Category Theory at Work 111
H. Herrlich, H.-E. Porst (eds.)

© Heldermann Verlag Berlin 1991

111-136

Concrete Dualities
H.-E. Porst, W. Tholen

Abstract In this article we give an overview of the two-step procedure that leads to
important classical dualities, such as Stone, Gelfand-Naimark, and Pontrjagin-van Kam-
pen Duality. Thus, in the context of concrete categories, we describe how schizophrenic
objects induce dual adjunctions which then, by restriction, yield dualities. This procedure
is illustrated by various examples.

Introduction

A duality — sometimes also called a dual equivalence — is an equivalence between a category B
and the dual of some category A, i.e., it is given by a pair of contravariant functors S: B — A
and T: A — B and a pair of natural isomorphisms : 15 — T'S and ¢:14 — ST, which can be
choosen such that for every A-object A and every B-object B the following equations hold:

Teaonra =174 and Snpgoesp = lsp. (1)

Of particular interest are dualities where the categories involved are equipped with faithful
representable underlying functors

U:A = Set and V:B — Set.

Hence U and V are, up to natural isomorphisms, (covariant) hom-functors. This means that
there are objects Ag € A and By € B — necessarily generators in their respective categories
— such that

U=A(Ap,—) and V =B(Bp -). (2)

Note that these representing objects then are “free objects with one free generator”, and that
they are available in many “everyday categories” (see [12, 30.3] for a list of examples). Through-
out this paper we will only consider concrete categories of this type.

Every undergraduate student has encountered a duality of this type: the construction of
the dual space of a finite dimensional K-vector space yields a duality between the category
K-Vecy;, of finite dimensional vector spaces over some field K and itself. On the other hand,
even nice categories A may not admit a duality of this type. because they don’t have a coge-
nerator, as the category Grp of all groups [1, 7.13(8)]. Note that, for a given category A, the
existence of a duality with some concrete category B might give considerable additional infor-
mation about A: if e.g. B has limits — often quite obvious constructions in concrete categories
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— the category A automatically will have colimits which, moreover, can be described explicitly
(for A algebraic usually a difficult task) as S-images of limits in B .

Dualities typically arise in representation theory, that is in the study of the question whether
a given structure (i.e. an arbitrary object of some category A) can be represented via other
familiar structures (i.e. objects of some well understood category B) by means of some explicit
construction. For example, the question whether every Boolean algebra can be represented as
a collection of subsets of some set leads to Stone Duality (see Section 4). Also our leading
example (see Section 1-A) will make this idea explicit.

The leading example will show another typical feature of how dualities might arise: the con-
struction one starts with in order to obtain the desired representation of A-objects via objects
of B might yield a dual adjunction only, i.e., functors S and T and natural transformations 7
and ¢ fulfilling the equations (1). but lacking the property of being isomorphisms. It turns out.
however, that every dual adjunction induces 2 “maximal” dual equivalence between a pair of
subcategories of A and B respectively (see Section 2-A). For this reason we start our exposition
by studying dual adjunctions.

First we focus on the striking similarity of all known duality constructions: they can always
be described by “dualizing objects” (the scalar field K in the case of finite dimensional vector
spaces, and the two-element chain or space respectively in the case of Stone Duality). This
observation is explained — even on the more general level of dual adjunctions — in Section
1-B: dual adjunctions between a pair of concrete categories A and B have to be represented by
a pair of objects (A, B) of the respective categories with the same underlying set C. Observed
by various authors in the late sixties or early seventies, this situation has been described by
calling (A, B) objects keeping summer and winter homes (Isbell [14]) or calling C an object
sitting in both A and B (Lawvere — see [19]) or a schizophrenic object (Simmons [30]).

Next (Section 1-C) we describe how to identify such objects, i.e., we formulate a set of
conditions which let a pair (A, B) with the same underlying set really induce a dual adjunction.
We will use the term schizophrenic object only for pairs satisfying these conditions, which are
— as opposed to earlier published ones — of a nature sufficiently general in order to be applied
to “algebraic” as well as to “topological” situations. Dual adjunctions not arising this way are
discussed in Section 1-D.

In Section 2 we describe the mechanism of restricting a dual adjunction to a duality, with
particular emphasis to the cogenerator properties a schizophrenic object enjoys. Finally we
complete the discussion of our leading example.

We then (Section 3) briefly discuss the situation where the categories involved are particu-
larly nice (e.g. algebraic or monotopological) before giving quite a number of examples. In a
last section we give a summary of results concerning uniqueness of dualities and non-existence
of dualities between algebraic categories with rank.

Our reference list cannot be seen as a complete account of the previous extensive categorical
studies on dualities. Nevertheless it covers a substantial number of these.

1 Dual Adjunctions and Schizophrenic Objects

1-A The Leading Example

In the same way as the notion of a Boolean algebra arises as an abstraction of the power set
P(X) of a set X, one gets the notion of a frame as an abstraction from the topology { C P(X)
of a topological space(X,£): a frame is a complete lattice which satisfies the distributive law
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aAVb =VaAb; . Let us denote by Frm the category with frames as objects and those maps
as morphisms which preserve arbitrary sups and finite infs. Frm is a monadic category (see
[15, 1T 1.2]) . By Top we denote the category of topological spaces. Both Frm and Top are
equipped with representable underlying functors: any singleton space may serve as representing
object By of V: Top — Set, while the underlying functor U: Frm — Set is represented by the

1
free frame with one free generator ¢, i.e., by the 3-chain &
|

One can easily check that the assignment B = (X:¢§) »—0» ¢ extends to a contravariant functor
S:Top — Frm if one defines Sf by O — f~[O] for a continuous map f:(X,¢) — (Y.v) and
O € v. Observe, that — via characteristic functions — SB is naturally equivalent to the
functor §. where SB is the hom-set Top(B.S) (§ denotes the Sierpinski space {0,1} with {1}
open) provided with the pointwise order: u < v iff u(y) < v(y) in the initial frame 2 = {0,1}
for all y € B, and where Sf maps a continuous map v to v o f.

It is now a reasonable question to ask whether any frame can be represented by a topological
space, i.e. if, for any frame A, we can find a topological space T'A such that A and ST A are
isomorphic in Frm.

In order to define T: Frm — Top, let Frm(4.2) be underlying set of TA (this is moti-
vated e.g. by the results of Section 1-B). As a topology on Frm(A,2) we choose the set
{{preFrm(4,2) | p(z)=1} | =z & A}. It is worthwhile mentioning that this topology is
nothing but the initial topology on Frm(A.2) with respect to the maps

ea(z):Frm(A,2) = § with p— p(z). z € A. (3)

Indeed, one easily checks that 2 map h: Z — Frmi(A, 2) from any topological space Z is conti-
nuous iff all composites e4(z) o k are.

Moreover, from (3) one obtains a frame morphism ¢4: A = ST A, In order to verify functo-
riality of our construction T and its adjointness to S, it suffices to show that, for every space
B and every frame morphism f: A — SB, there is a unique continuous map g: B — T A such
that the following diagram commutes.

A —A  .5TA

This is easily done (see [15, p.42]).
One now might check explicitly that the units ng: B — T SB (for a space B) are given by

n8(y): Top(B,S) — 2 with u— u(y), y € B, (4)

but this will follow automatically from the general results of 1-B. However, we would like to
stress the fact, that the frame structure on Top(B, S) chosen above in order to define SB makes

'Remember that in the set £ of open sets of a space (X,£) — ordered by inclusion — the sup of a subset &
simply is the union of its members, while the inf is the intersection of the members of & only for a finite & —
in general it will be the interior of the intersection.

20bserve that Frm is the dual of the category of locales as discussed in [16] elsewhere in this volume.
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the family (78(y))yep an initial family in Frm: a map j: P — Top(B.S) is a frame morphism
iff all composites 75(y) 0 j are.
We summarize these results as follows:

1.1 Proposition The concrete categories Frm and Top have representable underlying functors
U and V respectively. They admit a dual adjunction, given by functors S: Top — Frm and
T:Frm — Top and natural transformations n: 1top — T'S and € lpym — ST such that the
Jollowing hold:

1. S and T are “structured hom-functors” in the sense that US = Top(—,S) and VT =
Frm(-,2).

2. The “representing objects” S and Rof S and T respectively have the same underlying sets.
3. The units np and €4 are given “by evaluation” as in (4) and (3) respectively.

