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Algebra U Topology

H. Herrlich, T. Mossakowski, G. E. Strecker

Abstract

The question “What is Algebra |J Topology?” is asked and answered.

1 The Question

The question “What is Algebra |J Topology?” first requires explanations of the terms “algebra™,
“topology”. and “union”.

1.1 Algebra

For the purpose of this note we interpret “algebra” as “algebraic structure”, or more technically
as “algebraic category”; i.c.. as a concrete category (A, U) over a base category X with forgetful
functor U: A — X that is algebraic, or at least is essentially algebraic. In order to define these
last two concepts without entering into discussions about uninteresting technical details we will
assume the following throughout this article

Conventions:
(C1) All categories are (Epi, Mono-Source)-factorizable!, and
(C2) All functors are faithful and uniquely transportable?,
Definition 1.1 A functor U: A — X is called
(1) essentially algebraic provided that U is adjoint and reflects isomorphisms.

(2) algebraic provided that U is essentially algebraic and preserves extremal epimorphisms.

(3) regularly monadic provided that U is monadic and preserves reqular epimorphisms and
X has regular factorizations.

* This research was partially funded by the the U.S. Office of Naval Research under Contract N00014-88-K-
0455.

' The restriction (C1) is not as harsh as it looks, since whenever U: A — X is essentially algebraic or topo-
logical, then the (Epi, Mono-Source)-factorizability of A follows from that of the base category X.

2 Unique transportability is equivalent to being transportable and amnestic.

This work is an original contribution and will not appear elsewhere.
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Observe the following facts:

(1) A functor U is essentially algebraic if and only if U is adjoint and U reflects extremal
epimorphisms. Cf. [1]. Proposition 23.2. Moreover, essentially algebraic functors reflect
identities. Cf. {1]. Proposition 13.36(3).

(2) f U:A — X is algebraic and X has regular factorizations. then U preserves regular
epimorphisms. Cf. [1], Proposition 23.39.

(3) Every regularly monadic functor is algebraic. CI. [1]. Proposition 23.36.

(¢) Every monadic functor U: A — Set is regularly monadic (cf. [1], Theorem 20.35) and
hence is algebraic.

1.2 Topology

Likewise we interpret “topology” as “topological structure”, or more technically as “topological
category’; i.e.. as a concrete category (A. ) over a base category X with topological forget{ul
functor U.

Definition 1.2 A functor U: A — X is called (mono) topological provided that each siruc-
tured (mono)source (X —L UA;); has a U-initial lift (A iy A9

1.3 Union

Since the formation of complex structures from simpler ones corresponds to the composition of
the corresponding forgetful functors, it seems natural to interpret the word “union” in the title
as the compositive hull of the set-theoretic union.

Thus the vague question “What is Algebra U Topology?” can be stated more precisely as: “What
is the compositive hull of the conglomerate of all functors that are essentially algebraic (resp.
algebraic, resp. regularly monadic) or topological?” i.e.. what is the smallest conglomerate of
functors that is closed under composition and contains all essentially algebraic (resp. algebraic,
resp. regularly monadic) functors and all topological functors?

2 The Answer

Possible candidates for answers to the above questions are given by the following concepts:
Definition 2.1 A functor U: A — X is called

(1) topologically algebraic provided that each U -structured source (X —fs UA;); has a
{Generating, Initial-Source)-factorization

X Ly UA; =X L UA Ui, U4,

(2) solid provided that each U -structured sink (UA; -L5 X); has a semi-final errow
X -5 UA; (which is universal with respect to making all composites U A; i, [JA
be A -morphisms).
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Theorem 2.2 For any functor U: A. — X the jollowing are equivalent:

1. U belongs to the compositive hull of all essentially algebraic and all topological functors,
2. U is solid,
3. U can be expressed as the composite of two topologically-algebraic functors,

4. U can be ezpressed as the composite U = T o A of an essentially-algebraic functor A with
a topological functor T.

Proof:

