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On the Existence and Structure of Free Topological Groups

H.-E. Porst

Abstract The subject indicated in the title serves as an example to explain the needs
for and developements of certain categorical concepts. Categorical thinking is used first to
find a more appropriate setting for attacking the problem (in looking at k-groups rather
than topological groups); applying then techniques from categorical topology leads to a
unified and conceptual treatment of the classical results in this field. Since the interrelation
between algebra and topology in topological algebra is seen as of a basically categorical
nature, particular emphasis is given to separate topological and algebraic arguments.

1 Introduction

1.1 Free Topological Groups and Category Theory

About half a century ago the Russian mathematician Markov was the first to prove the existence of
a free (Hausdorf) topological group G( X €) over a given Tychonoff space (X, ). i.e. a continuous
map (in fact an embedding) n(x ) from (X.£) into (the underlying space of) a topological group
G(X, €) such that every continuous map f from (X, £) to (the underlying space of) any topological
group A can be uniquely extended to a continuous homomorphism from G(X.£) to A [11]). He
constructed this object explicitely, but his construction was extremely complicated (more than 40
pages in print) and didn’t really give much insight into the structure of free topological groups.

Hence very soon completely different proofs were given by Samuel [17] and Kakutani [5] inde-
pendently: these proofs were not constructive at all but rather of a purely categorical nature. We
will recall Samuel’s proof in Section 2.1 for historical reasons since this seems to be the first ap-
pearance of an argument which later became known as Freyd's General Adjoint Functor Theorem
(GAFT). As is well known applying the GAFT does not yield any information about the internal
structure of the universal objects; hence Samuel’s proof, too, didn't show directly how the free
topological group might look like algebraically or topologically.

A somewhat more instructive categorical approach in this respect is due to Wyler [21]: we
will elaborate on this in section 2.2. One has to admit however. that the additional information
inherent in Wyler's so called Taut Lift Theorem is getting lost as soon as seperation properties
like Hausdorffness are taken into account. Nevertheless this shortcoming can be overcome in
interesting situations as will be shown in section 3.

The main methodological difference between these two different categorical approaches can be
best described as follows: Using the GAFT means using abstract category theory while Wyler's
argument is a typical application of the theory of concrete categories.

In section 3 we investigate the structure of free topological groups to some extent. The method
is categorical — or at least categorically minded: we first provide a suitable setup by replacing the

This work is an original contribution and will not appear elsewhere.
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category Top of topological spaces by the category k-Top of k-spaces; due to cartesian closedness
of the latter category a better categorical behaviour of the constructions involved is obtained which
in turn allows a better insight into the topological structure of our universal objects without loosing
the algebraic information given by the taut-lift approach.

1.2 Preliminaries

Throughout this paper we are concerned with the problem whether the functor V in the following
commutative diagram of functors has a left adjoint G: Top — TopGrp and what this might look
like.

|4
TopGrp —— Top

5| |7

Grp — 5 Set
U

Here Set (respectively Grp, Top, TopGrp) denotes the category of sets (resp. groups, to-
pological spaces, topological groups) and mappings (resp. homomorphisms, continuous maps.
continuous homomorphisms), while the indicated functors are the obvious forgetful functors. By
abuse of notation we will use the symbol V of the underlying space functor also for its possible
(co-)restrictions, as e.g. in V:Top2Grp — Tych. where Tych denotes the full subcategory of
Top of Tychonoff-spaces (we assume familiarity with the fact that a topological group, once it
is Hausdorff, it automatically is Tychonoff; the reason for this is that every group topology is
uniformizable (see e.g. [6])). The subscript 2 at Top as usual indicates Hausdorffness.

The following full subcategories of Top will play a particular role as base categories of V: Creg,
the category of completely regular spaces (without T7) and FHaus, the calegory of functionally
HausdorfT spaces, where a space (X.¢) is called functionally HausdorfJ if any two points of (X.¢€)
can be seperated by a continuous real-valued map. One obviuously has

Tych ¢ FHaus C Topz C Top and Tych ¢ Creg C Top

Each of these embeddings is reflective with continuous surjections as reflection maps: the first and
the last one are even concretely reflective (see [4, 1.3.5] and [1, 5.22])

The category Grp is considered as a subcategory of the category I'-Alg of associative I'-
algebras. where I' is the group-type consisting of one nullary, one unary and one binary operation
(see e.g. [10]). F:Set — Grp is the free group functor with nap: M — UF M denoting the insertion
of generators map; observe in particular that 9y factors over the free I'-algebra I'’M over the set
M (see [10, 1.2.5)). Given a map f: M — G from a set M into (the underlying set of) a group G.
f* will always denote its homomorphic extension to FM.