4. The families (e4(z): Frm(A,2) — S)zea and (na(y): Top(B.8S) — 2),en are U- and V-
initial respectively.

1-B The Structure of Dual Adjunctions

We consider a pair of concrete categories with representable underlying functors
A(Ao,-)=U:A —>Set and B(B,.—)=V:B — Set
and a dual adjunction
SSB—A, T:A—-B; nlp—TS, elpg—ST

such that the equations (1) hold; then certainly there will be an isomorphism, natural in 4 € A
and Be B,
A(A,SB)= B(B,TA) (5)

We will refer to the situation explained above as to the basic situation. We will often use the

following simplified notation for images under U or V: instead of Uf:UA — U A4’ for a given

A-morphism f: A — A’ we will write [f]:[4] — [4'); similarly [g] = Vg for a B- morphism g.
Of crucial importance for our further studies are the objects

A:=8Bo and B:=TA,.
We now can explain the observations 1. and 2. of Proposition 1.1 as follows:

1.2 Proposition Given the basic situation, the following hold:

1. The contravariant functors VT: A — Set and US: B — Set are representable functors,
represented by A and B respectively, i.e., there exist natural isomorphisms

VT = A(-,A) ad US=B(-, B)

2. A and B have the same underlying sets, up to isomorphism, i.c., there ezists a bijective

map VB =UA.
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Proof Representability of V' (2) and adjointness of 5 and T (5) yield the following (natural)
isomorphisms for any A € A : VT A = B(By, TA) = A(A,SBo) = A(A, A); similarly USB
B(B, B) for every B € B . Now, with A = A one obtams in particular VB = VT A, =
A(Ao,SBy) 2 USB, = UA. <

IR

1.3 Remark If, in the situation of Proposition 1.2, there are even strict identities
VT = A(-,A) and US=B(-.B)

we say that the adjunction of § and T is strictly represented by (A, B). This may, without
loss of generality, always be assumed, if the functors U and V are uniguely transportable (i.e.,
in the case of U if, for every Set-isomorphism z: X — UA’, there is a unique A-object A and
an A-isomorphism f: A — A’ with UA = X and Uf = z. For “everyday concrete categories”
transportability is no restriction at all (see also [1, 5.28 ff]). Therefore unique transportability
of all underlying functors will be assumed throughout this paper.?

Next we want to show that, for a basic situation with the dual adjunction strictly represented
by any pair of objects (fi B) the units and co-units are necessarily given “by evaluation” as in
Proposition 1.1(3.), up to the canonical bijection [A] 2 [B] (which happens to be the identity
in the setting of our leading example). To make this precise, let us introduce the following
notation. For A € A and z € [A], there is an evaluation map

pacA(A, A) - [A] with s [s)(z). (6)
Symmetrically, for B € B and y € [B], there is a map

55 B(B.B) = [B] with ¢t~ [t](y). (7
Furthermore, there are canonical maps

m:[A] = [B] with & [[eg)(&))(15). (8)

o:(B] = [A] with §w [[na)(@)(15)- (9)
The reader is advised to verify that, in the setting of our leading example, 7 and o are identity
maps.

1.4 Proposition 7 and o are inverse to each other, and the following identities hold

(leal(2)] = T4z and [[n8)(¥)] = o¥5,.
Proof

7([s])(z)) (definition of @)
([ealls)(=))(15) (definition of 7)
([ST's|[eal())(14) (naturality of ¢)
(leal(z)- Ts)(15) (US = B(-.B))
[leal(2))(s) (VT = A(-, A));

3The uniqueness requirement is not really important; it is included only for the convenience of the reader
using (1] as a general reference.

TYA
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symmetrically the second identity follows.
A particular instance of the first identity is {[e55](15)(s) = T¥5s,,(s) for all s: SB — A. For

s = [na(7) (with g € [B]). this means
To(y) = 7(esp,,(s)) (definition of o)
= [lesal(1p)msl(®) =3
the last identity is derived from [Smplless] = 155 which, when evaluated at 1. gives

lesal(1g) = 1 since US = B(—, B). Therefore o = lig). and o7 = 1 follows symme-
trically. <

1.5 Remark We observe that the families of maps (p4::A(4, A) - [.;1]),6[,4] and
(¥8,4: B(B, B) — [B]),¢(p) are point-separating families (see (1, 10.6]) in Set for every A € A
respectively B € B.

1-C Schizophrenic Objects Induce Natural Dual Adjunctions

We now give an answer to the question how, and under which conditions, we can establish a dual
adjunction between two concrete categories U: A — Set and V: B — Set, strictly represented
by a given pair of objects (A~B) of A and B respectively. Certainly we have to assume that
there is a bijection [A] = [B]. But that hardly will suffice to enable us to define a suitable
A-structure on the hom-set B(B, B) in order to define SB € A, and a suitable B-structure on
A(A, A) in order to define TA € B. Observation (4.) of Proposition 1.1 in connection with
Proposition 1.4 suggests an additional set of conditions which leads to the central definition in
this context.

1.6 Definition A triple (A, 7, B). with a pair of objects (A,B) € A x B and a bijective
map 7: [A] — [B], is called a schizophrenic object (for the concrete categories A and B) if the
following two conditions are satisfied*:

SO 1 For every A € A, the family (Tpa-:A(A A) — [B]):e[,q admits a V-initial lifting
(eA,,:TA — B):E[A]'

SO 2 For every B € B, the family (c¥5,,: B(B. B) — [A]),¢is) with o = =7 admits a U-initial
lifting (dp,y: SB — A)el)-

A dual adjunction (5, T) strictly represented by (A. 3) is called a natural dual adjunction if the
families ([e4)(z): TA — B).e(4) and ([n5](y): SB — A)y¢() are initial with respect to U and V
respectively, for all A€ A and B € B.

It is clear that the dual adjunction between Frm and Top in the leading example is natural
and that (2,1,,S) is a schizophrenic object for Frm and Top.
We now can prove the statement of this section’s title.

1.7 Theorem ([5]) For every schizophrenic object (A, 7, B), there is a natural dual adjunction
strictly represented by (A, B), such that v and 6 = 77! are the canonical maps in the sense of
Section 1-B.

“Recall that the requirement of SO 1 means the following: there exists a B-morphism e4,.:TA — B such
that [TA] = A(4, A) and [e4,.] = Tp4.: and, whenever one has Z € B and a map A:[Z] — A(A, A) such that
all composites T4 - h are the underlying maps of B-morphisms Z — B, then h is the underlying map of a
B-morphism Z — T A.
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Proof T and § are already defined on objects by Conditions (SO 1) and (SO 2) respectively.
Given now some A-morphism f: A — A’, we must find a B-morphism Tf:TA' —» TA with
VTf = A(f, A): A(A", A) — A(A, A). To show that A(f. A) is actually the underlying map of
a B-morphism, by (SO 1) it suffices to show, that all composites 74- 0 A(f. A), = € [4], are
underlying maps of B-morphisms. This follows from

T9az 0 A(f, A)(s) = Taz(sf) = T ape)s) = {earisim)(s)-

Obviously, T is a functor. S can be defined symmetrically.
It remains to be shown that 5 and T are adjoint. For that we construct the units ng and ¢4
as follows. First, in order to establish the existence of 75: B — TSB, we only need to define
a map [ns): [B] — [TSB] = A(SB. A) and then show that each composite T¢sp, o [n5]. t €
[SB] = B(B, B), can be lifted along V. Proposition 1.4 in connection with (SO 2) forces us to
put

[78): (Bl — A(S$B,A), y— dp,. (10)
Now, for all y € [B],
{ds,)(t) (10). (6)
royg(t) (502)
[t)(y). (7)

This proves not only the existence of 75. In addition, it shows the equations

Twse. 0 [nBl(y)

espeonp =1t forallte[SB]. (11)
Symmetrically one obtains morphisms e,4: A — ST A4 with

(ea]:[4) = B(TA.B), z— eaz: (12)

drasoeqs =s forall s € [TA]. (13)

Naturality of # and ¢ is easily verified. Since by definition of S and (11) [Sng]less|(t) =
B(ns, B)(ess,) = t for all t € B(B, B) , the second of the identities (1) holds, since U is
faithful. The other identity follows symmetrically; hence we have an adjunction.