(2) = (4). If A 5 X is a solid functor, consider (A,U) as a concrete category over
X. and let (B.V) be the following concrete category over X: objects are pairs (X, (e, A)).
consisting of an X-object X and a semifinal U-structured arrow X -& UA:; morphisms
(X, (e. A)) =L (X', (¢', A')) are those X-morphisms X -+ X’ for which there exists a (necessar-
ily unique) A-morphism A & A’ with ¢'o f = Ugoe. The concrete functor (A.U) -£+ (B, V)
defined by E(A) = (UA. (idya, A)) is a full embedding. Moreover, for each B-object (X, (e. A)).
the E-structured arrow (X, (e,A)) -2+ EA is E-universal. Hence A £+ B is a full reflective
embedding. In (B,V) every structured source $ = (X -f- V(X (e, A;))); has a (not neces-
sarily unique) initial lift. This can be seen as follows: in (A.U) consider the structured sink
T = (UAx 2+ X)k that consists of all pairs (As.gx) such that UA, —<2b%%, U A; is an A-
morphism for each i € I. Let the U-structured arrow X - UA be a semifinal arrow for 7. It
follows that the source ((X.(e, A)) - (X, (e;, Ar)))s is a V-initial lift of S. Now (B, V) may
fail to be topological since it may violate Convention (C2) by not being amnestic. Define an
equivalence relation for B-objects by setting B and B’ to be equivalent if and only if B < B’
and B' £ B (where < is the order of the appropriate fibre). Let C be a full subcategory of B
that contains as objects exactly one member of each equivalence class, and let /: C — B be
the inclusion. Now amnesticity means that the equivalence classes defined above are singletons.
sothat T = V ol:C — X is amnestic and thus topological. If H: (B,V) — (C,T) denotes
the concrete functor that sends each B-object to its unique equivalent C-object, then H is an
equivalence, so that A = H o E is the composite of two functors that are adjoint and reflect
isomorphisms. Consequently, A is essentially algebraic. For each B-object B the objects B
and I o H(B) are equivalent. Thus V oo H(B) = V(B). which implies that VoJoH = V.
Therefore U =V oloHoE =To A is the desired factorization.

(4) = (3) = (2) and (4) = (1) = (2) are straightforward or well known. (Cf, also Figure 1.)
a

Theorem 2.3 If X has reqular factorizations, then for a functor U: A — X the following are
equivalent:

1. U belongs to the compositive hull of all algebraic and all topological functors,
2. U belongs to the compositive hull of all regularly monadic and all topological functors,
3. U is solid and preserves regular epimorphisms,

4. U can be expressed as the composite U =T o A of a regularly monadic functor A with a
topological functor T.
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Proof:

(3) = (4). We use the factorization A 5 X = A <43 C L4 X constructed in the proof of
Theorem 2.2. A = HoE is an isomorphism-closed full reflective embedding, so it is monadic (cf.
(1), Example 20.10(4)). Since T': C — X is topological and has regular factorizations, so has
C (cf. [1], Theorem 21.16(5)). Since H is an equivalence, it preserves regular epimorphisms.
It remains to show that E preserves them as well. Let B <+ C be a regular epimorphism in

A, and thus a coequalizer of some pair A =:¢ B of A-morphisms. Then UB X< UC is a

regular epimorphism in X. and so is a coequalizer of some pair X =+ UB of X -morphisms.

