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Free Spectra of Concrete Categories and Mixed Structures

G. Jarzembskt

There is no doubt that the concept of an adjoint functor is a
fundamental notion of Categorical Algebra. It has been particularly
well expressed by reducing the nature of "monadicity" of a functor to
the existence of free objects and the validity of Beck’s criterion
(10]). However, in the theory of topological functors the importance
of free objects is incomparably smaller - recall, for instance, that
in the category of topological spaces free objects are discrete
spaces.

Both classes: that of monadic and that of topological categories
are opposite, "extreme wings" of the large class of concrete catego-
ries having, roughly speaking, mixed "topologically-algebraic
character". This can be easily seen if we restrict to finitary case
over the category of sets: finitary monadic categories are varieties
of finitary algebras while finitary topological categories may be
identified with categories of models for Horn theories of finitary,
pure relational languages without equality. A wide class of catego-
ries of algebraic systems which are naturally recognized as
categories of mixed structures is out of the reach of both theories.
Thus the search of a theory containing both particular theories and
describing possibly large class of categories of "topological-
algebraic structures" arose as a natural consequence of thé
development of Categorical Algebra and Topology.

The fundamental question we have to answer trying to construct
such a theory is the following: what is a proper categorical setting
for it? The mentioned "asymmetry" of importance of free objects in
both particular theories indicates that the notion of a right adjoint
functor is not the best categorical setting for such a theory.
Moreover, in categories such as: local commutative rings, locally
compact spaces which we would like to include in our theory, the
corresponding underlying functors into sets have no left adjoints.

Analyzing properties of underlying functors of many particular

This work is an original contribution and will not appear elsewhere.
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concrete categories which are generally recognized as '"categories of
mixed structures" we observed a common characteristic feature of
these functors. This led us to the notion of a partially adjoint
functor which we suggest to consider as a starting point for a

construction of a unifying theory.

By Pos we denote the category of posets and order preserving maps.

For a given functor U:A >C, a subcategory D of A is called
U-perfect if ObD = ObA and for each A-morphism f, if f-ee D for some

ee D such that Ue is a coretraction in C, then f is in D, too.

>C is called D-adjoint for a given

Definition 1. A functor U:A
U-perfect subcategory Ds A if there is a triple (S,3,n) such that

S:0bC >ObPos ,
J = (3x:sx > A : Xe ObC) ,
n = (nx:AX > ij: Xe ObC) (A denotes the "constant" functor)

subject to the following condition:
>UA,A) there exists a unique ie SX
>A such that Uﬁ-n? = h,

for each U-morphism (h:X
together with a unique D-morphism ﬁ:&x(i)

If, moreover, h1:3x(j) >A is such that Uh1~n§ = h then j=si and

h1 = h-Jx(351).

We call the triple (S,3,n) a D-spectrum of U. For an Xe ObC, the
poset SX as well as the ordered family (3X(i):ie SX) is called a
>C is said to be partially

D-spectrum of U over X. A functor U:a
adjoint iff it is D-adjoint for some Ds A.

If U is monadic, then U is right adjoint i.e. A-adjoint and every
spectrum is a one-point set.

If U is topological and fibre-small, then U is In-adjoint, where
In denotes the subcategory of U-initial morphisms. In this case
the spectrum SX is the U-fibre over X.

The following examples will hopefully clarify this definition.

1. The underlying functor U:Reg >Set from the category of regular
spaces into sets is adjoint with respect to the subcategory of
perfect continuous maps [2]. For a set X the spectrum SX consists of
all subspaces of the ultrafilter space over X containing all prime
ultrafilters. This remains true if we consider the restriction of U

to the subcategory Tich ¢ Reg of Tichonov spaces. If we restrict to
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the subcategory Lcomp of locally compact spaces, then this fact
remains true too, but then we have to restrict spectra SX to open

sets they contain.

2. The underlying functor U:Lcrng >Set from the category of
local commutative rings is adjoint with respect to the subcategory
of homomorphisms reflecting invertible elements. In this case for
every set X the associated spectrum is the prime spectrum of the free
commutative ring Z[X] but considered with the dual order.