We would like to stress the following simple but crucial fact:

1.1 Lemma Let (fi: G — (H:.7:))ier be a family of group homomorphisms into topological groups
(H;,7:).Then the initial lopology T:n:x on G with respect to this family is a group topology.

Hence in particular the functor S: TopGrp — Grp is a topological functor and the functor
V:TopGrp — Top preserves initiality (i.e. V applied to an S-inilial source yields a T-initial
source).
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Proof Since the f;'s are homomorphisms, we have the commutative diagrams

(G.Tinit) —f'——' (Hi.7) (G 7init)? f'—‘ (H:.7)?

| Y [
(G. Tinit) f—' (Hi,7) (G, Tint) — (Hi 1)

i i

where { (resp. m) denote the group-inversions (resp. multiplications). Now continuity of the
operations on the groups (H;, 7;) together with initiality of the family of (continuous) maps f;
shows continuity of the group operations of (G, 7;n:1). <

As a simple consequence every subset A of a topological group (G.7) generates a topological
subgroup of (G, 7) in that one supplies the abstract subgroup of (the abstract) group G generated
by A with the subspace topology.

The following notational conventions are used: a topological space is usually denoted by (X, €).
where X is its underlying set and £ its topology; similarly (G, 7) denotes a topological group with G
its underlying group and 7 its topology. We don’t distinguish however notationally between a group
and its underlying set (hence (G, 7) can also denote the underlying space of the topological group).
Similarly we use the same symbol for morphisms in a concrete category and their underlying ones
in the base category.

2 Existence Theorems

2.1 Abstract Methods - The GAFT

As mentioned in the introduction we will start recalling the first nearly categorical existence proof
for free topological groups.

2.1 Proposition (Samuel) The functor V: TopaGrp — Top satisfies the conditions of the Ge-
neral Adjoint Functor Theorem and hence has a left adjoint.

Proof Given a space (X.£) consider the class of all continuous maps f:(X,£) = VA from (X,¢)
into (the underlying space of) any topological group A. For every f the image f[X] generates
a topological subgroup A, of the corresponding topological group A. By the following lemma
2.2 there is only a set T of pairwise non-isomorphic topological groups arising this way. Choose
according to 2.2 for every f some isomorphism @;: Ay — I; with I; € T and form the product
[Trer I with projections x;. There will result (keep in mind that V preserves products !) an
induced continuous map ® such that the following diagram commutes for every f:

]
(X&) —— Tler!

| E

Ay —
v
It is now straightforward to check that the corestriction pixg): (X,€) = VG(X,£) of & to the

(underlying space of the) topological subgroup of [];e7 / generated by ®[X] is V-universal for
(ng)‘ ’ o
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2.2 Lemma For every topological space (X,€) there exists only a set I of continuous maps
1:(X,£) — VI with topological groups I such that for any continuous map f:(X,€) = VA there
is some is: (X,€) = VI; € I together with an isomorphism p: [y — Ay with f = poiy.

Proof The proof is standard: from a solution set for the set X with respect to U: Grp — Set
(see e.g. [8]) one gets a solution set for the space (X.£) with respect to V by the observation that
any set carries only a set of topologies. <

Remark Lemma 2.2 expresses — as mentioned in the proof — nothing else but the fact that
Freyd's solution set condition is {ulfilled with respect to the functor V. Hence the use of this
crucial condition in the GAFT was already preceded in Samuel’s argument. Certainly. Samuel
— lacking the language of category theory — couldn’t prove (or even state) the GAFT in full
generality; however he in fact used the above argument for a quite general statement concerning
(in today’s language) the existence of left adjoints of (concrete) functors. Though the language of
categories and functors was developed about the same time it took another dozen of years until
the GAFT was established [3].

2.2 Concrete Methods - Taut Lifts

While the GAFT-approach focusses on a direct construction of a universal object the method
discussed in this section starts asking whether it is possible to lift the adjunction at the bottom of
our commutative diagram to get an adjunction at the top. We present the result of this approach
in the following form, i.e. as an application of the first half of Wyler’s Taut-Lift- Theorem [21] to
our particular situation.

