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The Art of Pointless Thinking:
A Student’s Guide to the Category of Locales

P. T. Johnstone

1. Introduction

The category of locales, as a substitute for (and in many ways
an improvement on) the category of topological spaces, was intro-
duced nearly 20 years ago in a celebrated paper by John Isbell [19].
0f course, the idea of regarding frames (or complete Heyting alge-
bras, or whatever name you prefer) as generalized topological spaces
1s a good deal older than this: it can certainly be traced back to
work of McKinsey and Tarski [46] in the 1940s, and many other
authors [49, 16, 9, 50, 12, 2] had worked on variante of the idea.
But the reason for citing Isbell's paper as the unequivocal origin
of the subject is not just that he introduced the name "locale"
(which, although it has since been abused by others [38], is unequi-
vocally the right name — it possesses all the right associations,
and is capable of all the needed inflections), but far more that he
was the first to take the (literally) revolutionary step of turning
the arrows round, and working in the opposite of the concrete
category of frames.

Of course, this step 1s mathematically trivial; the duality
principle is something that every student learns near the beginning
of a first course on category theory, and which all but the weakest
assimilate without a moment's difficulty. However, it is psycho-
logically enormously important: moat categories of practical
importance in mathematics (with two important classes of exceptions:
abelian categories and categories of relations) are very different
from their opposites, and our categorical intuition (largely
conditioned by our experience of the categories of sets and of
topological spaces) is strongly non-self-dual, so that the simple
act of turning the arrows round produces a new insight into the
nature of the objects and the way in which they interact. And,
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without that insight, one can't start seriously doing topology with
locales: frame theory is lattice theory applied to topology, whereas
locale theory is topology itself. (Admittedly, there are eminent
authors — Banaschewski, Pultr and others — who would disagree with
this assertion, and who continue to write papers about frames rather
than locales. However, detalled examination of those papers
convinces me that I am right, and I shall try to pass on that
conviction in the course of this article.) Thus the title of the
article might with equal appropriateness have been "The Art of
Backwards Thinking".

A simple illustration will help to clarify the argument of the
previous paragraph. The category Frm of frames, like any category
of lattices, is enriched over partially ordered seta: that is, its
hom-sets have a natural (pointwise) partial ordering, which is
stable under composition. Turn the arrows around, and we see that
Loc, the category of locales, is also enriched over posets; in fact
each locale X has a natural partial ordering (that is, a sublocale
of Xx X which is reflexive, transitive and antisymmetric), and
properties of this ordering are of importance in locale theory (for
example, the requirement that it be discrete provides a "’1‘1 axiom"
for locales). To echo the words of Isbell [20], "I have no idea
what co-partial order is", but I do understand partial orders: 1
have enough experience of partially ordered sets and spaces to
transfer my intuition about them to any category with finite limits.
But the reversal of arrows 1s necessary if we are to bring this
intuition to bear on the category of locales.

There remains the question: why study locales at all? 1Isn't
the category of topological spaces (or perhaps some cartesian closed
extension of it, such as is described elsewhere in this volume) good
enough for doing topology in? There are several answers to this
question. One, which was stressed in my earlier expository article
[29] (and which I shall therefore play down in the present context:
anyone who wants to know more can go back and read [29]), is that
locale theory is inherently constructive: by working with locales
one can avoid not only most uses of the axiom of choice in topology,
but even most uses of the law of excluded middle, so that topology
can be done localically in toposes and other non-classical contexts.
(Unfortunately, this has turned out to be slightly less true than I
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believed when I wrote [29]. Whilst it's true enough at the "topo-
logical" level, when one tries to ascend to the "uniform" level it
emerges that there are significant differences between the classical
and constructive theories [35]. 4nd even my conviction that locale
theory is inherently choice-free has recently received a nasty
shock [59].)

A second reason, related to the first, is that the category of
locales is the right place for doing fibrewise topology: the slice
categories Loc/B of locales over a fixed base B are more like Loc
itself than the categories EQP/B are like Top. (To be technical for
a moment, the reason for this is that QQS/B is, up to equivalence,
the category of internal locales in the topos of sheaves on B [27].)
Again, there are those (notably I.M. James [24]) who would disagree
with this statement, but I believe there is now plenty of evidence
for its validity. (Some of this evidence will be set out in section
4 below.)