Finally we must show that our given 7 is induced by this adjunction as described in Section
1-B, i.e. that it satisfies (8). Indeed, for every € [A] one has leal(2N(1) = rpa:(14) =
m([14)(2)) = 7(2). o

1.8 Remark We will end this section with an interpretation of Condition SO 1 when the cate-
gory B has products which are preserved by V. Given any 4 € A, the family
(Tpac: A(A A) — [/i]),ew induces a unique map $4 such that the following diagram com-
mutes for every z € [A]:

P4

A(4, 4) = [T4] (B4 = (B

Tz

TPAz

(8]
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Now the following is obvious:
o ®,4 admits a lifting along V iff the family 74 . admits a lifting along V.
o &4 becomes an embedding iff SO 1 holds.

Hence, in the presence of concrete products, a dual adjunction ($,T') is natural with schizo-
phrenic object (A.7, B) iff for every A € A and every B € B there are (natural) embeddings
T — Bl-land § — Al-L

It is clear from Proposition 1.4 that for any dual adjunction in the basic situation the
sources discussed in SO 1 and SO 2 have to have liftings along U and V respectively. Hence in
the presence of products even for non-natural dual adjunctions there will at least be (natural)
monomorphisms T — Bl and § — Al-]. This generalizes what has been known before for
dual equivalences (see [1, 10N] or [25]).

1-D Non-Natural Dual Adjunctions

It can happen — see 3-B and 4-B for examples — that a dual adjunction is not natural,i.e., is
not induced by a schizophrenic object in the sense of the previous section. In this section we
will briefly discuss arbitrary dual adjunctions in their relation to natural ones.

It is clear from Section 1-B that any basic situation, i.e., an arbitrary dual adjunction
(5',T') between concrete categories A and B, determines a triple (A, 7. B), with a pair of
objects (A, B) € A x B and a bijective map 7:[4] — (B]. such that the following weakened
versions of the Conditions SO 1 and SO 2 are fulfilled:

WSO 1 For every A€ A, the family (rpa.:A(A,A)— [B]),E[A] admits a lifting
(e T'A— B):E[A] along V which extends functorially (i.e., for every 4 -+ A’ in A
there exists a B-morphism T'A’ =L T"A with [T'f] = A(f, A)).

WSO 2 For every B € B, the family (095, B(5, B) — [.A])ye[B] with o = 77! admits a lifting
(dp,:S'B — B)yE[B] along U which extends functorially.

Under the additional assumption that the functors U and V are solid in the sense of [1]
and that A and B have (Epi, Monosource)-factorizations (this means in particular that U and
V respectively can be decomposed as M o A with an essentially algebraic functor A and a
topological functor M (see [1. 26.3])), we can now prove that any dual adjunction is a "natural
refinement” of a natural adjunction, i.e., there is the following proposition:

1.9 Proposition Let (A,U) and (B, V) be concrete categories with (Epi, Monosource)-facto-
rizations and solid functors U and V.
For any triple (A, 7, B) satisfying Conditions WSO1 and WSO 2 the following hold:

1. The triple (fi,‘r, B) is a schizophrenic object for A and B, and hence induces a natural
dual adjunction (S, T).

2. The functors S' and T' constitute a dual adjunction, strictly represented by (A, B), such
that 7 is as in (8).

3. The natural duel edjunction (S, T) is larger than the dual adjunction (§'.T'), in the sense
that there are natural transformaiions :S' — S and A:T' — T with Uk = 1p(-.5) and
VA=1,04)
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Proof Our assumptions on U and V guarantee that the families (7w a:: A(A, A) — [B])ze)
and (0¥, B(B,B) — [A]),E[B] with 0 = 7~! admit U- and V-initial lifts respectively, if they
admit liftings at all. Now the first statement is obvious.

Since (eq:: TA — B):e[A] is a V-initial lifting and (e, .1 T"4 — B):e[A] is a lifting along V of
the same source (7@ a.: A(A, A) — [B])z¢j4). the identity map 15(a.4) can be lifted along V
to a B-morphism A,:T'A — T A; similarly, the identity map 1 g , lifts to an A-morphism
xg:S'B — SB. Naturality of x and A then is obvious. Hence only the existence of natural
transformations 5’ and ¢ fulfilling (1) remains to be checked. By 1.7 we know that there are
the units # and ¢ of the adjunction (S, T'). Define p’ := xon and ¢ := Aoe. Since the equations
(1) hold for # and € and the underlying functors are faithful, they also hold for n and €. O

2 Dualities Arising From Dual Adjunctions

2-A The Maximal Duality Induced by an Adjunction

Throughout this section we will always assume that there is given a dual adjunction $:B — A
and T: A — B, strictly represented by (A, B). Naturality is not required in general. From
equation (1) it follows immediately that, if €4 is an isomorphism in A for some A € A | then
also 774 is an isomorphism in B; similarly esg will be an isomorphism if ng is. Hence the
functors S and T can be restricted to the full subcategories

Fixe:= {A € A | ¢4 is an isomorphism} and Fixn:={B € B |ng is an isomorphism}

where they induce a duality Sji.:Fixn — Fixe. Tf..:Fixe — Fixs. Obviously these fized
subcategories are the largest subcategories of A and B respectively, to which S and T can
be restricted in order to obtain a duality. In general determining the fixed subcategories of a
given dual adjunction can be quite difficult; it therefore will be convenient to have at hand a
mechanism describing them “stepwise” by means of the following intermediate full subcategories
of A and B respectively®:

A; = {A€ A |e4is an embedding} B: = {B & B |ngisan embedding}
A2 = {A€ A |[ea]is surjective} B, = {B ¢ B |[ng]is surjective}
ImS = {A€A |3BeB: A=SB} ImT = {BecB |3AcA : B=T4}

There are the following obvious relations between these various subcategories:
2.1 Lemma 1. A;NA; =Fixe and B;NB: = Fixy

2.ImSCA;, aend ImT CB,

3. Ac Ay = TA€Fixn and Be€B; — SB € Fixe

Proof Clearly the isomorphisms in A and B respectively are precisely the initial morphisms
with underlying bijections (use e.g. [1, 8.14] and the fact that the underlying functors —
admitting left adjoints — preserve monomorphisms).

By (1), esp is a section, hence an embedding (see [1, 8.7]), for every B € B. Therefore
ImS C A;, and, similarly ImT C B, .

For A € Aj, the counit €4 is an epimorphism since the faithful underlying functor U reflects

SRecall that an embedding in A is a U-initial monomorphism.
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epimorphisms. Hence T'e4 is a monomorphism in B by adjointness. By (1) Teys is also a
retraction, thus an isomorphism. o

We summarize as follows.

2.2 Theorem Given our basic situation with a dual adjunction, one obtains, by resiriction,

dual adjunctions
S5:B;j— A; and Ti:A; — B;

fori=1,2 as well as a duality
Szt Fixg — Fixe, Ty Fixe — Fixy.
Moreover the following holds:

AiNA; = Fixe = ImSp, = ImS; € ImS, € ImS C A,
BinNB: = Fixp = ImTy, = ImTx ¢ ImTy, ¢ ImT C B

Proof By the second statement of the lemma, there is the restricted adjunction for ¢ = 1.
The third statement of the lemma establishes the restriction for i = 2 as well as the inclusions
ImT, C Fixn and ImS; C Fixe. One has Fixe C ImSy.; and, dually, Fixg C ImTy.., since
for an isomorphism €4 one has A = §(T A) with TA € Fixn. The rest is trivial. o

The main task for establishing a duality in a concrete situation is now to identify the
categories A; and B;. This can be a very hard problem, and this is where categorical guidance
comes to an end. It even happens that complete solutions are not known but only sufficient
conditions, guaranteeing that an object will belong to the subcategory under consideration (see.
e.g. example 4-B in Section 4). However in this context the following results can be helpful —
stated here for the subcategory A only, but which analogously then hold for B;.