2.3 Theorem (Wyler) Since S: TopGrp — Grp admits initial lifts and V:TopGrp — Top
prescrves initiality (see 1.1), for every lopological space (X,€) there ezists a V-universal arrow
px6): (X, &) = VG(X,€) which is alift of the U-universal arrow x: X — UF X in the sense that
Tp(x)e) =nx and SG(XE) =FX.

The topology of G(X.£) is the initial (group-)topology on FX with respect to the family

{f2FX -G | G=8(G.7). (G.7) € TopGrp. f:(X.£) — S(G,7)}".

Proof Since S admits initial lifts. the initial group topology 7(x¢) on F X described in the theorem
exists: since V preserves initiality, it is also initial in Top with respect to the family of maps f*.
Now everything can be read of the commutative triangles

(X.6) — X (FX.7(xq)
fﬁ
(G.7)

<

The following generalisation of 2.3 is easily obtained by first constructing the regular factorisa-
tion of the source of the f*'s and then taking the initial lift of the monosource of this factorisation.
In this way the taut-lift approach is also applicable in situations where separation axioms are
involved:

'loosely speaking this is the class of all homomotphic extensions of continuous maps from (X,€) to some
topological group (G, 7)
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2.4 Theorem ([2, 20]) If in the commutative square of functors
1%

A —— B

s| |7

Grp —— Set
U

S is a monotopological functor and V preserves initiality of monosources, then for every B-object
B there ezists a V-universal arrow pg: B — VGB which is a lift of the composite e o nrp with
some surjection e.

Observe, that — as opposed to 2.3 — 2.4 no longer contains any information about the algebraic
structure of the V —free objects, except one might be able to show that the source of the f* s
already is a monosource: this certainly will be the case if FX carries an A-structure (i.e. FX =
SA) such that nx is a B-morphism (i.e. nx = T(g:(X.€) — V A) ), since then n = idpx. In this
context the following result of Swirczkowski [19] is particularly helpful:

2.5 Proposition (Swirczkowski) For every functionally Hausdor{f space (X,€) the abstract free
group FX over the underlying set of (X, £) carries a group-topology which is Tychonoff and makes
7x a continous map.

We will give a proof of this result in section 3.2. Let us state here however the following
immediate consequence of proposition 2.5 and the remarks preceding it:

2.6 Corollary For every functionally Hausdorff space (X,£) the free Hausdorff topological group
(= free topological group !) over (X, £} is algebraically the free group FX over the underlying set
of (X,§). o

One might ask whether even the free Hausdorfl topological group over an arbitrary Hausdorff
space (X, £) will be algebraically the free group over the underlying set of (X, £). Since adjunctions
compose, this topological group is the free Hausdorff group over the FHaus-reflection x(X, £) of
(X,€). and hence algebraically the free group over the underlying set of x(X,€). Since this
reflection however fails to be one-to-one unless (X.€) is functionally Hausdorff itself, we can
conclude:

2.7 Corollary The free Hausdorff topological group over some space (X.§) is algebraically the free
group FX = FT(X,€) over the underlying set X of (X,€) iff (X,€) is functionally Hausdorff.
Otherwise it is algebraically the free group FTx(X.£) over the underlying set of the FHaus-
reflection x(X.€) of (X,€). <o

3 The Structure of the Free Objects

While 2.7 gives us complete information about the algebraic structure of our free objects, 2.4
seems to give a reasonable description of the topology. A closer look however shows that this
is not the case: the construction of the topology according to 2.4 requires knowledge of all the
category TopaGrp hence in particular of its free objects. It therefore hardly can contain a concrete
description of the topology in terms of (X, £) as it would be desirable. Moreover 2.7 is based on
2.5, the original proof of which is extremely involved and not very instructive (see also [14]).