Thirdly, the reason which originally moved Isbell {19] to study
locales was the fact that locale products are so much nicer than
space products: all sorts of topological properties which fail to be
inherited by product spaces behave well for product locales.
(Isbell's original example was paracompactness, but one could cite
numerous others such as the Lindelof property — which turns out to
be equivalent, for regular locales, to realcompactness [45]. And
the Tychonoff theorem for locales requires no use of choice [26];
indeed, when viewed from the right perspective it becomes a trivial-
ity [37].) Related to this is the good behaviour of function spaces
[20, 18] and Vietoris hyperspaces [30], which both work more smooth-
ly for locales; perhaps the best illustration, in the case of
function-spaces, is the remarkable discovery by Moerdijk and Wraith
[47] that connected and locally connected locales are path-connected.

But all the reasons adduced in the previous paragraph are
properly viewed (I believe) as consequences of the single most
important fact which distinguishes locales from spaces: the fact
that every locale has a smallest dense sublocale. If you want to
"gell" locale theory to a classical topologist, it's a good idea to
begin by asking him to imagine a world in which an intersection of
dense subspaces would always be dense; once he has contemplated some
of the wonderful consequences that would flow from this result, you
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can tell him that that world 1s exactly the category of locales.
(In a sense which can be made quite precise, it is the least poss-
ible modification of the category of spaces which makes the result
true: as we shall see in section 3, every locale is not merely a
dense sublocale of a space but an intersection of dense spatial
sublocales.) It is certainly clear that in order to achleve such a
world, we have to abandon the idea of a space as a set of points
equipped with some kind of structure; for there will be examples in
any category of this type of pairs of dense subspaces of a nontriv-
ial space having no points in common. Thus the topological struc-
ture of a locale cannot "live on its points"; from here, it is a
small step to make the topological structure (i.e. the frame of open
subsets) into the extensional essence of the locale (Bo that the
points, if any, live on the open sets rather than the other way
about). This, to me, is the real justification for the effort
involved in training oneself to "think pointlessly".

The layout of the rest of the article is as follows. In
section 2 we develop the theory of frames, as far as we need it; in
section 3 we turn the arrows round and survey the topological
aspects of locales; and in section 4 we look briefly at locales over
a base. Detailed proofs are not given — the interested reader will
find them in the two textbooks so far written on locales [28, 67],
or in the original papers to which we provide references —— but we
have tried to indicate the principal constructions, and the ideas
behind them, in some detail.

2. Frames

The basic definition is simple enough: a frame is a complete
lattice A in which the infinite distributive law

aA V8= Vi{aAas | s €S} (2.1)

holds for a2ll a € A and S € A. By the Adjoint PFunctor Theorem, a
frame is extensionally the same thing as a complete Heyting algebra,
the Heyting implication beilng given by

(a=1b) = V{c €A ]|cAa<ghb}, (2.2)

but frame homomorphisms (i.e. maps preserving finite meets and
arbitrary joins) do not normally preserve the implication. The
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motivating example of a frame is of course the open-set lattice O(X)
of a topological space X (and the motivating example of a frame
homomorphism is the mapping Y o(Y) -+ O(X) induced by a continuous
map £: X = Y), but there are others: for example, a complete Boolean
algebra is a frame, and is never of the form (O(X) unless it is
atomic. Frames also have a natural tendency to turn up [10] as
lattices of localizations of well-behaved categories € (that is,
left exact idempotent monads on (), and for this reason they are of
interest to (non-commutative) ring theorists [17].

The category Frm is (infinitary) algebraic (that is, monadic
over Set); this follows from the fact that it can be presented by
operations and equations (which is implicit in the previous para-
graph), plus the fact that the forgetful functor Frm - Sgi has a
left adjoint. This left adjoint turns out to factor through
O: $2£°p - Frm, and in fact provides a left adjoint for O regarded
as a functor QQROP -+ Set. Thus frames can be regarded [63]) as "the
algebraic part of the theory of topological spaces" — where, how-
ever, the latter is understood not as the theory of the forgetful
functor Top - Set, (whose algebraic part is trivial), but as that of
the functor &: ESEPP -+ Set. (Warning: as a functor on the whole of
gggop, isn't faithful — different spaces can have the same open-
set lattice — but one can restrict it to the subcategory §g§?p of
sober spaces, on which it is faithful, without changing anything
essential. See section 3 below.)

