X. Now consider T as monad of the category of all powers Y/
together with ¢ [7,10].
(1) For T := B]],y,., B, the cokernelpair of idsee — B, the diagonal fails to be unique.

Let a denote the first strongly compact cardinal [5). If it exists, there is the following
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subfunctor T of the ultrafilter functor U :
TX :={peUX ||ip| < a or p a—complete}.

In this case, the diagonal does not exist in general.

(iii) Choose simply T := idset.

4.3. Corollary (E.G. Manes [13, 14]). § = U, the ultrafilter functor.

Proof. Clearly, U fulfills (o) and (i). The diagonal is given by
dp)={VCY|U(V Y)UV)E f(p)}. pelUX,

where f(p) denotes the (ultra-)filter generated by {f(S) | S € p} in UY. Condition (iii) holds,

because any ultrafilter refinement of
{la,plla <p} in [0.p[=X

is not in the image of U(S — [0, p[) for cardS < p.
a

4.4. Corollary (R. Bérger [4]). U is terminal among all endofunctors of Set preserving

cosquares.

Recall, that a varietal theory t : Set®” —s T in the sense of F.E.J. Linton [12] has renk
< p, 2 < p a regular cardinal, if each T-morphism w : tX — t1 can be represented as a

composition

tX =% ot
tf\ /‘r,
tS

where 7 : t§ — t1 is a T-morphism and cardS < p. Obviously, it is possible to restrict to

inclusions instead of arbitrary maps f [8].

Moreover, all T-morphisms w : tX — t1 factorizing via tf : tX — tS with cardS < p
generate a subtheorytc, : Set®”” — T, i.e., T<, C T is a subcategory, t<, the corestriction

of t, and a varietal theory, too.
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4.5. Theorem. Let t : Set®” — T be a varietal theory. Then t is the varietal theory of
compact Hausdorff spaces (up to an isomorphism) iff
(o) There are only trivial binary operations, i.e.. hom(t2,t1) = 2.
. (t(1—Y))? A= diagonal . L. i
(i) (#1)? (tY)? tY  is an epi-sink in T for all sets Y.
(ii) For each set Y, hom(t2,tY’) is an epi-sink in T.

(iii) The subtheories t<, fail to have rank < p for every infinite regular cardinal p.

Proof. It is easy to check (o)-(iii) for t = §°P : Set®” — T, T = #°P(Set°?) C Top®?, full.

the varietal theory of compact Hausdorff spaces. Note, that the canonical maps

pr] s —BY[[8Y — BY

separate points. For the converse, it suffices to verify (0)-(iii) in 4.2. with respect to the

corresponding monad

T = hom(—,t1)ot, i.e., TX = hom(tX,t1).

By (o) above, T2 = 2. To prove (i) in 4.2., consider any cosquare
i
x=x[[x
j
and the following commutative diagram

T2[[TX

proj. / Ik \proj.

T2 2 T(X[[X) - TX
\‘&wnn/ idTX
TX

where V denotes the codiagonal and ¢ := (X — 1)[J(X — 1) (12 = (¢1)? and tV = Al).
By assumption (i), Tc and TV form a mono-source. Hence, k is injective. By construction

and using T2 = 2 we get
T2 H TX = (kTiXTX)U (KT ) X),

thus kT: and kT form an epi-sink, forcing k to be surjective, too. Hence, T preserves

cosquares, especially 1]]1, and T1 = 1 by 4.1.
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By (ii) above, (T'g),eev is a monosource, which guarantees uniqueness of the diagonal in

4.2.(ii). Existence follows from universality of nx.

Condition (iii) above is a word for word translation of (iii) in 4.2.

O

4.6. Remark. A more detailed examination yields a much weaker, but ugly to state, version
of (ii) above. Instead of Hausdorffness of the topology mentioned in 1.1.. it suffices to assume,
that the finer topology geneated by the images of all hom(w,t1) : TS — TX, X fixed, §
any set, w : tX — tS any T-morphism, as subbase of closed sets, is weekly Soundararajon
[19,20]. This very weak separation condition implies Hausdorfiness in the presence of T)
and extemal disconnectedness. Any other separation axiom with the latter property would

be sufficient.