2.3 Lemma The following statements are equivelent for every A € A:

1. (A = -‘i)seA(A,j) is @ monosource in A.

2. ([4] b [A])JGA(AJ) is a point-separating source in Set.
3. €4 is a monomorphism in A.
4. [ea] is an injective map.

Proof The equivalences (1) & (2) and (3) < (4) follow from (1, 10.7]. To prove the equivalence
(1) ¢ (3) we observe first that, for every B € B | the fanily (dg )¢5 is jointly monomorphic
as a lift of a point-separating family (see 1.5). With B = T A, the result now follows from
equation (13) using [1, 10.9)]. <

Lemma 2.3 is, in view of the definition of A;, complemented by the following result which
is proven in the same way as the equivalence (1) & (3) of 2.3, using [1, 100] instead of [1, 10.9].

2.4 Lemma The following statements are equivalent for every A€ A :
1 (A= A),caa 4y i @ U-initial family,

2. €, is a U-initial morphism. <
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2-B  Cogenerator-Properties of A

2.5 Remark Observe that, by the definition of cogenerator, the full subcategory C(A) of A
consisting of those objects of A for which the equivalent statements of 2.3 hold, is the largest
subcategory of A for which A is a cogenerator.

Recall that an object E in a category C is called eztremal cogenerator® if, for every C-
object C, the family C(C, E) is an extremal monosource. In the presence of products this is
equivalent to saying that, for every C € C, the canonical morphism pc:C — ECCE) is an
extremal monomorphism; i.e. the morphism uc making the following diagram commutative
(with =, the projection corresponding to s € C(C. E))

C ___Hc EC(C.E)
s
E

This weakens the concept of regular cogenerator where pu¢ is required to be a regular mono-
morphism. In concrete categories the following concept will be useful:

2.6 Definition In a concrete category (C,U) an object M is called (U-) initial cogenerator if,
for every C € C, the family C(C, M) is a U-initial monosource’.

2.7 Remark By lemmas 2.3 and 2.4, A; is the largest subcategory of A for which A is an
initial cogenerator.

It is useful to observe how the various notions of cogenerator are related. We mention here
e Every regular cogenerator is an extremal cogenerator.
o Every cogenerator is an extremal cogenerator if A is balanced.

¢ Under very mild conditions, e.g., for any concrete category with products and a repre-
sentable underlying functor, a regular cogenerator alway is an initial cogenerator (see

(51)-

Due to additional relations between regular (respectively extremal) monomorphisms and em-
beddings in particular situations (for definitions, see [1]) one has moreover:

¢ If (A,U) is a topological category, then
A is a regular cogenerator < A is an extremal cogenerator < A is an initial cogenerator.

o If (A,U) is a monotopological category. then
A is an extremal cogenerator => A is an initial cogenerator.
The converse does not hold e.g. for the category Haus of Hausdorff spaces, but holds for
the category POS of partially ordered sets.

®sometimes also called a strong cogenerator; observe also that, unlike {1] and {15], we use cogenerator rather
than coseparator.

"In the presence of products this is equivalent to the definition of a M-cogenerator in the sense of [1] with
M being the class of all embeddings.




122 H.-E. Porst, W. Tholen: Concrete Dualities

o If (A,U) is an essentially algebraic category, then
A is an extremal cogenerator = A is an initial cogenerator & A is a cogenerator

o If (A,U) is a regularly algebraic category, then
A is a regular cogenerator <= A is an extremal cogenerator

The following are simple consequences of this analysis and the observation that A(A, A)
contains 1; and hence is an initial monosource.

2.8 Proposition Given a basic situation with ¢ dual adjunction, strictly represented by (A, B),
the following holds:

1. €4 is a monomorphism for every A € A iff A is a cogenerator in A.
2. A is a cogenerator in A;.
8. Ay = A if Ais an initial cogenerator in A.
If (5.T) is even a natural dual adjunction. we have in addition:
4. A is an initial cogenerator of A,
5. Ay = A if and only if A is an initial cogenerator in A.
The analogous statements hold for B, By, B. o

2.9 Corollary Assume a basic situation with a dual adjunction (S,T) strictly represented by
(A,B). Then

1. Ay = A , provided A is a regular cogenerator of A.

2. If(S,T) is natural then A is a regular cogenerator of A1, provided A is either topological
or regularly algebraic and balanced. <

2.10 Corollary Let (S,T) be a duality between A and B strictly represented by (A, B). Then
(5.7) is natural if and only if A and B are initial cogenerators in A and B respectively. ©

2-C On the Reflectivity of the Fixed Subcategories

Next we investigate the question which closure properties the various subcategories enjoy and
whether there are reflective embeddings between them. Unfortunately one cannot expect re-
flectivity of the fixed subcategories in A or B respectively, as is shown by the first example in
Section 4: the following however is checked easily.

2.11 Lemima Given our basic situation, for the statements
1. €4 is an epimorphism for every A € A |, or g is an epimorphism for every BEB .
2. The dual adjunction (S,T) is idempotent, i.e., ImS = Fixe and ImT = Fixy.
3. Fixe and Fixy are reflective subcategories of A and B with reflections € and 1 respectively.

the implications 1. = 2. = 3. hold. o

With M the class of all initial monosources in A, this leads to
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2.12 Theorem Given a basic situation with a dual adjunction, strictly represented by (A, B),
the following hold:

1. The dual adjunction can be restricted to a dualily between Ay N Az and By N By; here
A1 N Ay and By N By are epireflective subcategories of Az and By respectively.

2. Ay and B are closed under U- (respectively V -)initial monosources in A and B respec-
tively.

8. A1 and By are closed under direct products and embeddings in A and B respectively.

4. If A is an (E, M)-category, and if the adjunction (S,T) is natural, then Ay is even E-
reflective in A and, in fact, the E-reflective hull of A in A .
The analogous statement holds for B, By, B.

Proof The first statement follows from Lemma 2.11. since the restriction (S;,T;) of the given
adjunction is idempotent again by Lemma 2.11.

For proving the second statement, let (m;: A — 4;);er be a U-initial monosource in A with all
A; € A;. Then also ¢4 is an embedding, since (e4,m;)ier = (STmieq)icr

The third statement is now clear since products and embeddings are special instances of U-
initial monosources.

The last statement is clear in view of [1, 16.22]. o

2.13 Remark The reader not familiar with (E.M)-categories might prefer the following ver-
sion of statement 4.:

If A is complete and wellpowered w.r.t. embeddings, and if the adjunction (S,T) is natural,
then Ay is even epireflective in A and, in fact, the epireflective hull of Ain A .

One cannot expect results similar to those of the previous theorem with respect to the fixed
subcategories, which in fact can be empty, as the following example shows. Let A= B= Top
and 2 the two-element discrete space. Then (2,1,,2) is a schizophrenic object with resulting
adjunction $(X) = T(X) = 2#X]. There obviously is no space X with X = b St

The situation changes completely, provided the adjunction is idempotent. Here we have

2.14 Proposition For an idempotent dual adjunction, strictly represented by (A, B), the fol-
lowing hold:

1. Fixe is an epireflective subcategory of Ay containing A.

2. Fixe = A, if A is an (E, M)-category and the adjunction is natural,

The analogous statements hold for B,B,, B .

Proof A 2 SB, € Fixe follows by the definition of an idempotent adjunction. €4 is a monic
reflection morphism for A € A; by Lemma 2.11, hence an epimorphism (see [1, 16.3]).