3. Let UQ:Palgﬂ————>Set be the underlying functor from the category

of all partial algebras of a type 1 into sets. Recall that a
>(B, (q";q¢ Q))
is strong [4] provided for every de Qn and ae An, qA(a) is defined
iff qB(ha) is defined ( and then, of course, hqA(a) = qB(ha) ).

homomorphism of partial Q-algebras h:(A,(qA;qe Q))

The functor UQ is adjoint with respect to the subcategory of strong
homomorphisms. The spectrum of Un over a set X is then the complete
lattice of all initial segments over X ( a subset Xo of the set of
terms QX is an initial segment provided Xs X, and for any term te X,
whenever te Xo’ then every subterm of t is in Xo, too).

4. A functor U:A >C has a left multiadjoint [3)] iff U is A-adjoint
and then every spectrum SX is a discrete poset. More generally, if
U:A >C is D-adjoint, then the restriction UID:D-———>C has a left
multiadjoint. But the converse fails to be true. To see this,

consider the following example:

. feD s
[ 4 =
geD v (_Uf_—va_>)

The aim of this note is to present few results illustrating the
usefulness of the concept of spectrum in investigation of categories
of mixed structures. These results are chosen mainly from our
earlier papers (6] - (8] .

Partially monadic categories. Up to now we use an intuitive notion
of a "category of mixed topologically-algebraic character". Now,

using the introduced concept we distinguish a wide subclass of these
categories. This class will be the object of our investigation here.

Let U:A

>C be a D-adjoint functor with the D-spectrum (s,3,7m).
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Let ( )* be an operator assigning to every pair (f:Y >Jx(i),ieSX)

the pair (f'= UE:J,(3) >3, (1), je SY) , where E:3 (3) >3, (1)
is the D-extension of (f,3x(i)).

The 4-tuple SU = (8,3 = u3,m, ( )*) is called a spectral algebraic
theory (SAT, for short) generated by a D-adjoint functor U:A >C.

Let SU—Alg be the category such that objects (SU—algebras) are
triples (A,ie SA,a:JA(i) >A) such that a-n? = id

>JA(i), a-f'= a-g* provided af = ag.

and for any f,g:X

>B such

Morphisms from (A,i,a) to (B,j,b) are C-morphisms h:A
that h-a = b'(n?-h)*~JA(isk) , where dom(n?-h)*= 3, ().
If, moreover, i = k, then h is called perfect.

By US:SU-Alg >C we denote the obvious underlying functor.
Observe that Ug is adjoint with respect to the subcategory of
perfect morphisms.

It can be easily checked that

H:A > SU-Alg given by H(A) = (UA, ieSA,(idUA)*), where
: * o7 . : .
(ldUA) = U(ldUA)'JUA(l) >A, is a well defined concrete functor.

Definition 2. A D-adjoint functor U:A >C is said to be D-monadic

if the the comparison functor H:A >SU-A1g is an isomorphism

preserving and reflecting distinguished subcategories (i.e. Hf is
perfect iff £ is in D).

A functor U:A >C is said to be partially monadic if U is

D-monadic for some U-perfect subcategory DS A and then (A,U)} is

called a partially monadic category (p.m. category, for short).

Remark. In a complete analogy with the theory of monadic categories
one can formulate an abstract definition of an SAT and its

(partially monadic) category of algebras (compare [6]).

The introduced notion generalizes the concept of a monadic

functor in the sense that a right adjoint functor U:A >C is

monadic iff U is A-monadic. The associated SAT reduces then to the
"algebraic theory in extension form" (([9]). In this particular case
every S-algebra (A,i,a) is fully described by the pair (A,a) since

every spectrum is a one element set.

Every topological category with small fibres is In-monadic and the
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associated SAT is the corresponding topological theory in the sense
of Wyler. Every S-algebra (A,i,a) is then fully described by the
pair (A,i) since the structure map a:JA(i)———>A must be the identity

morphism.