There are several possible constructions of the free functor
Set -+ Frm, The earliest, due to Bénabou [9], explicitly constructs
the free frame on a set X as the open-set lattice of the power Sx,
where S is the Sierpidski space, i.e. the two-point space with just
one closed point. (The fact that powers of S appear here is no
accident; for free frames, like the free objects in any algebraic
category, are regular projective — in Frm this assertion doesn't
even need the axiom of choice, since surjective frame maps have
right adjoints which are splittings for them in Sgt — and so one
would expect them to be related to Scott's injective spaces [60],
which are the retracts of poiers of S.)

However, there are other constructions which yield more infor-
mation by comnstructing free frames in stages: that is, they factor
the forgetful functor Frm - Set through some simpler algebraic
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category, and then comnstruct left adjoints for each half of the
factorization. In [2B], we used the factorization

Frm ~ Slat ~ Set
where §£g§ is the category of meet-semilattices; that is, "first
forget the arbitrary joins, and then the finite meets". This has
the advantage that the way one builds the free functor corresponds
to the way in which one often defines a topology on a set, by first
specifying a base for it (closed under finite intersections) and
then closing off under arbitrary unions; and indeed this approach
readily generalizes to the problem of comnstructing frames from
generators and relations ([28], II 2.11). As a particular applica-
tion of the latter, we gave a construction of coproducts in Frm
which closely parallels the construction of the Tychonoff topology
on a product space. (This construction, however, was not new; it
had appeared, minus the motivation, in [14].)

Joyal and Tierney [38], on the other hand, exploited the
"opposite" factorization

Frm - CSLat -+ Set

in which one first forgets the finite meets and then the arbitrary
joins (C8La% is the category of complete join-semilattices). An
advantage of this approach is that, just as (meet-)semilattices may
be regarded as a special case of commutative monoids, so frames may
be seen a8 a class of commutative monoids in CSlat, relative to the
monoidal closed structure which it acquires as the category of
models of a commutative algebraic theory. This too leads to an
illuminating construction of coproducts, at least for finite
families of frames: the coproduct of two frames A and B is simply
their tensor product in CSLat, i.e. the complete join-semilattice
Zenerated by symbols a®b (a € A, b € B), freely subject to the
billinearity relations that a® (-) and (-)® b preserve arbitrary
joins. (Once again, this description was not new; it had appeared,
at least implicitly, in [68].) Moreover, since the extra structure
involved in the passage from complete semilattices to frames is
finitary, the forgetful functor Frm - Slat creates filtered
colimits; thus one can obtain information about more complicated
colimits in Frm from their counterparts in C3Lat, which are easier
to construct. For example, one has the result that if the transi-
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tion maps in a filtered diagram of frames are injective, then so are
the maps from the vertices of the diagram to its colimit. (Yet
again, someone had been there before: in this case Isbell [21].)

A third way of factoring Frm - Jet was suggested by Banaschew-
ski [5] and recently exploited by Vickers and the present author
[37]: this is the factorization

Frm - PreFrm - Set

where the category PreFrm of preframes has as objects posets with
finite meets and directed joins (plus (2.1) restricted to directed
joins), with the appropriate morphisms. At first sight, this
factorization appears less promising than the others, because the
theory of preframes is not algebraic but only "essentially alge-
braic"; in fact its algebraic part is no more than the theory of
meet-semilattices. However, the significant thing is that the
theory of preframes is commutative, and so PreFrm, like CSLat, has a
closed monoidal structure, with respect to which frames appear as (a
special case of) commutative monoids. Thus the coproduct of two
frames A and B may also be regarded as their tensor product in
PreFrm; that is, it is freely generated by elements a @ b (a € A,

b € B), subject to preframe bilinearity relations. (These genera-
tors are related to the C3Lat ones by

eagd b
and a® b

(a®1) v (18 0)
(a8 0) A (08 D) .) (2.3)

This approach yields the simplest proofs yet devised of the "localic
Tychonoff theorem" that a coproduct of compact frames is compact [5,
37]. It seems likely that it will yield further results of interest
— particularly in connection with theoretical computer science,
where directed joins and finite meets are more "natural" operations
to consider than finite joins.