For the last statement observe that Fixe now is an epireflective subcategory of A and hence
closed under products and embeddings. Now A C Fixe follows by Theorem 2.12. o
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2-D Following up the Leading Example

In our leading example with A = Frm and B = Top, we have Az = A (by definition of
€4, see equation (3), since certainly every frame-morphism preserves 0 and 1). Aj then is the
category of those frames A for which e, is injective, that is: if @ € b in A, then there is some
p: A —= 2 with p(a) = 1 and p(b) = 0. These frames are called spatial. Hence Fixe = A1 =
SpFrm, the full subcategory of spatial frames, and this category is epireflective in Frm, in fact
the epireflective hull of the chain 2, by Theorem 2.12.

For every topological space B, the map np is V-initial. as is easily shown. Moreover, ng is
injective iff B is a Ty-space. Hence B is the category Top, of To-spaces (which is well known
to be epireflective in Top and. in fact, the epireflective hull of the Sierpinski space S). A space
B is called sober iff ng is a bijection; so it follows that Fixn is the category Sob of sober spaces
which is epireflective in Top,.

Hence we can summarize: the maximal duality obtainable from the dual adjunction of
Proposition 1.1 is the duality between the categories SpFrm and Sob.

3 Starting From Nice Categories

So far our exposition hardly made any special assumptions on the concrete categories one starts
with. For particular types of concrete categories, some assumptions of our approach may be
weakened or the results be strengthened.

3-A Simplifying Conditions SO 1 and SO 2

The crucial assumptions of our approach are the conditions SO 1 and 50 2 of Definition 1.6. We
will discuss them briefly under the assumption that our concrete categories are monotopological
or essentially algebraic in the sense of [1].

3.1 Lemma Let U: A — Set and V:B — Set be a pair of concrete categories and (A,B) €
A x B a pair of objects equipped with a bijection [A] <+ [B]. Then the following hold:

1. If V is monotopological, the source (t94-: A(A, A) = [A]).¢(4) admits a V-initial lifting.

2. If U is essentially algebraic, any lifting of the source (oyp ,: B(B,B) —» [B])yelgl along
U will be a U-initial lifting. In particular, one has that

(a) A1 ={A€ A |[ea] is injective}.
(b) The Conditions SO 1 and WSO 1 are equivalent and, hence, the functors S and S’
of Proposition 1.9 coincide.

Proof Since the families (1.2 A(A, A) — [A])zera) and (o9p,: B(B, B) — [B]),e18 to be
lifted are point-separating sources. the first statement is immediate from the definition of a
monotopological functor (see {1, 21.40]), while the second statement follows from the fact that,
for an essentially algebraic category U: A — Set, every monosource in A is U-initial (see [1,

23.2)). o

3.2 Corollary Any dual adjunction in a basic situation, with U and V essentially algebraic,
is a natural dual adjunction. o
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3.3 Remark If A is a category of algebras (in the sense of Universal Algebra) which has
concrete products, in view of Remark 1.8, there is only one way to get the desired lifting: one
has to define the operations on B(B. B) pointwise because this is the only way to make the
induced map ¥ an algebra homomorphism ¥: SB — AlBl. Observe that commutativity of the
operations is a crucial ingredient for doing this: eg. Ab(A, B) becomes an (Abelian) group by
pointwise operations for every pair (A, B) of Abelian groups, but Grp(G, H) does not if H is
not Abelian.

3-B Categories with Internal Hom-Functors

Sometimes a concrete category (A, U) is equipped with an internal hom-functor, i.e., there is
a functor H: A°® x A — A such that UH = A(—.—) and, moreover,

all evaluation maps ¢4 421 A(A A) - [A] with & [h](z) (14)
lift to A-morphisms ps 4.t H(A.A') > A’ forall AJA’ € A. x € [A].

Typical examples are the category Ab of abelian groups (here (14) is satisfied due to the
definition of pointwise operations) or any cartesian closed (concrete) category admitting function
spaces in the sense of [1, 27.17], like the category Conv of convergence spaces (see 4-B). Here
the lifted morphism of (14) is the composition

H(A AV T x H(A.A) 25 Ax H(A &) 25 4

with T —&+ A the constant map with value z € [A] from the terminal object T.

Contravariant Hom’s Induce Dual Adjunctions

Given a_concrete category (A.U) equipped with an internal hom-functor H(—, ). for any
object A € A the triple (A.1;, A) obviously satiesfies conditions WSO 1 and WSO 2 with
S =T = H(—,A). Observe that, when U is essentially algebraic as e.g. for A = Ab, the
adjunction (S,T) will be natural with schizophrenic object (A, lA',A.). For a cartesian closed
topological category like Conv, however. this adjunction will hardly ever be natural. Indeed,
if it were. it follows from (14) that for every A the source (T <+ A).¢j4) would be initial, hence
every Set-map would lift to an A-morphism. In any case, for every A € A the contravariant
internal hom-functor A(—, A) is adjoint to itself (see also [1, 27.7] for a related result).

Lifting Contravariant Hom’s Along Concrete Functors

Of importance is also the following somewhat more general situation. Let (A,U) admit an
internal hom-functor H; moreover let there be given a concrete category (B, V') and a concrete
functor |—|:B — A such that the inclusions B(B.C) — A(|B|,|C]) lift to A-morphisms
v8,c:Ba(B,C) — H(|B|,|C]) (in a monotopological category this can always be done by lifting
initially). Now for any B€ B and A:= |B|, 7 = 14 one easily checks that Condition WSO
2 is fulfilled with dg, = Pisl.iy © 78,5 which means that we obtain a contravariant functor
$:B — A with S(B) = Bo(B. B).

The remaining question is whether, for every A € A , it is possible to lift the A-source
(Pa.i. H(A, Ao A= IBl)ze[ﬁI along |—| functorially. We will not deal with this question
here in full generality; typical examples of this situation however are discussed in 4-B. 4-C. and
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4-D. Obviously, if a lifting can be found, Condition WSO 1 is fulfilled, too, and we obtain a
contravariant functor T: A — B with [T A|.= H(A, A)%.

Putting things together we have got a dual adjunction as in the basic situation where,
however, not only [A] = [B] but moreover A = |B|. One might describe this situation by
saying that, in a basic situation, we have replaced the category Set with its (internal) hom-
functor Set(—, —) by the category A with its internal hom-functor H(—, —) and consider A
(by means of 1) and B (by means of | — |) as concrete categories over A. More formally (and
correctly) this can be described (see (27, 19]) using the language of enriched category theory.

3.4 Remark Clearly, the dual adjunctions arising here fail to be natural by the remarks in
3-B. However replacing the category Set by the category A as a base category as indicated
above, one can develop the notion of an enriched schizophrenic object and, correspondingly,
of an enriched natural dual adjunction, generalizing our definitions in the sense of enriched
category theory. The typical examples for this, namely examples 4-B and 4-C, — non-natural
dual adjunctions in the Set-based setting — are then natural in the enriched sense.

3-C Starting With a Regular Cogenerator

As observed before, the object A must necessarily have certain cogenerator properties. Parti-
cular additional properties can be of importance in two ways: they might facilitate the identi-
fication of A; and hence, of Fixe (see Section 2-B). or. they might give additional information
on the structure of the dual category Fixn as we shall see next.

3.5 Proposition Denote by V':Fixn — Set be the restriction of V. If Fixe is complete and
contains A as a regular cogenerator, the following hold:

1. V' has a left adjoint and reflects isomorphisms; hence (Fixn, V') is an essentially algebraic
category.

2. (Fixn. V') is even a regularly algebraic category, provided A is regular injective® in Fixe.

Proof Since Fixn has coproducts (being dually equivalent to Fixe) the faithful functor
V’: Fixn — Set, being representable by By = TA. has an adjoint. Hence (see [1. 17.B, 18.3))
it remains to prove that V' reflects isomorphisms. Let f: B — B’ be a morphism in Fixgp
such that [f] is bijective. Then [f] induces an isomorphism f’ of the copowers B(Bo. B) - Bo
and B(By, B') - By which makes the following diagram commutative, where ¢p and gpr denote
the canonical maps from the copowers of the generator By, which, by hypothesis. are regular

epimorphisms.
!