All the functors discussed in the examples above are D-monadic,
>Set.

except the underlying functor U:Tich

The class of partially monadic functors is distinguished within
the class of partially adjoint functors essentially in the same way
as monadic functors have been distinguished within the class of right
adjoint functors. This similarity is particularly well expressed by
the following fundamental result:

Theorem 1. (generalized Beck’s criterion) UiA——>C is D-monadic iff U
is p-adjoint and the following holds:
for any pair of parallel D-morphisms f,g:A

>B such that (Uf,Ug)
may be completed to a contractible coequalizer (Uf,Ug,e,s,t) in C
(i.e. e'Uf = e-Ug, e's = id, Uf-t= id, s-e = Ug-t), there is a

unique lift e:B >C of e in D and, moreover, e is a coequalizer of

the pair (f,g) in D preserved by the embedding Ds A.

Proof. Because of space-limitation we omit the proof. We hope that
the reader familiar with the classic Beck’s theorem for monadic
functors ([10]) will be able to prove this theorem without any
serious difficulties (compare also [6]).

Example. Let SQ= (SQ,J,n,( )*) be the SAT corresponding to the
functor Un:Pang————> Set., Three first components of SQ have been
described earlier. The operator ( )* is defined using inverse images

as follows: for a given initial segment X< 0X and f:Y >xo we
construct the commutative diagram
Vo ad
Qv mt >QX
T m
*
~. -1 £
(mf) "7 (X)) ————> X
£

|

(where nf is the homomorphic extension of mf:Y

> OX ).

A partial Q-algebra A determines the SQ—algebra A= (A= UnA,Ai,a),
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where Ay is an initial segment consisting of all Q-terms over A
determined in A while the structure map a:Ai———>A assigns to each
I-term t in A, its value in A.

Thus the fundamental concepts of the theory of p.m.categories are
introduced very much in the same way as it has been done in Catego-
rical Algebra with the theory of monadic functors. The only but
fundamental difference is that the concept of a right adjoint
functor is replaced here by a partially adjoint functor. However,
many results concerning monadic (and topological) functors can be
generalized for p.m.functors. In the present note we concentrate
mainly on these problems and results which have no nontrivial
counterparts in both particular theories.

Completeness and completions. In contrary to monadic and topological
categories, there are p.m. categories over complete categories which
are not concretely complete. Recall, for instance the categories
Lcomp and Lerng.

Using the concept of spectrum we get the following criterion for
concrete completeness.

Theorem 2, Let U:A >C be a D-monadic functor with the associated

SAT S = (S,J,n, ( )*). Assume that C is complete. Then

(A,U) is concretely complete iff every SX is a complete lattice
* . .
and the operator ( ) preserves infima, 1i.e.
>Jx(i), with 1 = infK for some K¢ SX , if

for any f:VY

(Jx(isk)-f)*:JY(j(k))————>Jx(k)) for every k in K, then

£5:3,(3) >3 (i) , where 3 = inf(j(k):ke K).

Proof. We may assume A = S-Alg. First we show that A has concrete

equalizers. Let f,g:(A,i,a) >(B,j,b) in S-Alg and assume that

e is an equalizer of (f,g) in C. Consider the commutative diagram:
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B.fe)*= (nge)*
3o (r) (9;-Le) = (1579 > 35(9)
JC(ssr) T (nA-e)*

Jc(s) i >J, (1) b

|
c e l a f

>
C > A > B
Thus there exists c:JC(s) >C such that a'(n?e)* = e'Cc .

Now it is a routine to check that (C,se SC,c) is an S-algebra and
e is an equalizer in S-Alg of the pair considered.

It remains to discuss the existence of products. For notational
simplicity, we restrict to finite products and finite infima. Assume
(A,i,a), (B,Jj,b) are S-algebras and AxB 1is a product of A and B in
C with projections pA and pB, resp. Consider the commutative diagram

A B *

. (n.p,)* _ (nipg) .
JA(l) < i¥A JAxB(kA) JAxB(kB) 3B >JB())
a Ip,p (k) b

le
p P
A A AxB B > B

where k = inf(kA,kB) in S(AxB).

It is easily checked that (AxB,k,c) is a product of the considered
pair of S-algebras.

To prove necessity, for given i,je SX consider a product of 3x(i)

and Ex(j) and a map 7n:X >Jx(i)xJX(j) determined by the pair

(n?,n?). Let ﬁ:Jx(k) >3X(i)X3X(j) be the perfect extension of 7.

One can prove that k = inf(i,j).
We left the details of the proof to the reader (compare [7]).