In this section we therefore will give a categorically minded approach to the study of the topo-
logical structure of free Hausdorff groups. Our starting point is the following obvious observation:
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3.1 Lemma Let the topological group (G,7) be the free topological (resp. Hausdorff) group over
the space (X.£) via the V-universal map p(x¢). Then 7 is the largest (i.e. finest) group topology
(resp. Hausdorff group topology) which allows p(x ) to be continuous. o

Given any topological group (G,7) not only the group operations are continuous maps but
also all maps from finite powers of (G, 1) into (G.7) which can be derived from those, as e.g.
(z.y.2) = zy~'z or (z,y,2.u) — z 'yz’u. Let us call these maps term maps (for a precise
definition see any book on Universal Algebra) and let us denote by 75 the set of all term maps of
a group (5. If we want to describe the topology of the free topological group G(X.£) over some
space (X.£). 2.3 and 3.1 tell us that we have to look for a topology on F X as fine as possible such
that the restrictions of all term maps from Trx to the corresponding powers of the space (X, )
are continuous. This motivates the following definition due to Mal'cev [9].

3.2 Definition (Primitive Topology) Given a topological space (X, £) the final topology on
FX with respect to the restrictions of the maps from 7rx to the corresponding topological powers
of the space (X,£) is called the primitive topology on FX. It will be denoted by 7{x .

Unfortunately — as already observed by Mal'cev — the primitive topology on FX in general
fails to be a group topology; if it were, (FX. T(PX-E)) certainly would be the free topological group
over (X.£) and we would have a reasonable description of the free topology at hand. The reason
for this disappointing fact is a certain shortcoming of the category Top. as we will explain next.

3.1 The Topology of Free k-Groups

Instead of the category Top we will now work over the category k-Top of k-spaces. k-Top can
most easily be defined as the mono-coreflective hull in Top of all compact Hausdorff spaces. Hence
k-spaces are precisely the quotients of Hausdorff locally compact spaces. For us it will be enough
to be familiar with the following important categorical properties of k-Top. Proofs for two of
them are sketched by the references; for further details and a proof of the last mentioned property
see [7].

o k-Top is a full concretely coreflective subcategory of Top (see 1, 16.5 (1)]. Hence in
particular

s k-Top is a topological category whose final structures are final in Top, too (see [1, 21.30 -
21.35)).

¢ k-Top is cartesian closed.

As a bi-coreflective subcategory of Top the category k-Top has products; however, these k-
products are (in general proper) refinements of the topological product of the spaces in question.
In particular a pair (G, 7) of a group G and a k-topology 7 on the underlying set of G such that
the group operations are continuous with respect to the k-product will in general fail to be a
topological group. We will call such an object a k-group. k-groups together with the continuous
group homomorphisms form the category k-Grp. Though k-groups might fail to be topological
groups we will see shortly that the study of free objects in k-Grp sheds considerable light on
the topological structure of free topological groups. Observe first that for a k-space (X.¢) there
is an obvious notion of a primitive k-structure rcvac) on FX: in 3.2 you simply have to replace
topological power by k-power (keep in mind that final structures in k-Top are final in Top,too).

Our first result shows that — due to cartesian closedness of k-Top (a crucial property in this
context which the category Top is lacking) — the study of free k-groups is much easier than the
study of free topological groups.
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3.3 Theorem For every k-space (X,£) the primitive k-structure is compalible, i.e. (FX, "?x.e))
is a k-group and hence the free k-group G¥(X.£) over the k-space (X .£).

Proof To prove continuity of the group inversion i simply observe that for every term map
t € Tpx the map i ot again is a term map, and hence continuous with respect to "?x,e)? since
this topology is final with respect to Trx continuity of i follows. Similarly, continuity of the
multiplication m follows from the observation that for every pair (;,%,) of term maps the map
mo (t x t3) is a term map again and that the family {t; x t; | t;.¢; € Tpx} is a final family by
the following lemma., <

3.4 Lemma Let C be a cartesian closed topological category and (f;:C; — C)ies a final epi-sink
in C. Then

(fi x f;:C: x C; = C x C)ijer

is a final epi-sink again.

Proof Use [1. 27.22] and the fact that final epi-sinks are compositive. <

It will be useful to make some consequences of the previous theorem explicit. We here use the
following notations:

o For a given set X the free monoid over the disjoint union of two copies of X is denoted by
[X. canx:T'X — FX is the canonical representation of the free group over X as a (monoid)
quotient of the free I'-algebra I' X overX. Remember that one might think of elements of ['X
as terms like e.g. zy~'yz with z,v,z € X where however zy~'yz is different from zz, but
both will be identified by canyx. These terms again correspond to term maps; the number
a(t) of variables occuring in a term t will be called the arity of t.