Consider the U-structured sink & = (UA; i X); that consists of those U-costructured
arrows UA; £ X for which UA; =0y UB and UA; 22L4 UB are é-morphisms, and let
X = UA be a semifinal arrow for S. Then there exist A-morphisms A = B and 4 =+ B
with r = UFoe and s = USoe. Thus (X, (e,A)) =:0 E(B) is a pair of B-morphisms.
It sulfices to show that E(B - C) = E(B) 2=+ E(C) is a coequalizer of this pair in B.
Obviously. Ucor = Ucos. Let E(B) - (X, (g, B)) be a B-morphism with for = fos.
Since Uc is a coequalizer of r and s in X, there exists a unique X-morphism UC L X
with f = foUc. Hence it suffices to show that E(C) L (X,(€.B)) is a B-morphism.
Since E(B) L+ (X,(2.B)) is a B-morphism, there exists an A-morphism B &+ B with
gof = Ugoidyp. Thus U(gop) = €o follp =€ofolcolUp = o follcolUqg = Eofol/qg = U(gog).
Hence gop = gogq. Since ¢ is a coequalizer of p and ¢ in A, there exists an A-morphism
C 4 B with ¢ = goc. Thus the equations UgolUc=Ug=%8o f =€o T_o Uc and the fact
that Uc is an epimorphism in X imply that /g = €0 f. i.e., that E(C) L (X.(g,B)) is a
B-morphism.

The implications (4) = (2) = (1) = (3) are straightforward or well known. (Cf. also Figure
1) O

3 Examples

As seen above, every functor that can be expressed as a (finite) composite of topological and
essentially algebraic functors can already be expressed as a composite T o A of an essentially
algebraic functor A with a topological functor T. Can it be expressed as a composite Ao T
of a topological functor T and an essentially algebraic functor A as well? The answer is “No”.
Before we provide examples, let us consider the implications of Figure 1.
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U is essentially algebraic] U is topological

\e

U=AoT
for some topological functor T
and some essentially algebraic functor A

=

|U is (Generating, Initial Mono-Source)-factorizable

[U is topologically algebraic]
U is solid

U=ToA
for some cssentially algebraic functor A
and some topological functor T

U is a composite of two
topologically algebraic functors

Figure 1

Obviously the implications E] and |2 | cannot be reversed. How about . . and ?

3.1 Example
In view of the following result, [3 | cannot be reversed:
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Proposition 3.1 Let U: B — Set be a mono-topological functor such that there exists some
B-object B with card(UB) > 2. Then the following hold:

1. U is (Generating, Initial Mono-Source)-factorizable.

2. The following are equivalent:

(a) U is topological.
(b) U has a factorization U = Ao T with T topological and A essentially algebraic.

In particular, if U satisfies the hypothesis but is not topological, such a factorization cannot
erist. So such a functor U provides a counterezample for the reversal of implication .

Proof:

1. For an arbitrary U-structured source (X L5 UB;);,let X s UB; = X =Y 24, UB;
be an (Epi. Mono-Source)-factorization in Set, and let (B =L B;); be an initial lift of
(Y = B;);. Then X % UB 2 UB:; is the desired factorization.

2. (a) = (b) is obvious.

b) = (a):
E\ssume that a factorization B 5 Set = B -5 C -4+ Set exists with A essentially
algebraic and T topological. Let F': C — B denote the discrete functor for (B, T), which
satisfies T o F = idc. Now (B, U) has discrete objects as well: For a set X, consider the
source § = (X L, UB;); of all U-structured arrows with domain X. Since some U B;
has at least two elements, this is a mono-source. If (B iy B;); is an initial lift of S, then
B is the discrete lift of X. Let G: Set — B denote the corresponding discrete functor
that satisfies U 0 G = idge: -

F

B C
T

Set

We are done if we can show A to be an isomorphism. Now AoT oG = U oG = idget,
so A has T o G as a right inverse. For any C-object C, by discreteness of GA(C),
UGA(C) L), UF(C) is already a B-morphism GA(C) e, F(C). Therefore
it is a C-morphism TGA(C) Hae), TF(C). Since A is essentially algebraic, it re-
flects identities. so we have TGA(C) = TF(C) = C. Considering morphisms, we have
ATGA(f) = A(f), so TGA(f) = f by the faithfulness of A. Thus T oG is the inverse of
the functor A. a

Concrete examples that satisfy the above conditions for counterexamples are the forgetful func-
tors of the constructs Haus or PAlg(Q). Cf. [1], Examples 21.41.
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3.2 Example

In view of Proposition 3.2 below. the implication in Figure 1 cannot be reversed (even though.
under mild conditions. it can be; cf. (1}, [2] and [3]).