For completeness, we should also mention the fourth poasible
factorization

Frm - DLat - Set
(DLat = category of distributive lattices), where one forgets the

infinitary structure first and remembers the finitary part. Here,
it 1is the (non-full) image of the free functor DLat - Frm, the cate-

gory of coherent frames, that is of most interest: if one restricts
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the forgetful functor to this subcategory, and then dualizes to
coherent locales, one obtains the (choice-free) localic version of
Stone duality for distributive lattices ([28], II 3.3). (4nd if
one further restricts from distributive lattices to Boolean alge-
bras, one obtains a duality with a full subcategory of Log — the
compact zero-dimensional locales.) The (full) subcategory of
retracts in Frm of coherent frames, the stably continuous frames, is
also of interest [4, 65].

Like any algebraic category, ggg‘has regular epic/monic factor-
izations, which are stable under pullback. Regular epimorphisms in
Frm are just surjective frame homomorphisms, and they are of consid-
erable importance since they correspond to subspaces. The surjec-
tive images of a frame A of course correspond to congruences on A;
but since a congruence £ is (in particular) stable under arbitrary
joins, each f-equivalence class has a greatest element, and so 6 is
determined by the mapping (j, say) which sends each element of A to
the greatest member of its eguivalence class. This mapping has the
properties

a < jla) = j(j(a)) and j(a A D) = j(a) A j(pv) (2.4)

(the third identity corresponding to stability of f under finite
meets): that is, j is a left exact (idempotent) monad on A consid-
ered as a category, and we call it a pucleus on A. (It may be shown
that nuclei may be characterized by a single identity: they are
exactly the maps j: A = A satisfying

(a = 3(b)) = (3(a) - j(b)) (2.5)

for all a, b € A [25]. However, this seems leass useful than the
characterization by three separate identities in (2.4).)

The quotient frame A/0 may be identified with the sub-poset
(not a subframe!) Aj of A consisting of the fixed points of j; the
quotient map becomes identified with j itself, regarded as a frame
homomorphism A - AJ. It is easy to show that a sub-poset B of A is
of the form Aj for a nucleus j iff it is closed under arbitrary
meets and an exponential ideal (i.e. a € A and b € B imply
(a -~ b) € B); we call such a subset a fixset. Note that an arbi-
trary intersection of fixsets is a fixset; this yields a construc-
tion of meets in the lattice of quotients of A. (Joins in the
lattice of quotients correspond, as usual, to intersections of
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congruences, or equivalently to (pointwise) meets of nuclei.)

With any a € A we may associate three particular nuclei: the
closed nucleus c(a) = a v (-), the open nucleus u(a) = a =+ (-) and
the quasi-closed nucleus g(a) = ((-) - a) » a. The quotient frames
corresponding to the first two are respectively isomorphic to the
principal filter f(a) and the principal ideal |(a); that correspon-
ding to g(a) is Boolean, and every Boolean quotient frame arises in
this way (the element a being determined as the least element of the
corresponding fixset). In fact Aq(a) is the intersection of all
fixsets which contain a; in particular, g(0) is the largest nucleus
} such that 0 € Aj.

Since nuclei on A are localizations of A considered as a cate-
gory, it is no surprise that they form a frame (in their pointwise
ordering, which corresponds to the inclusion ordering on congruences
but is the opposite of the inclusion ordering on fixsets); this was
first proved by Isbell [19], but a simpler argument will be found in
[28], II 2.5. This frame is denoted N(A), and called the assembly
of A. The function c¢: & = N(A) is a frame homomorphism, but u and q
are not; in fact, for any a € 4, c(a) and u(a) are complementary
elements of N(A). PFurther, the elements c(a) and u(a), a € A,
generate N(A) as a frame; in fact for any j € N(A) we have

i = Vic(i(a)) A ula) | a € 4} (2.6)

(see [28], II 2.7). Prom this it follows easily that c: A - N(a) is
epic as well as monic in Frm. (Note: although N(A) is generated as
a frame by complemented elements, it does not follow that all its
elements are complemented, i.e. that it is a Boolean algebra. An
infinite join of complemented elements need not be complemented.)