B(Bo, B) - By S, B(Bo. B') - By

‘181 l‘lﬂ'

B _ B
f
Now simply use the fact that the regular epimorphism ¢g: is an extremal epimorphism.
For the last statement, first observe that the definition of a regular projective object just
means that the functor V', represented by the regular projective object T A, preserves regular
epimorphisms. Now apply [1, 23.E]. <

aQbslerve that, in this situation, any B € B yields a dual adjunction of B with itself, strictly represented
by (B, B).

9i.e. injective with respect to regular monomorphisms.
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Constructing a Duality from a Cogenerator

The observation in the final statement of the previous proposition remains completely formal
and — in view of representation problems — without any use, as long as we cannot describe the
regularly algebraic category Fixn concretely. This means nothing else but looking for a (known)
regularly algebraic category (B.V) and a duality between (Fixe, U’) and (B, V) induced by a
schizophrenic object with the given cogenerator C as its first component. There is the following
somehow obvious strategy (due to Linton [20]) how to achieve this.

In order to explain this idea, let (A,U) be a concrete category with U representable and
with A complete and cocomplete; assume furthermore that we are given a regular cogenerator
C in Awhich is injective with respect to regular monomorphisms. As was made clear in the
proof of 3.5 (see also [12, 32.21]), we then know that the category A® is a regularly algebraic
category by means of A(—,C): A® — Set.

It now follows from the theory of monads (see e.g. [1, 20.42-44]). that the comparison
functor K for the monad T, defined by A(—.C) and its left adjoint F (which clearly is given
by F = [C](-)), provides a duality between (A, U) and a full (regular epi-)reflective subcategory
B of SetT. It is clear from Proposition 2.12 that B =ImK is the regular-epireflective hull of
KF1 in SetT,

We will apply this method in Section 4-E.

4 Examples

4-A The Duality for Finite — Dimensional Vector Spaces

It is well known that there is a duality between the category KVecy;, of finite — dimensional

vector spaces over some field K and itself. Let us briefly discuss how this fits into our setting.
First of all, for the category A = B = KVec of all vector spaces over K the usual underlying

functor U is representable (by the one - dimensional space K) and regularly algebraic.

Since all hom-sets fomg(V, W) of K-linear maps between spaces V and W are known to be
K-vector spaces by means of pointwise operations, it is clear that (K, 1k, K) is a schizophrenic
object for the category KVec and itself; it yields the well known dual adjunction which (in
both directions) sends a space V to its dual space V".

The canonical map nv:V — V** is injective for every space V, hence (using the notation
introduced in Section 2-A) KVec; = KVec by Lemma 3.1. Trivially. for V finite-dimensional.
v is also surjective. In fact. 5y is surjective if and only if V is finite-dimensional (see e.g. [10,
17, ex. 9]). Hence we get KVecz = KVecy;, and finally KVec; NKVecz = KVecyi,, i.e. the
familiar duality of the category KVecy;, of finite-dimensional vector spaces with itself.

4.1 Remark This example clearly proves the previous claim, that one cannot expect the
subcategories A2 and Fixe to be reflective in A.

4-B The Binz Duality

Let A = Conv be the category of convergence spaces, i.e., of sets X where for every z € X
there is given a set A(z) of filters on X, which are said to converge to z, subject to cer-
tain axioms. (For the appropriate definitions and details used in what follows, see [3].} Ob-
serve that any topological space X becomes a convergence space in a natural way, putting
A(X) the set of all filters converging to z in the given topology. The underlying functor
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U:Conv — Set is a topological functor (hence representable by a singleton space). Let B
= ConvAlg be the category of real convergence algebras, i.e. of associative, commutative,
unital R-algebras endowed with a convergence structure where all algebraic operations (and
homomorphisms) are supposed to be continuous. The underlying functor V: ConvAlg — Set

factors as ConvAlg =, R-Alg Y, Set over the category R-Alg of all R-algebras (of the
type described above) and is topologically algebraic and hence representable (by the discrete
algebra R); V' is a (regularly) algebraic and |—| is a topological functor (see [26] for a discussion
of situations of this type).

Hence we are in a basic situation. Since, in addition, the category Conv is cartesian closed
(and wellfibred — see [1. 27.20]), with the internal hom-functor given by C.(X,Y), i.e. by the
set of all continuous maps from the space X to the space Y endowed with the structure of
conlinuous convergence, Section 3-B applies.

Now let A = R, denote the convergence space of the reals and B = R, the convergence alge-
bra of the reals (with the convergence structure induced by the natural topology). Since both
objects have identical underlying sets one might wonder whether (R,.1m,R,) is a schizophrenic
object for Conv and ConvAlg. According to Section 3-B one obtains a contravariant functor
S:ConvAlg — Conv'® Hence we must only show that one can define a (contravariant) func-
tor C: Conv — ConvAlg!! such that, for every convergence space X, there are continuous
algebra homomorphisms ex ;: C(X) — R, (z € [X]) and the following equations hold:

ICX| = Cc(X‘ R,) and Vlle,\f':l = PX,r

To obtain the necessary internal operations on C(X.R,) apply the (product preserving!) functor
C.(X, -) to the corresponding operations of R,. The map s:R, x C.(X,R,) = C.(X,R,), map
corresponding to mo (1g, x ev):R, x C.(X,R,) x X — R, (m being the multiplication of R,)
by cartesian closedness, is the continuous scalar multiplication. A straightforward calculation
shows that the maps evaluating at z € [X] are homomorphisms. Hence we have shown that
there is a dual adjunction

C:Conv — ConvAlg S:ConvAlg — Conv
X — C.(X.R,) A Hom (A,R,)

It is now a fundamental result on convergence spaces (see [3, Cor. 18]) that Conva = Conv!?
and, hence, this adjunction is idempotent. The spaces belonging to the subcategory Convy
are called c-embedded spaces. It is a difficult task to characterize c-embedded spaces internally
(see [3] for a solution). In any case. we know from Theorem 2.12 that the category c-Emb
of c-embedded space is epireflective in Conv. ldempotency of the adjunction tells us that
the category Fixn dually equivalent to c-Emb is precisely the category FuncAlg of function
algebras (more precisely: of those algebras in ConvAlg which are isomorphic to some function
algebra C.(X ,R,)). This yields the duality between c-Emb and FuncAlg.

4.2 Remark The dual adjunction (C, S) is not natural'3. This is clear from 3-B but can also
be seen directly: if the adjunction were natural, for a topological space X, C.(X,R,) would
be a subspace of the product R{X] and therefore carry the topology of pointwise convergence.
It is known, however (see [29]). that the structure of C.(X,R,) is the topology of compact
convergence, and that both topologies are different in general.

YFollowing traditional terminology we will write Hom (A, B) instead of B 4 (B,C) as in 3-B.

" Again for reasons of traditional terminology we here use C instead of T since C(X) will be the algebra of
continuous real-valued maps on X.

12Recall the notation introduced in Section 2-A.

13Gee however Remark 3.4.



H.-E. Porst, W. Tholen: Concrete Dualities 129

4-C The Gelfand-Naimark Duality
The Generalized Gelfand-Naimark Adjunction

This example is similar to Example 4-B. Here however we will study function algebras of
topological spaces only. We will present a complex version of the theory. As we have seen in 4-B.
for studying function algebras on a space, one should start with a category of spaces admitting
function spaces. A suitable starting point is therefore the category A = kSp of compactly
gencrated Hausdorff spaces (also called Kelley spaces or simply k-spaces). i.e.. the coreflective
hull of the category HComp of compact Hausdorff spaces in the category Haus of Hausdorff
spaces. The coreflection is often called Kelley-fication. kSp is a monotopological category
admitting function spaces (see [8] or [7] for details). Observe in particular, that products in
kSp (which will be denoted by x, or []* and called k-products) are the Kelley-fications of the
topological products, and that the function spaces Cx(X.Y') are given as Kelley-fications of the
sets Top(X.Y) of all continuous maps from X to Y endowed with the compact-open topology.
Recall that every locally compact space as well as every metrizable space belongs to kSp and
that, for a locally compact space X, one has X x Y = X x; Y for every space Y € kSp.