Let PA-CCPos be the following construct: Objects are quadruples X = (X, D, ), <), where
(X,<) is a chain-complete poset (i.e., suprema of nonempty chains exist) and X is a partial
unary operation on X that has domain D. (More precisely, A: D — X is a function defined
on a subset D C X.)

A morphism f: X, — X, is a A-homomorphism that preserves suprema of nonempty chains.
[f is called a A-homomorphism iff f[Dy] € D, and the following diagram commutes:]

ng
D, — D,

SR

Xl — 4X2

Let V:PA-CCPos — Set denote the obvious forgetful functor, and let A-CCPos be the full
subconstruct of P A-CCPos that consists of those objects X for which A is a total operation
(i.e., D = X). In this way we can identify objects of A-CCPos with triples (X, A, <). The
inclusion functor is denoted by E. and the forgetful functor is denoted by U (= V o E).

Notation:

If f: A— B isafunction, M C A, NC B and f[M] C N, then flpr, fI¥, and f|}; denote
the appropriate restriction. corestriction, and simultaneous restriction and corestriction of f.
respectively, For X = (X.A, <), we define the a-th iteration of ), where a is any ordinal, by
transfinite induction:

() X(z)==z
(ii) A*(z) = MA*(x))

(ii) A°(z) = supge, AP(z). if a is a limit ordinal and the supremum exists.

We are now prepared for the following:
Proposition 3.2
1. U is solid.
2. U is not topologically algebraic.
3. (a) A-CCPos is cocomplete and strongly complete.
(b) A-CCPos is wellpowered and ertremally co-wellpowered.
{c) A-CCPos is (Epi. Mono-Source)-factorizable.

4. (a) A-CCPos is not strongly cocomplete.



144

H. Herrlich, T. Mossakowski, G. E. Strecker: Algebra U Topology

{b) A-CCPos is not co-wellpowered.

(¢) A-CCPos is not an (Epi, M )-category for any M.

Proof:

1. We show this in two steps:

Step (a): V is topologically algebraic

Step (b): E is topologically algebraic

Then U = V o E is the composite of two solid functors, and hence is solid.

Step (a): The concrete product (P.w;) of a set-indexed family (X:)ier = ((X:, Di, Ai. <:))1 of

P A-CCPos objects is obtained by letting P = (P, Dp, Ap. <p) where

(P,?T;) = HIX.‘ in Set
Dp RE
!

(Mo (ﬂ';‘g;)) :Dp— P
s defined to hold iff it holds in all components.

Ap
<p

—

If I is a proper class, then P can be formally constructed as above — but in a higher
universe.

Now for any V-structured source (X -5 VX)), let (P,7;) be such a (formal)
product of (X;);. and let f: X — P be the morphism (f;) induced by the product.
Now we define Z to be the smallest subconglomerate of P that has the following
properties:

(i) f1X]c Z.
(i) Z is closed under the formation of suprema of nonempty chains (taken in P).

Claim: Z is small (i.e.. is in bijective correspondence with a set).

Proof of Claim:

Let M = {sup(N) | N C f[X] and sup(N) exists in P}. Clearly, f[X] C M, so (i)
holds with Z replaced by M. To show (i), let C C A be a nonempty chain. For
each ¢ € C. choose some N, C f[X] with sup(N.) = c. Let N = U, N, C f[X]-
Then sup{C) can be seen to be a supremum for N, so sup(C) € M. Since Z
is the smallest class that satisfies (i) and (ii), we have Z C M. But card(M) <
ogcard (f[X]) < ocard(X)  Hence M is small, so that Z is small, which establishes
the claim.