Condition (iii) above cannot be replaced by the weaker statement, that ¢ does not have a
rank, at least if there exists some Ulam-measurable cardinal « [5]. In this case, the varietal
theory ' corresponding to the wt-complete ultrafilter monad fails to have rank and fulfills

(0)~(i1) (but not (iii), because t¢,, has rank <w).

Recall. that algebraic categories in the sense of H. Herrlich [8,10] are equivalent to regular
epireflective subcategories of their corresponding Eilenberg-Moore—categories. Moreover, the
underlying set functor of HComp is well known to be monadic [12,13,14]. This yields an
axiomatic description of HComp using the characterization of its varietal theory above. As

in [9], call a subcategory of Top nontrivial if it contains a space with at least two points.

4.7. Corollary. A category C is equivalent to a nontrivial regular epireflective subcategory
of HComp iff

HC 0: C has a terminal object 1, all copowers 11) of it, and coequalizers.

HC 1: 1 is projective with respect to a C-morphism s : X — Y, i.e., every C-morphism

1 — Y factorizes via s, iff s is a regular epimorphism.

(X—’})U(X—'l) V= codiagonal
HC 2 1]]1 X1IX

X1IX in C and hom(1,1]J1) = 2.
HC 3: 1]]1is a coseparator in the full subcategory of all copowers of 1.

X is a mono-source for each cosquare

HC 4: For any (index-) set I with regular infinite cardinality there exists a C-morphism

1 — 1D, which fails to factor via any 1Y—7) with J C I and card J < card I.
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Hence. maximality characterizes HComp up to equivalence:

HC 5: Any category C' fulfilling HC 0- HC 4 and C C C', full. is equivalent to C.
or simply:

HC 5': Equivalence relations are effective in C [3].
Moreover, HC 0 - HC 2, HC 4 and
SHC 3: 1]]1 is a coseparator in C,
characterize Stone, the category of Stone spaces, and its dual Boo, the category of Boolean

algebras [21].

Proof. Assume HC 0 - HC 4 for C. By HC 0, hom(1, —) has a left adjoint F and, together

with HC 1, hom(1, -) turns out to be algebraic. The corresponding varietal theory is just
F°P ; Set°? — F(Set)°P,

the latter considered as full subcategory of C°P. Now 4.5. applies, showing that F°? equals
8°P up to an isomorphism of varietal theories. Hence the corresponding Eilenberg-Moore-
category is (concretely) isomorphic to HComp and C is equivalent to a regular epireflective

subcategory of HComp. HC 4 forces the latter to be nontrivial.

HComp fulfills HC 0- HC 4. Consider any C’ with HC 0- HC 4 and HComp C C’. Then
C' is equivalent to a regular epireflective, isomorphism closed subcategory C"" € HComp,
and we have

HComp~C* C C'"C HComp,

where C* € C" full and isomorphism closed. Using constant maps, any full embedding of a
nontrivial subcategory in Top turns out to preserve terminality. Hence, one may assume 1 €
C*. thus by homc- (1, —) = homucomp(l. =) o E for some equivalence E : C* — HComp
with F1 =1,

homC'(]u _) = hmnHComp(ll _) IC‘

is even varietal and natural isomorphic to the underlying set functor of C*. Moreover,
homc-(1,1]] 1) posesses exactly two elements, hence 1[[1 = 2 € C*. Since C* is closed
under the formation of limits in HComp (using uniqueness of the compact Hausdorff topo-
logy on a limit rendering all its projections continuous) all Stone spaces are contained in C*
[18]. Consequently, 3(Set) C Stone C C*, B 4 homc-(1,-), and C* = HComp [17,18],
hence C' ~ HComp.
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This shows, that C = HComp fulfills HC 5. Conversely, if C fulfills HC 0 - HC 4, then
(up to equivalence) C € HComp, full, hence C = HComp, if HC & holds. HC 5' forces C
to be varietal [10,12], hence C ~ HComp as well [9].

0

4.8. Remark. HC 5 may be regarded as dual to Peano’s induction axiom, which states
minimality of N. Note, that 4.7. constitutes a purely categorical characterization of HComp

among all categories and not only among (certain) full subcategories of Top as in [9,15,17,18,20].
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