o For a given k-space (X, ) the set I'X can be (via its I'-terms) given a k-topology in precisely
the same way as in 3.2. The resulting space will be denoted by I'(X,€) . In complete analogy
to 3.3 this is the free k-T'-algebra over (X, €).

e By I‘(’XTQ we denote the space [[,rx (X.£)*"). Observe that there is a canonical surjection
quot(x g): L,erx (X, €)*) — I'(X, €) characterized by quot(x¢) 0 ¢, = t for every term map
t:(X. €)% — I'(X,€) and with ¢, the corresponding coproduct injection.

o Assume any enumeration of (the restrictions of) the term maps of FX (!}, starting with
to = 7x. We denote by FiX the set U,; [ X?(")]. Observe that obviously FX = U2, Fi X.
Fi.X can be given the final topology with respect to the family (t: (X, €)*®) — FuX)ics-
The resulting space will be denoted by Fk(—f,{).

3.5 Corollary For a k-space (X, €) the following hold:

1. The canonical representation is topologically a quotient map if considered as a map
can(xg: (X, €) = (FX.k{x z)-

2. The canonical surjection quot(,\r‘o:l‘(z& - F(}Tf) is topologically a quotient map.

3. The k-space (FX, "fx,e)) is a colimit in k-Top of the chain of spaces (FTJ();‘E;V.
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Proof 1. follows from the fact that FX endowed with the final topology with respect to
canx: (X, €) = FX is the frec k-group over (X.£). This is a consequence of the observati-
ons that this final topology is compatible (use 3.4 and the fact that cany is a [-Alg-morphism,
i.e. consider diagrams similar to those in the proof of 1.1) and that the continuous homomorphic
extension of any continuous map f from a k-space (X, £) into a k-group (G.7) factors over I'( X, §)
(use the corresponding fact for abstract algebras and finality of can(x.q).

2. is obvious since quot(x ) is the first factor of a final sink (compare [1. 8.13]).

3. obviously is the case for the underlying sets; now use 3.3 and the fact that final sinks compose.

¢

We are now going to exploit the various desriptions of the topology of the free k-group G*( X £)
over a k-space (X, £). Our aim is here to study topological properties which G¥(X, £) might inherit
from (X.¢€). For doing so we introduce the following concepts:

3.6 Definition (t;-spaces and k,-spaces) A k-space (X,£) is called

o weakly Hausdorff or a t,-space provided the diagonal Ay is closed in the k-product
(X.€) x (X.€). k-Topz will denote the category of tg-spaces.

¢ a k,-space. provided it is homeomorphic to a colimit of a countable chain of compact Haus-
dorff spaces. k-Top, will denote the corresponding full subcategory of k-Top.

Since k-products are refinements of topological products every Hausdorff space is weakly Haus-
dorfl. The most important feature of k,-spaces is the fact that their k-products and topological
products coincide. This and some other topological properties we will make use of in the sequel
are collected in the following proposition. For proofs we refer to the literature.

3.7 Proposition ([7, 12, 13, 15])

1. k-Topz is a reflective subcategory of k-Top; its equalizers are precisely the closed embed-
dings.

to

. A directed colimit of a chain of tg-spaces is a tg-space again.

3. If ¢:(X,€) —= (Y.v) is a quotient in k-Top and (X,£) is tg, then (Y, v) is t3 if (and only
if) (¢ x ¢)"YAy] is closed in (X,£).

4. A tg-space is k,, provided it is a quolient of some k,-space or a colimit of a countable chain
of compact spaces.

5. Products of k,-spaces in Top and k-Top coincide.
6. k_-spaces are normal. o

In order to prove that G*(X, ) inherits the ts-property from the space (X, ¢) we will need the
following criterion.

3.8 Proposition For a weakly Hausdorff k-space (X, &) the free k-group G*(X,€) will be weakly
Hausdorff again, provided for every pair (s,t) of term-maps of ['X the set

M(s,t) = {(z.y) € X x X°() | canys(z) = canxt(y)}

is a closed subset of the k-product (X.€)**) x (X.£)°®).
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Proof In a first step we show that the space I‘(j(\,f) is ty. By definition this space is the following
countable directed colimit (with respect to a given enumeration of the term-maps of ' X)

I(X.€) = colim [] (X, €)*.
k—co i<k

Since the tg-property is obviously stable under finite topological sums 3.7 (1.) and (2.) yield the
desired result.
Using the abbreviation ¢ = cany o quotx we observe next the equality

M(s. t)y=(g x q)-][AGk‘Xz)] n (Xﬂ(’) x Xﬂ(')).