Thus, without loss of generality we may assume that Z is a set. Now let Z =
(Z.Dz.2z.<z), where Dz = ZNAp'[Z] and Az and <z are the appropriate restric-
tions of Ap and <p. Then the inclusion Z 2 P formally satisfies the conditions for
being a PA-CCPos-morphism. To show that h is formally V-initial. let Y & Z be
a function such that ¥ 224, P is a P A-CCPos-morphism. Then (hog)o Ay[Dy] €
Z . and since hog is a A-homomorphism. we have Ap o (hog)|p,[Dy] € Z. so that
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hoglp,[Dy] € Ap'[Z]. Since h is an inclusion, this yields g{Dy] C Dz. The other
conditions for g being a P A-CCPos-morphism are easily checked.

To show that X L5 VZ is generating, consider morphisms r.s : Z — Y with
rofiZ =so f|?. Now theset M = {z € Z | r(z) = s(z)} satisfies conditions (i) and
(i1) above, so by the minimality of Z, we have M = Z: hence r = s. Since concrete
product sources are initial, we have that

X du VX, = x 4L, vZ moh, v,

is a (Generating, Initial-Source)-factorization. Thus Step (a) has been established.

Step (b): Since full reflective embeddings are topologically algebraic, it suffices to show that E
is reflective.

For an object X = (X, D, ), <) in PA-CCPos, the reflection X Y is constructed
as follows:

Let Y = (Y. Ay. <y), where

Y = {{(z,n)e XxN|ze D=>n=0}
_ (Mz).,0) ifzeD
Av(e.n) = { (z.n+1) otherwise
<y = {((#:.0),(22.0) | 21 S 2} U{(y-y) [y € Y}
That is, we construct ¥ from X by adding a countable set {A\}(z) | n € N} for each
€ .1\’ \ D.
The reflection map r is defined by r(z) = (z.0). To show the universal property. let
X —Lo:Z_ be a morphism with Z an object in A-CCPos. Then the unique f: ¥ — Z
with f or = f can be defined inductively as follows:
(i) f(z.0) = f(r(z)) = f(z). (This is required because for = f.)

(i) f(z.n+1)= f(Ay(z,n)) = Az(f(z.n)) . (This is required because f must be a
A-homomorphism.)

Thus Step (b) has been established, so that Part 1 has been proved.

2. Assume that U is topologically algebraic. We consider the following structured source
S = ({0} 225 UY4)ae0rd, where Ord is the class of all ordinals, Yo = (Ya, Aa. <q). with
Y, the set of ordinals that are less than or equal to «, having <, the natural induced

order. A,(7) = min(y + 1,@). and i,(0) = 0. By the assumption on U. § must have a
(Generating. Initial-Source)-factorization

{0} 4 UY, = {0} & UX L= UY,

(with, say, X = (X,Ax,<x)). Now for a.f € Ord. consider Zg hes, ¥, where
Zs = (Zp.pp.<j). with Zg = B + w (the set of ordinals smaller than 8 + w).

, fy<a
<p=SsU{(z.2) | z € Zg}. ps(y) = v + 1, and hoply) = A3(0) = { RS ..

Claim: For each # € Ord, there is some Z 2% X with

(+) Z5-2e,YV,=Z5- X 12,7, and
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(¥x) 1f B’ < B, then gp = gplz,.-
Proof of Claim (by transfinite induction over 8):
Case 1: 8 =0.
Take go(7) = Xx(9(0)). Then fa(g0(7)) = fu(Xx(9(0)) = A3(fa(9(0))) = A3(0) = hao(7).
Case 2: B is a limit ordinal greater than 0.

By the induction hypothesis, the function k: 8 — X, defined by k(y) = g,(v) for all
v < B is monotonic, so k[B] is a chain in X. Now define g5: §+w — X by

(i} ga(v) = k(7) for each v < . (so that (»+) is guaranteed), and

(i) ga(B +n) = Ay (sup ¥[B]) for each n € N.