In particular, this criterion gives methods of "completion of a
partially monadic category to a complete one" based on well known
methods of completion of posets to complete lattices ([7)).

We formulate here one of . them:

Theorem 3 (universal completion).For any p.m. category ((A,U),Ds A)
over a complete base category C there is a concretely complete p.m.

>Ac

category ((AC,UC),DC) together with a concrete embedding Z:A
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such that Z(b)s Dc and the following holds true:

for any concrete functor F:A

category ((Al,Ul),Dl) such that F(D)¢ D1

concrete and limit preserving functor F:A
F(Dc)s D1 and FcZ = F .

>A1 into a concretely complete p.m.
there exists a unique

c >Al such that

Proof. (sketch) Let (S,J,mn,( )*) be éhe SAT associated to ((A,U),D).
We construct a new SAT (Sc,Jc,nc,( )C) as follows: for every X in C,
s®x is the universal completion of the poset SX, i.e.

s®x = {AcSX; A is increasing} and A=Biff B A for A,6Be SX,
and for every Ae SCX H

J§(A) = lim(J,(3); je A), while

(nc)ﬁ is a morphism determined by the family (n?; je A)

The operator ( )c is defined by the following diagram:

3, (i(3)) @m’ s

I T pd (1inmit
c nC c projectiop) )
JY(AC) > JX(A) = llm(Jx(l):lE A)

T "‘——”,,JL—,,,—A7
Y
(where Ac= { ke SY; k= i(j) for some je A} ).

The category of Sc-algebras is the required universal completion of
((A,U),D) ([7]).

Remark: Underlying functors of concretely complete p.m. categories

over sets aretopologically-algebraic ((5]).

In a p.m.category (A,U),D) having a concrete terminal object, we
distinguish a subcategory of total objects. An object A in A is said
to be total, iff the unique morphism from A to the terminal object
is in D.

Lemma 4.. The full subcategory of total objects is monadic over
the base category.

Proof. If total objects exist, spectra of the underlying functor
have greatest elements preserved by the operator ( )*. Observe that
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total objects are S-algebras (A,i,a) such that i is the greatest

element of SA. Now the lemma is obvious.

Under some additional assumptions on base category, (for instance,
for p.m. categories over sets) the category of total objects is a

reflective subcategory of a p.m.category considered [7].

Examples. Total objects in Palg are total Q-algebras. In Reg and
Lcomp total objects are compact spaces. Tich is the subcategory of
these objects in Reg which are embeddable into total objects.

The category Lcrng has no terminal object.

Finitary partially monadic categories over Set. The following
definition covers a wide class of p.m.categories over sets.

Definition 3. A class V of partial Q-algebras (or a full subcategory
it determines) is called a weak variety if the following holds:

i.) if e:A——>B is strong and A V, then Be V,

ii.) if (mi:A i

strong homomorphism and every 2 is in V, then 4 € V.

i, . -
>A7:1e I) is a monosource containing at least one

Lemma 5. Every weak variety is a p.n.category over sets.

Proof. Recall that for any type I, PalgR is partially monadic with
respect to the subcategory PaquS of strong homomorphisms. Let
Ve Palgl be a weak variety. We show that the underlying functor
U:v

initial segment Xi, if the source (h:xi———>UA: Ae V) contains at

>Set is (VnPangs)—monadic. Cbserve the following: for every

least one strong homomorphism, then it has a factorization

( X; SN x‘i’ —(®p)_SuA :aev )

such that e; is strong and surjective and (mh) is a monosource
containing strong homomorphism. Thus Xg is in V. It is clear that
the family of all Xz's is the desired spectrum of U over X. The
first condition of Definition 3 guarantees that U satisfies
the generalized Beck’s criterion.

Let Lz o(f1) be an infinitary language with atomic formulas of the
!
following forms ([1}): 3t (existential atomic formulas) and (t =t1)
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(equations), where t,t1 are f{l-terms .

A partial Q-algebra A satisfies the formula 3t at a valuation of
variables h:X >A (A k&= 3t[h] ) iff the term t exists in A at the
valuation h. 4 &= (t = tl)[h] iff 4 &= (3tA3tl)[h] and the values of

t and t, at h coincide. Then we extend the validity relation in the

usual way (Here we use quantifier free formulas only. Infinite
conjunctions uA)and disjunctions (V)are allowed.).