Since the field € of complex numbers belongs to kSp, one can form the category kAlg of
complex k-algebras: objects are C-algebras (associative, commutative, and unital as in Section
4-B) carrying a Kelley-topology. such that all algebra operations are continuous with respect
k-products. Morphisms are the continuous algebra homorphisms. Since the Kelley-fication of
a topological space is simply a refinement of its topology, every topological complex algebra
belongs to kAlg, while a complex k-algebra might fail to be a topological algebra. Clearly.
the complex numbers are a k-algebra. As in 4-B we will denote this algebra by C,. while C,
denotes the space of complex numbers.

We now can argue literally as in 4-B in order to obtain a dual adjunction

C:kSp — kAlg S:kAlg — kSp
X ~ Cu(X,C,) A Hom(A.C,)

which we will call the Generalized Gelfand-Naimark Adjunction. Clearly, this adjunction is not
natural.

C*-Algebras

For every topological space X one traditionally introduces the following structure on the set
C*(X) of all hounded continuous complex-valued functions on X:

¢ By pointwise operations C*(X) becomes an associative. commutative, unital C-algebra.

s By pointwise conjugation one gets an operation f — f~ such that C*(X) becomes an
involutive algebra.

¢ By the supremum-norm ||f|| = sup:ex!|f(z)| then C*(X) becomes a normed algebra
(which, due to the required boundedness, is even a Banach algebra) satisfying the addi-
tional axiom || f||2 = |If - f°I-

Thefore C*(X) becomes a C*-algebra (more precisely a cominutative unital C"-algebra). Taking
as morphisms the involution-preserving unital C-algebra homomorphisms (which are necessarily
continuous) we obtain the category C* (see [6] for details). C* becomes a concrete category in
two ways: first. there is the restriction V of the perfectly “well-behaved” underlying functor of
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kAlg assigning to a C*-algebra its underlying set. Secondly, when assigning to a C*-algebra A
its unit ball {a € A | |la]| €1} and to a C*-morphism f the restriction of f to the unit ball of
its domain, one obtains a faithful functor (O: C* — Set which, perhaps somewhat surprisingly,
turns out to be monadic (see [23] or [22, 3.1 exercise 16]). In particular, O is representable
while V is not (see [6, 1.3.3] for a hint).

Observe that the category C* is a full subcategory of the category kAlg!.

Dualities Induced by the Generalized Gelfand-Naimark Adjunction

Obviously, for any compact Hausdorff space X, the C*-algebra C*(X) and the function k-
algebra C(X) = Ci(X.C,) coincide algebraically. In fact they also coincide topologically since,
due to compactness of X, the topology of C*(X) is the compact-open topology (see [8. 4.2.17]).
Hence, by restriction, we get a function-algebra functor C: HComp — C*.

Now there arises the question if the functor S can be restricted correspondingly. Indeed,
since all evaluations are continuous, it follows from basic results on the topology of func-
tion spaces (see e.g. [17, Chap. 7] and [7. p.309]) that, for every C*-algebra A. the space
S(A) = Hom,(A,C,) is a compact space and that, moreover. its topology is the topology of
pointwise convergence. Hence, by restriction of S to C*, we get the so-called spectrum-functor
S:C" — HComp. It follows that the Generalized Gelfand-Naimark Adjunction induces by
restriction a dual adjunction {which will be called Gelfand-Naimark Adjunction)

C:HComp — C* §:C* - HComp
X — C(X,C,) A~ Homi(A,C,)

This might appear as a surprise, because, in view of Proposition 1.2. one would expect
a compact Hausdorfl space instead of C, to “represent” the function algebra functor. Recall
however that one should consider C* as a concrete category my means of () rather than by
means of V. Denoting by D = {z € C | |z|] € 1} the unit disc in C, it is now easy to prove
(see [23. 2.2]) that, for any compact Hausdorff space X, one has QC(X) = HComp(X. D).
It follows that the Gelfand-Naimark Adjunction is a natural adjunction between the concrete
categories (HComp, U) and (C*, () with schizophrenic object (D.1p,C.).

In order to identify the fixed subcategories of this adjunction we observe first that, since
D cogenerates all of HComp, we have HComp, = HComp. Now use the argument of
eg. [7., 3.4] to prove that also HComp, = HComp. Hence Fixe = HComp, and the
Gelfand-Naimark adjunction is idempotent. Application of the Stone-WeierstraBTheorem gives
Fixn = C* (see [6. 1.4.1] or {24, 14, Thm 2]). This is the Gelfand-Naimark Duality between
HComp and C~.

As pointed out in [7] the fixed subcategories of the Generalized Gelfand-Naimark Adjunction
are strictly larger.

4-D The Pontrjagin - van Kampen Duality

In complete analogy to the definition of the category kAlg one can define the category kAb of
Abelian k-groups, i.e. Abelian groups equipped with a compactly generated Hausdorff topology,
such that the group operations are continuous with respect to the k-product. We denote the
forgetful functor from kAb to kSp again by |-|. A k-group is a topological group if its Lopology
is locally compact. LcAb denotes the full subcategory of kAb of locally compact topological
groups.

14C*-algebras are metric spaces topologically, and hence k-spaces.
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Let T denote the unit circle in the complex plane, i.e. T'= {z € C | |z] = 1} considered as a
topological group under complex multiplication. In the same way as we have defined function
algebras in 4-B and 4-C, for any Abelian k-group G, we can supply the set kAb(G,T) =
{f:G — T| f is a continuous homomorphism} with the structure of an Abelian k-group G by
naturally lifting the inclusion kAb(G,T) — Ci(|G].|T]). This yields (see footnote 8) a dual
adjunction

Z:kAb — kAD Z:kAb — kAb
Gr G G~ G

strictly represented by (7. T), which is called the Generulized Pontrjagin - van Kampen Ad-
Junction. G is called the character group of G.

Note that, for a locally compact Abelian group G, its character group G usually is defined
as LcAb(G,T) equipped with the compact open topology. which then turns out to be (i) a
locally compact group topology and (i) the initial topology with respect to the family of point
evaluations (see [24, 31.2] or [13. 23.15]). Hence. for these groups, our definition coincides with
the classical one and, moreover. the Generalized Pontrjagin-van Kampen Adjunction restricts
to a natural dual adjunction

Z:LcAb — LeAb Z:LcAb — LeAb
G— G G G

with schizophrenic object (T.17.T). One now needs quite a bit of functional analysis, which
is beyond the scope of this paper, to prove that this adjunction is in fact a duality, the so-
called Pontrjagin - van Kampen Duality. It follows from [18] that the fixed subcategory of the
Generalized Pontrjagin-van Kampen Adjunction is larger then LcAb.

The observations (see [13, 23.17]) that, for any discrete (respectively compact) group G.
the character group G is compact (discrete respectively) then leads to the so called Pontrjagin
Duality between Ab and the category HCompAb of compact Hausdorff Abelian groups:

Z:Ab — HCompAb Z:HCompAb — Ab.
G—G G—G

Obviously the Pontrjagin Duality is strictly represented by the pair (Ty. T), where Ty denotes
the circle group considered as a discrete group. Since Ab as well as HCompAb are regularly
algebraic categories, it is in fact a natural dual adjunction with (7, 17, T) as its schizophrenic
object.

For a direct approach to Pontrjagin Duality one certainly could have started checking whe-
ther (T4.17,T) is a schizophrenic object for A = Ab and B = HCompAb. Condition SO 2
is trivially fulfilled: in order to check SO 1 one only has to observe that, for any Abelian group
G. Ab(G,Ty) considered as a subspace of T is (i) a topological subgroup of T!¢! and (ii) a
closed (hence compact) subspace. It is by far less trivial to determine the fixed subcategories
as Ab and HCompAb respectively; for a nice account of this we refer to [15, VI 4.8, 4.9).