Now to prove (), i.e.. that f,(ga()) = A2(0) for each 4 € Z3, we can use the induction
hypothesis. if ¥ < §. Otherwise, we have

falgs(B+n)) = fo(Xx(supk(3])
= Al sup(fook)[B] (since f, is a morphism)
= A sup falgx())

= AlsupAl(0) (by the induction hypothesis)
<8
= M),

Case 3: B is a successor ordinal. say B =7+ 1.

Then let gg = g, (as a function; note that Zy = Z,).

In each of the above cases. the fact that the source (X 2+ ¥,),c0rd is initial causes gg
to be a A-CCPos-morphism.

Hence the claim is established.

Now for each 8. Zs TN Ys4e is injective. so its first factor Zp 2% X must be
injective as well. Therefore, the cardinality of X is greater than that of any ordinal 8,
which is a contradiction. Consequently. Part 2 is established,

3. (a) This is immediate since solid constructs must be cocomplete and strongly complete.
Cft. [1], Corollary 25.16.

(b) (A-CCPos.U) is fibre-small and U, being solid. is adjoint. Therefore the well-
poweredness of Set implies that of A-CCPos. Cf. [1]. Corollary 18.10. To show that
A-CCPos is extremally co-wellpowered. consider an extremal epimorphism

(X.2x.<x) =X=Y= (Y. Ay, <y).

Let M be the closure of ¢[X] under suprema of nonempty chains. As in the proof of the
smallness of Z in Part 1, we conclude that card(M) < 2%X), Now let Z = (Z.Az,<z),
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with Z={A}(y) |y € M,neN}, Az=Ay|z.and <z = (<y (M x M))U {(z,2) | z € Z}.
Then X = Y = X <5 Z -2, V. where m is the obvious inclusion. Since m is a
monomorphism and e is an extremal epimorphism, m must be an isomorphism. Thus we
have card(Y) = card(Z) < card(M) - Ry < 224X) . Ry, Consequently, by fibre-smallness

and transportability of U, there can be only a set of pairwise non-isomorphic extremal
quotient objects of X.

(c) This follows from (a) and (b). Cf. [1]. Theorem 15.25(1). Hence Part 3 is established.

4. (a) Consider the source M = (Zp —2+ Zp)pcord With Zp as defined in Part 2, and with
ea(n) = n, for each n € N. To see that each ez is an epimorphism, let r,5: Zg — A be
morphisms with r oeg = s o eg. Then for v € Zg:

s(7) = s(up(es(0))) = A(s 0 eg)(0) = Ni(r 0 e3)(0) = r(p3(ep(0))) = r(7).
Thus r = s.
Now assume that M has a cointersection Zo < X. Then e factors through each es as.
say. e = gp 0 eg. Now for each a, Z; -2ats ¥, (as defined in Part 2) factors through each

eg as well: hao = hop 0 eg. By the universal property of the cointersection, for each «
there must be a unique fo: X — Y, with foogs = hag.

As in the proof of Part 2, this leads to the contradiction that {/X has cardinality greater

than each ordinal 8.
X
]
i
\h‘ /
|
'

(b) The source M, constructed in 4(a). consists of pairwise non-isomorphic epimorphisms.

(¢) This follows from 4(a), since each (Epi. M)-category has cointersections. Cf. [1].
Corollary 15.16.

Thus Part 4 is established.

For related examples see {2 and [3].

4 Problems
(1) Is the implication 4| in Figure 1. reversible? [Note that {1], Exercise 16A(b) contains a
counterexample that fails. however, to satisfy our Convention (C1).]

(2) Are the following conditions equivalent?
{ a) U belongs to the compositive hull of all algebraic functors and all topological functors.

( b) U is solid and U preserves extremal epimorphisms.
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(3) Characterize those functors that can be expressed as a composite Ao T of a topological
functor T' with an essentially algebraic functor A. CI. [5] for related results.
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