Proposition 6, A class VS PalgQ is a weak variety iff V = Modé®,
where ¢ is a class of Lz m(ﬂ)—formulas of the form:
’

(1) i\e/I(Aq)I A /\Q;) or

(2) Aet » As”

where every 0; and ¢ are sets of existential atomic formulas, every
¢; is a set of negations of formulas of this kind while ¢ is a set

of equations (for the proof we refer the reader to [8]).

Examples. Local commutative rings, small categories, posets, partial
monoids are weak varieties of partial algebras of suitable types.

This concept generalizes the notion of a variety of total algebras
in the sense that a nonempty weak variety consisting of total
algebras only is a variety.

The next theorem indicates the role of weak varieties in the theory
of p.m.categories. Throughout (A,U),D) is a p.m. category over Set
with the associated SAT (S,J,m, )*). For simplicity, we assume that
A contains at most one object with an empty carrier. For a set X by
FinX we denote the directed system of all finite subsets of X. For
any ie SX and an embedding wY:Y >X, where Ye FinX, by i(Y)e SY we
denote the element such that

(njwy) "3, (1(¥))

> Jx(i).

Theorem 7. Assume that the following holds true for every set X:
i.) For every je SX, i=j iff i(Y)s=j(Y) for every Ye FinX,
(i.e. SX is a subset of 1lim(SY:Ye FinX) with the induced order),

X

! Y)*:Jy(i(Y))—>Jx(i); Ye FinX)

ii.) For every ie SX, (Jx(i),((n
is an epi-cocone in Set.

Then there exists a weak variety V of partial algebras of a
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finitary type together with a concrete isomorphism H:A———>V such
that for every f in A, fe D iff Hf is a strong homomorphism.

Proof. (sketch) For every ne N, put nn= the disjoint union of the
family {Jn(i);ie Sn }, where n = {0,1,..,n-1}.
For any A€ A, put H(A) = (UA,(&)), where for ge Jn(k),and h:n——>UA

with the perfect extension h :jn(j) >A,

d(h) is defined iff k=< j and then q(h) = B-Jn(ksj)(q).

We left the proof of the fact that H(A) is a weak variety of partial
QQ-algebras to the reader (compare [6]).

In general, weak varieties are not elementary, i.e. they are not
always classes of models for first order theories.

A p.m. category ((A,U),D) is said to be strongly finitary iff it
is representable (in the sense of Theorem 7) by an elementary weak
variety. A characterization of strongly finitary p.m. categories in
terms of their spectra needs more subtle methods.

First we distinguish so called finitary p.m.categories over sets as
follows: a p.m.category ((A,U),D) is finitary iff for every set X:
i®. sX = 1im(SY: Ye FinX)
ii°.For every ie SX, (Jx(i),((nﬁwy)*:JY(i(y))

>Jx(i); Ye FinX)
is a colimit cone (compare Theorem 7).

A p.m. category is finitary iff it has a representation as a weak
variety V = Mod¢ such that sets of variables occurring in formulas
in ¢ are finite (i.e. every ¢ in ¢ is an Lz w(n)—formula (r83).

’

Strongly finitary p.m.categories form a subclass of finitary p.m.
categories. To distinguish them we need the concept of a Priestley
space. An ordered, compact space (X,=,3) is called a Priestley space
iff it is totally order disconnected i.e. for every i,je X, i= j iff
for every clopen increasing set A, je A provided ie A ([11]).

Theorem 8, A finitary p.m.category ((A,U),D) with the associated
SAT (S,J,n,( )*) is strongly finitary iff for every ne N, Sn carries
a structure of a Priestley space (Sn,?n) subject to the following
conditions:

(below 72 denotes the subtopology of " with an open base
consisting of all J-clopen increasing subsets).