It can be shown that N(A) is freely generated from A by adjoin-
ing complements for all its elements: that is, any frame homomor-
phism A -+ B whose image is contained in the sublattice of complemen-
ted elements of B factors uniquely through c: A - N(A). (This was.
apparently first observed by A. Joyal.) In particular, any homo-
morphism from A to a complete Boolean algebra factors through c; so
we could obtain a left adjoint for the forgetful functor from
complete Boolean algebras to frames, if it existed, by iterating the
construction A~ N(A) (transfinitely often if necessary) until it
converged. However, it is well known that this left adjoint does
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not exist; so there exist frames A for which all the transfinitely
iterated assemblies N%*(A) are distinct. But the canonical maps
A - N%(4) are all epic; so we see that Frm is not co-well-powered.

It is of interest to ask what happens if, instead of adjoining
complements for all the elements of A, we adjoin complements only
for the elements of some subset B € A, At least in the case when B
is a subframe of A, this question was answered in [25]: we obtain a
subframe NB(A) of N(4), whose elemente are the B-fibrewise closed
nuclei which we shall meet again in section 4. Such nuclei are
uniquely determined by their restrictions to B, which are exactly
the functions B = A satisfying (2.5) for all a, b € B.

3. Locales

We now embark on the task of "turning round" the information
about frames in the last section, and viewing it as topological
information about locales. Experience suggests that, in order to
avoid confusion between a locale and the frame which is extension-
ally the same thing, it is necessary to adopt a notation which
distinguishes between them; so we shall use the letters X, Y, 2, ...
for locales and write @(X) for the frame corresponding to X. (Thus
our notation doesn't distinguish between a space X and the locale
which is extensionally its frame of open sets. This is reasonable
provided we restrict our attention to sober spaces, as we shall see
shortly.) Likewise, if f: X = Y is a morphism of Lgc, we write
£ #(Y) » 0(X) for the frame homomorphism which is extensionally
the same thing.

The (now) nameless functor 222 - kgg which is extensionally
©: Top - Frn°P has a right adjoint, which we denote X+ X ; we call
X, the gpatial part of X, and say X is gpatial if the counit X -~ X
is an isomorphism. The adjunction is idempotent (so that spatial
locales are exactly those which arise from spaces), and its counit
is always regular monic, so we can think of XS as a sublocale — the
equivalent of a quotient frame — of X, namely the smallest sub~-
locale which contains all the points of X, the latter being by
definition morphisms from the terminal locale 1 {(®(1) = 2) to X.
(Frame-theoretically, points correspond to prime elements (that is,
elements generating prime principal ideals) of &(X), and O(Xe) may
be identified with the fixset of elements of O(X) which are meets
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of prime elements.)

On the other side of the adjunction, for a space X the unit map
X~ XB need not be either monic or epic; but it is monic iff X is a
To-space (and then it is regular monic), and an isomorphism iff X is
sober (which one may think of as a mild strengthening of the To
separation axiom, implied by T2 but neither implied by nor implying
T1). Virtually all the spaces one meets in "everyday life" (that
is, apart from counterexamples cooked up for the purpose) are sober,
and it does little harm to topology to pretend that all spaces are
sober, since the replacement of X by its soberification XB does not
change its open-set lattice, and does very little damage to its
topological properties (the T1 axiom being the only significant
exception). Henceforth we shall assume all spaces are sober, and
identify spaces with spatial locales, so (retrospectively) justify-
ing our notation.

Sublocales of a given locale X correspond to quotient frames of
{(X), as we have already remarked; they also correspond to nuclei on
0(X), but the correspondence is order-reversing. The passage from
elements of {(X) to the sublocales corresponding to open nuclei is
thus order-preserving, and we frequently identify (J(X) with the
lattice of such cublocales — if X is a space, they are exactly the
open subspaces of X. Likewise, the closed sublocales of a space are
exactly 1ts closed subspaces; in particular they are all spatial.
However, with dense sublocales (as we emphasized in the Introduc-
tion), the picture is very different. Of course, we call a sub-
locale dense if it has nontrivial intersection with every nontrivial
open sublocale of X (equivalently, if its closure is the whole of
X); this is equivalent to saying that the bottom element O of ()(X)
belongs to the corresponding fixeet, or that the corresponding
nucleus j satisfies j < q(0). In particular, the sublocale X,
corresponding to q(0) is the smallest dense sublocale of X; it is
rarely spatial, although each dense subspace of a space 18 a dense
sublocale.