Now our hypothesis shows that (g x ¢)~'[Agr(x.¢) has a closed intersection with every summand
of
N(X.§) x T(X.€) = [T(X.€)°) x (X,
(s:t)

and hence is closed in F(j(\,{)z. Now apply 3.7 (3.) and 3.5. <o

Applying our criterion 3.8 we will get the desired result. Instead of presenting a complete
proof. which would be quite technical. we will illustrate the power of the criterion by a typical
example.

Consider the following terms from I'X : s = zy~
the) corresponding term-maps are the maps

'r=lrzw and t = uw. The (restrictions of

s X® — FX and t:X? — FX.
(a3.....as) +— aja;'a3'aza,as (b1.b2) w— byby

It is easy to compute the set M(s,t) as M(s,t) = My U M, with
M; = {(ay,a1.a3.a4,05,a4,0a5) | a; € X} and M, = {(a1,a2,83,a2.685,61.a5) | a; € X}.

Since M; = X3 x Ax2 and M; ~ X x A}. the set M(s,t) is a union of two closed subsets of
(X,6) = (X,6)* x (X, £)°®) and therefore closed.

Also in the general case (for a complete proof see {16]) M(s,t) will be a finite union of subsets
which are homeomorphic to subspaces of (X.£)2¥) x (X, €)% of the form A% x X! with 2k 41 =
a(s) + a(t). So we have the following result.

3.9 Theorem (Lamartin) For every weakly Hausdor(] k-space (X, £) the free k-group G¥(X.¢)
is weakly Hausdorff again. Lod

It is not difficult now to prove. that G*(X.£) also inherits the k,-property from (X, £).

3.10 Theorem For every k,-space (X.£) the free k-group G*(X,£) is k, again and contains
(X,€) as a closed subspace.

Proof In a first step let us assume that (X, £) is even compact Hausdorff. Then I'(j(\.ﬁ) is a
k.-space by the representation given in the proof of 3.8, since finite sums of powers of compact
Hausdorff spaces are compact Hausdorfl. By 3.9 and 3.7 (4.) we are done. Alternatively: because
of 3.9 the representation given in 3.5 (3.) fulfills the second condition of 3.7 (4.).

Let now (X,¢) be given as a colimit of the chain ((X,,&n))nen of compact Hausdorff spaces.
For every n € IN there is by the first step of this proof a representation of (the underlying
space of) G*(X,£), as a colimit of a chain of compact Hausdorfl spaces (C})ien. But then



174 H.-E. Porst: On the Existence and Structure of Free Topological Groups

G*(X.£) is, as a space, a colimit of the chain (C7).env and therefore a k,-space. This argument
uses the facts that (i) G* as a left adjoint and (ii) the underlying space functor V into the
cartesian closed topological category k-Top (by [15, 3.1]) preserve directed colimits, such that
VGH*(X.€) = colimy_.o VG¥(X, £),. and that there is (iii) a particular version of the theorem on
limits with parameters (see [8]) valid for topological categories (see [15, 4.1]).

Starting from 3.5 (3.) the same procedure shows closedness of (X, £) in VG(X,¢). o

3.2 The Topology of Free Topological Groups

We now will exploit the results of the previous section to get additional information about the
topology of the free topological group G(X.€) over a topological space (X, £). The key for doing
this is the following proposition.

3.11 Proposition For every k,-space (X.£) the free topological group G(X,§) coincides with the
free k-group G*(X,£). In particular, the primitive topology is compatible, and G(X.£) is simply
(FX,t{x )

Proof Since G¥(X.£) is a k,-space by 3.10 it follows from 3.7 (5.) that G¥(X.£) also is a

topological group. Moreover 3.7 (5.) implies — in connection with the fact that final structures

in k-Top are final in Top, too —. that the primitive k-structure fo.f) is the primitive topology

Tx.8): <
The following is then an immediate consequence of this observation.

3.12 Theorem (Mal’cev) For every k,-space (X.£) the free topological group G(X,£) is a nor-

mal space and contains (X,£) as a closed subspace.