160 G. Jarzembski: Free Spectra of Concrete Categories and Mixed Structures

i.) There is a presheaf Sn:(ﬂi)OP >Set such that every Jn(i)
is the stalk of En at i and every Jn(iSj) is the stalk-morphism,

>3n such that

ii.) There exists a natural transformation 2":An
n . n_ s .=n
for every Ue 5+ and 1e U, n o= ¢Ui Ty
= = . n .
((¢Ui.Jn(U)————> Jn(l) s Ue ?+ ,1e U) dinotes the stalk cone)
>Jn(U) there is a partial
>5nf_1) such that for

iii.) For every Ue 72 and f:m
>sm, f:3
m

morphism of presheaves (f:U
any Be 9" and ie £71(B) the diagram

- *
A (Byy 6
3 (£(1)) = > 3 (1)
$n; éu_
s () | 5 I 2718y 1
B = a-1
3_(8) > 3 £ 7(B)
7m I
m > Sn(U)

is commutative.

Roughly speaking, for strongly finitary p.m. categories spectra may
be "recovered" from presheaves defined on associated Priestley
spaces.

The following indicates the role of the associated presheaf in the
proof of sufficiency: the disjoint sum of 3n(i)'s serves as a set of
n-ary operation symbols (compare Theorem 7). The full proof of this
theorem is too long, so we refer the reader to [8].

We hope that the following remarks will clarify the role of Priestley
topologies in this theorem. Spectra over finite sets of the functor
:Palgl——>Set are algebraic lattices of initial segments. Hence,
endowed with the Lawson topologies (with open subbases consisting of
all sets Tni= (nj: nisnj} and SQn\Tni +where n. is finite) are
Priestley spaces. For a family of initial segments {ni:ie I} Sn and
an ultrafilter ¥ on I let X be the ultraproduct of this family in
PalgQl. Let f:n >UX be the function determined by the family
(n?:n >ni:ie I) and 1let nje Snn be the domain of the strong
extension of the Un-morphism (f:n >UQX,X). Then n. is a limit point
of the ultrafilter U in the Lawson space Snn. ]
Thus, if V< PalgQ is a weak variety closed under ultraproducts, then

its spectra may be identified with closed subsets of lattices of
initial segments. Hence they are Priestley spaces. (The associated
presheaves will be described in the last section.)
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Spectra and implicit operations. Throughout ((A,U),D) is a p.n.
*
category over Set with the associated SAT S = (S8,3,7,( ) ).

By a partial n-ary implicit operation in A we mean a family of

partial functions ¢ = {¢A:UAn >UA: Ae A} such that for every
A-morphism h:A >B ,

h-¢A < ¢B-hn and, moreover, h-¢A = ¢B-hn provided h is in D.

Here we consider only nontrivial operations i.e. having at least one

domain nonempty .

Example. In any weak variety of partial algebras every term-operation
(defined in the usual sense) is an implicit operation.

Proposition 9. Every n-ary implicit operation ¢ in A is uniquely
determined by the following data:

- an increasing set X¢s Sn,
- an element ry = (r;) € lim(Jn(i): ie Xg)

in the sense that for any Ae ObA and h:n >UA, with the perfect

>A, ¢A(h) is defined iff je X¢ and then

extension ﬁ:ﬁn(j)

- ferd
¢A(h) - h(r¢) ’

Proof. Put X¢= {ie Sn: ¢(n2) is defined} and r;

= ¢(ﬂ2) for every i
in X, .

¢

An operation ¢ is said to be irreducible whenever

@< L)(wl:ie I), implies that ¢< yJ for some je I
(¢S ¥ means ¢As Ta for every A in A). Directly from Proposition 9 we
get the following.

Corollary 10.i. Every irreducible operation is uniquely determined
by a pair (ie Sn, qe Jn(i)) in the sense described in Proposition 9.
ii.Every implicit operation is a join of irreducible operations.

Assume that the p.m.category considered is strongly finitary. We
shall follow the notation of Theorem 8. For every pair (U, te 3n(U))
where U is J-clopen and increasing we define an n-ary implicit

operation where

®u,ty
¢(U,t)ls defined on h:n

UA with ﬁ:Jn(j) >A provided je U
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and then ¢(U,t) (h) = h¢Uj(t).