4-E The Stone Duality

As already mentioned in the introduction, the duality discussed in this section originates from
the question whether every Boolean algebra can be represented as a collection of subsets of
some set. Certainly, in general one cannot expect a representation as a full powerset of some
set — except for finite Boolean algebras (see below) — since there exist non-complete Boolean
algebras (e.g. the finite-cofinite algebra over N (see e.g. [4, 7.7]), whereas powersets are always



132 H.-E. Porst, W. Tholen: Concrete Dualities

complete. Hence this question actually has two different facets: (i) which type of Boolean
algebra arises as powerset algebras? and (ii) can every Boolean algebra be represented as a
subalgebra of a powerset algebra? Bool denotes the category of Boolean algebras and Boolean
homomorphisms.

Powerset Algebras

In attacking the first question, the previous discussion suggests considering the contravariant
powerset functor P on Set, or rather the naturally isomorphic functor Set(—,2). Since the
two-element set 2is regular injective and a regular cogenerator in the category Set, the strategy
developed in Section 3-C applies.

Step 1: For every set X, the map nx: X = PPX with X — {4 C X | z € A} is easily
checked to be P-universal (see also 3-C). Hence we have identified the monad we are looking
for: it is the so-called Double Power-Set Monad P. For a complete description of P see [22,
3.19].

Step 2: The Eilenberg-Moore category Set? can — by a somewhat lengthy calculation
(see [22. 5.17-20] or [15, VI 4.3]) — be identified as the category CABool of complete atomic
Boolean algebras. Recall that a Boolean algebra A is called complete if it is complete as a
partially ordered set, and that it is called atomic provided every a € A is the supremum of the
atoms (i.e. minimal clements in A\ {0})"® < a.

Step 3: Since the comparison functor K acts as X — PX one can apply the Lindenbaum-
Tarski Theorem whereby every complete atomic Boolean algebra B is isomorphic to the power
algebra of its set of atoms A(B) (by B 3 b+~ {z € A(B) | z < b} and, conversely. A(B) 3 A —
sup A € B), and obtain ImK = CABool. Hence we have established a duality between Set
and CABool. Observe that this duality in so far exceeds the Lindenbaum-Tarski Theorem
as it tells us in addition that the representation of a complete atomic Boolean algebra as a
powerset algebra can, up to a natural isomorphism, only be achieved by means of its set of
atoms.

Obviously. the duality between Set and CABool can be restricted to finite sets and finite
complete atomic Boolean algebras. Now any finite Boolean algebra certainly is complete and
atomic. Hence this yields a duality between Set;;, and Booly;,, as mentioned at the beginning
of this section.

The Stone Duality

An approach for attacking the second question now would be to establish a duality between A
= Bool and a “reasonable” concrete category (B. V) starting with A = 2,, the two-element
chain, as Bool-component of the corresponding schizophrenic object (only maps into 2 can
be interpreted as subsets). We claim that 2, is a (regular) injective (regular) cogenerator on
Bool'S. Indeed, given a pair of different Bool-morphisms 4 == B, a Zorn’s Lemma argument
shows that for f(a) # g(a) there exists a prime ideal [ in B ':rith f(a) & I 3 g(a) (sec eg. [4.
10.4]). Denoting by z: B — 2, the Boolean homorphism with b € I & z(b) = 0 we conclude
o f # zo0g, hence 2, is a cogenerator. To prove that 2, is injective one might either use
the hints given in [4, Exercise 10.8] or simply use the fact that complete Boolean algebras are
injective (see [2]).

1515 a powerset the atoms obviously are the singletons.
16Recall that regular can be dropped here since in the regularly algebraic category Bool all monomorphisms
are embeddings.
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Now we can apply the strategy of 3-C again. The monad M induced by Bool(—,2,) is
described by M(X) = Bool(2¥.2,). Since the Boolean homorphisms into 2, can be identified
with prime ideals, hence with ultrafilters via complementation (see [4. exercise 9.1]) on their
domain, M will be the so called Ultrafilter monad on Set. The Eilenberg-Moore category of
M is well known to be the category HComp (see e.g. [22. 5.24-33]).

The full subcategory of HComp cogenerated by the two-element discrete space 2, is the
category Stone of zero-dimensional compact Hausdorfl spaces, also called Stone spaces (see
e.g. [8. 6.2])!". Since the continuous maps from a Stone space X into 2, can be identified with
the clopen. i.e. closed an open, subsets of X we might summarize our results as follows:

o There exists a natural duality for the concrete categories Bool and Stone induced by
the schizophrenic object (2,, 11, 2,).

¢ Every Boolean algebra can be represented as the sel of clopen subsets of a Boolean space.
uniquely determined up to homeomorphism.

o The category of Stone is regularly algebraic, but not monadic.

5 Further Topics

We will touch two further interesting questions related to concrete dualities. Due to lack of
space we won't give proofs however, referring to the literature instead.

5-A Uniqueness of Dualities

The question of uniqueness of dualities has different facets. Clearly, if there is a duality (S.T)
between concrete categories (A,U) and (B.V) with U and V representable by Ao and By
respectively, then A determines B up to equivalence as an abstract category. Such a duality. if
represented by (A, B), can equivalently be seen as a concrete equivalence between the concrete
categories (A%, A(—, A)) and (B, V). It follows from uniqueness of representations that, given
two dualities (S:.T;) between (A, U) and (B;, Vi) (i = 1,2) represented by (A:. B;), the concrete
categories (B, V;) and (B,.V;) will be concretely equivalent iff A, and A, are isomorphic
(though the categories B; and B, are always equivalent as abstract categories).

The more interesting question is whether different dualities for two concrete categories can
be represented by the same pair of objects. It is for an answer to this question that, in our
study of schizophrenic objects and natural dual adjunctions. we were always careful not to
assume a priori that the bijection 7:[A] — [B] is an identity.

Call two schizophrenic objects (A, 7. B) and (A.0. B) for the concrete categories (A.U) and
(B.V) equivalent if there are automorphisms a and b of A and B respectively such that the
diagram

- T -
vA —— VB

Ua| [ve

UA VB

[+

7See (15, 11 4.2] for a set of equivalent descriptions of Stone spaces.
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commutes. Call two dual adjunctions ($,T) and (S’,T') between (A, U) and (B, V') equivaleni
if there are natural equivalences v: T — T’ and & § — S’ such that

4S-y=T'6-9 and §T-e=S'y-¢ (15)
One then can prove the following result for a fixed pair of objects (A, B)e A xB:
5.1 Theorem ([5]) There is a bijective correspondence between
e cquivalence classes of schizophrenic objects (A.7.B) and
o equivalence classes of natural dual adjunctions (S, T') strictly represented by (A.B).

This can be used for example to prove (see [5]) uniqueness of each of the following dualities:
Stone duality, Pontrjagin-van Kampen duality. the localic duality of our leading example.

5-B Duality and Rank

Examples discussed in Section 4 might have led to the impression that, for a duality of concrete
categories (A.U) and (B, V) whith (A, U) regularly algebraic (e.g. A = Bool, Ab. C°). the
category (B, V) has to be, in some sense, “topological”. However, in each of these cases, (B, V)
is in fact regularly algebraic. So what makes it look “topological”?

The answer to this question requires recalling the notion of rank of an algebraic category
(see e.g (22, 5.14] and [11]). Roughly speaking, an algebraic category has rank, if arities of
operations needed for defining the objects of the category, are bounded by a certain cardinal.
All categories mentioned above have in fact rank (for Bool and Ab only finitary operations
are needed, C* requires in addition to finitary operations another one of arity Ro (see (22, 3.1
exercise 16]). By contrast, their duals (i.e. the categories Stone, HCompAb, and HComp)
do not have rank.

The following theorem gives the reason behind this observation.

5.2 Theorem ([9, 25]) Let (A,U) be a regulariy algebraic category such that also (A", V) is
reqularly algebraic by means of some Set-valued functor V. Then not both of these categories
can have a rank, ezcept for the trivial cases A =1 or A = 28,

18Here 1 is the category with precisely one morphism and 2 is the category e — .
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