Proof Use 3.11 and 3.10 in connection with 3.7 (6.). e

By a different but also very simple method we can generalize from compact Hausdorff spaces to
Tychonofl spaces. Here we obtain first the main part of Swirczkowski’s result 2.5 where our proof
in addition gives a conceptual description of the constructed topology. We should add however,
that we don’t know whether both constructions coincide.

3.13 Proposition For every Tychonoff space (X, ) the free abstract group FX carries a com-
patible Tychonoff topology o(x¢). The topological group (FX,o(x¢) is the free completely regular
group over (X, €), which happens to be Tychonoff and hence also is the free Tychonoff group? over
(X,€) and contains the space (X.£) as a (closed®) subspace.

Proof Replace in the proof of 2.3 the category Top by the category Creg (which also ad-
mits arbitrary initial structures as a concretely reflective subcategory of Top (see 1. 21. 35]))
and obtain a topological group G°(X.€) = (FX, o(xé)) which is free over the space (X,€) in
the category CregGrp of completely regular groups via the insertion of generators map nx.
Let now B:(X,£) — B(X.€) be the Stone-Cech compactification of (X,£). Since GB(X,£) be-
longs to CregGrp by 3.12 the universal property of G°(X,€) yields a continuous injection
FB:G¢(X,€) — GB(X.&) such that the following diagram commutes.

X6 29 Gex.g)

| [

B(X, &) — GBA(X.§)
N3(X.6)

2We rather should have said Hausdorff group here; for the reason of our terminology see the final remark.
3We won’t discuss closedness of (X,€) here, see e.g. [18]
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Since GB(X,€) is Hausdorfl by 3.12, it follows that g(x ) must be Hausdorff, too. Hence oyx ) is
a Tychonoff topology. The diagram shows in addition that n(x¢) must be an embedding since the
embedding ng(x,¢) 0 A lactors over gx ¢). <o

Remark Swirczkowski’s complete result (see 2.5) is now a simple corollary. If (X, £) is a functio-
nally Hausdorfl space, consider first its Tych-reflection p(x¢): (X.€) — p(X,€), which as a map
is the identity idy. Hence FT(X,£) = FTp(X.¢£), and 3.13 gives the result. Note that — though
nx.e) and 7,(x,¢) coincide as maps — 1,(x ) no longer is an embedding. except (X, £) already was
a Tychonoff space.

Let us finally collect some further conclusions as our last theorem.

3.14 Theorem Let (X, £) be a topological space and G(X, £) the free topological group over (X, §).
Then G(X,€) = (FX,1;) and the universal continuous map nx¢):(X.€) = G(X,€) is as a map
simply the insertion of generators map ny: X — FX. Moreover the following hold

1. (X,€) is Tychonoff <= G(X,£) is Tychonoff* and yx¢ is an embedding

2. (X.€) is functionally Hausdorff <= G(X.£) is functionally Hausdorff*.
In both cases G(X.£) is also the free Hausdorff group.

If however (X.£) is not functionally Hausdorff then the free Hausdorff group over (X .€) is the

free topological group Gx(X.€) over the FHaus-reflection x(X.£€) of (X,¢€).

Proof If (X,€) is a functionally ausdoril space. then idpx: G(X,€) — (FX,0(x¢)) is the con-
tinuous (!) homomorphic extension of n(x¢g): (X.€) — (FX,o(x.¢); it follows that the topology of
G(X, ¢) refines the Tychonoff topology o(x ¢) and hence is functionally Hausdorff. A (functionally)
Hausdorff group however is Tychonoff automatically.

If (X,€) is even Tychonofl, nx¢): (X, €) — G(X,£) is an embedding as can be seen using the same
argument as in the proof of 3.13; one only has to replace G°(X,£) by G(X,¢§).

The remaining statements are obvious. o

Remark Throughout this note group can be replaced by equationally defined algebra with respect
to a fized finitary typ ). If then {2 is used instead of the group-type I' and the corresponding
variety instead of Grp, all results hold without any change in the proofs, except for statement
(1.) in 3.14 which would only read as follows
o (X.€) is Tychonoff = G(X.£) is functionally Hausdorff and nx¢) is an embedding
(the proof of 3.14 here made use of the fact, that a functionally Hausdorff group is Tychonoff. and
hence can only be extended to algebras like abelian groups or rings).

It is still an open question whether 3.14 (1.) holds for algebras in general, i.e. whether the
free topological algebra over a Tychonoff space is Tychonoff, even if the algebra has no underlying
group structure.
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