We call these operations J-operations. J-operations form a "dense"
subset of implicit operations in the following sense:

Proposition 11. If ¢ is an irreducible n-ary operation in A then for

every h:n >UA , ¢ is defined on h iff for every J-operation 7
such that ¢< ¥ , 7(h) is defined. If ¢ and ¢’ are irreducible

operations, then ¢ = ¢’ iff for every JF-operation 7, ¢c 7 iff ¢’c 7.

Proof. This is a straightforward consequence of the fact that
"every J (i) is the stalk of the presheaf jn at iv.

Theorem 12. The following conditions are equivalent:
i.) every irreducible n-ary implicit operation is a J-operation,
ii.) for every ie Sn the set Ti = {je Sn: is j} is clopen,
iii.) every decreasing chain of clopen increasing sets in Sn
stops after finite steps.

Proof is an easy exercise.

Clearly, the meaning of a J-operation depends of the choice of topo-
logizations of spectra. However, from Theorem 12 we conclude that
the following properties of spectra are consequences of the fact
that all irreducible operations are J-operations with respect to
some topologization of spectra:

- every spectrum satisfies the ascending chain condition,

- every spectrum has a finite set of minimal elements. Every ele-
ment of a spectrum is greater then or equal to some minimal element.

Lemma 13, Assume that A is finitary and let A = V< Palgl be a fixed
representation of A. For every implicit operation ¢ in A there is a
pair ((@i:ie I),(ti:ie I)),where every Qi is a set (maybe infinite)
of existential atomic formulas with variables in n,

every t, is an Q-term with variables in n,

ana vs Mod( A #;a /\¢.), + (= t5) ¢ i3 T)

such that for any 4 in Vv and h:n >UA,
¢A(h) is defined iff A b= /\@i[h] for some ie I and then
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$,(h) = ﬁ(ti) (= the value of t; at h )

Proof follows directly from Proposition 9 and the construction of

spectra of weak varieties.

Now assume that A is strongly finitary and A = V< PalgQ ,where V is

a weak variety closed under ultraproducts. Let (SV,Jv,nV,( )V) be
the associated SAT. Every poset svn is a closed subset of the Lawson
space SQn while for every n;e Svn, JX(i) is a strong quotient of the

initial segment ny (compare Lemma 5). Let 9" be a topology on

Svn ~ SQn. We are going to describe implicit 7-operations.

A\ n

nt (D)

for any Hn-clopen and an increasing set X in Svn consider the source
g

€ v

v .
(nx———> ng >Jn(i) tie X S'n )

where ny is the meet (in SQn) of all initial segments in X.

Then EX(X) is a central object of an (epi,monosource)-factorization

The associated presheaf J >Set may by defined as follows:

of this source.
Every 9-clopen and increasing set X is a finite sum of sets of the
\'

form XT= { nge S'n: T¢ ny }, where T is a finite set of Q-terms

with variables in n. Finally we get

Lemma 14. Every n-ary J-operation ¢ in V is a "finitely definable
restriction of a term operation" i.e. there is a term te Qn and a
finite family (¢i: ie I) of finite sets of existential atomic

formulas describing ¢ accordingly to the rule stated in Lemma 12.

Remark. Let 3X be the canonical sheaf associated to the presheaf
SX. Every pair (U, qe JX(U)), where U is J-clopen and increasing,

)

case of J-operations) .Every such operation is a finite join of

determines an implicit operation ¢(U q (in the same way as in the

’
J-operations. One can call them also finitely definable because
every such operation has a logical description ((@i:ie I),(ti:ie 1))
(Lemma 12) such that the set I and all sets ¢i are finite.

Example. Let Q = Ql= {p,q,r,s} V = Mod(3p(x)Adg(x)=» r(x)=s(x))s Palgq.
Then ¢ = {¢A: Ae V} , where for every Ae V and ae A4, ¢A(a) is
defined provided p(a) or g(a) is defined in A and then
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r(a) if p(a) is defined,
$,(a) =

s(a) if g(a) is defined.
is a finitely definable operation in V.

Open problem. For a given concrete category (A,U) the underlying
functor may be partially monadic with respect to different perfect
subcategories of A. We are able to show that in general there is no
the greatest perfect subcategory D of A making the underlying
functor partially monadic ([7]). We would like to ask the following
question:

- is it true that, if there exists any, there exists a maximal
perfect subcategory making the functor considered partially monadic?
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