We digress briefly to justify the claim, made in the Intro-
duction, that every locale is an intersection of dense subspaces of
a space. Since free frames are spatial and every frame is a
quotient of a free frame, every locale is a sublocale of a space;
and since closed sublocales of spatial locales are spatial, we may
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assume it is dense. Moreover, the formula (2.6) for nuclei tells us
that every sublocale is an intersection of sublocales, each of which
is the union of an open and a closed sublocale; and such sublocales
of a spatial locale, like any union of spatial sublocales, are
spatial.

We write Xd for the locale defined by O(Xd) = N(@(X)), and call
it the dissolution of X; we may think of it as something like the
discrete modification of a space, except that the construction

X+ Xd is not idempotent. More specifically, since the correspond-
ence between sublocales and nuclel is order-reversing, we see that
the canonical map X3 - X (corresponding to c: @(X) = N(@(X))) _
induces a bijection between closed sublocales of Xd and arbitrary
sublocales of X; so we can think of Xd a8 "the result of declaring
all sublocales of X to be closed". Moreover, Xd has the same points
as X (since &(1) is Boolean), and its spatial part is often discrete
(at least if the spatial part of X satisfies a mild separation
condition — the TD axiom of Aull and Thron [1] — to ensure that
all its subspaces are sober and therefore define distinct sub-
locales). However, Xd is rarely spatial [64]; the "dissolute"
spaces which can occur as subspaces of Xd for some X have bheen
studied by Isbell [22].

A large part of "the art of pointless thinking" consists in
finding locale-theoretic ways to express familiar topoclogical
concepts. For some (notably compactness and connectedness) the task
is trivial, since these notions are traditionally defined in terms
of properties of the lattice of open sets of a space, but others
require more ingenuity. We cannot (sensibly) adopt definitions
which talk about arbitrary points of a locale, since locales do not
live on their points, but frequently we may use the lattice of all
sublocales as an effective substitute for the lattice of all subsets.

For example, we have already remarked that the "classical" T1
axiom for spaces must be sacrificed, since it not only mentions
points but behaves badly with respect to soberification; but there
are various alternatives that we can use. One such is the "unorder-
edness" axiom to which we alluded in the Introduction; another
approach would be to replace the assertion "Every point is closed"
by "Every subset is a union of closed sets", or equivalently "Every
subset is an intersection of open sets". For locales, the two
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latter assertions are not equivalent, since not every sublocale has
a complement; but the second of them (the assertion that every sub-
locale is an intersection of open sublocales — or equivalently, by
(2.6), that every closed sublocale is an intersection of open sub-
locales) provides a useful separation condition for locales, which
was christened fitness by Isbell {19] (and more recently rediscov-
ered by Wraith [70]). Isbell observed that it implies the condition
that every open sublocale is a union of closed sublocales (but not
conversely); he called this condition subfitness, and it has also
been studied in frame-theoretic terms by other authors [13, 62, 6],
who often call it conjunctivity. PFor the relationship (or lack of
it) between subfitness and unorderedness, see [48]. (Rather oddly,
and very much counter to the general philosophy expounded here, the
assertion "All points of X are closed” turns out not to be a totally
meaninglesa condition on locales; it defines the epireflective hull
of (sober) T,-spaces in Loc [58]. However, it isn't much use as a
separation axiom.)

For localic versions of the Hausdorff axiom, the picture is
also somewhat confused, but here at least there 1s a clear "market
leader": the assertion that the diagonal X -+ Xx X is a closed
inclusion. The only failing of this condition is that it isn't
equivalent to the classical Hausdorff axiom for spaces, because of
the difference between space products and locale products: a space X
may be closed in (Xx}()s without being closed in Xx X. For this
reason, Isbell [19] called locales satisfying this condition
"strongly Hausdorff"; however, most authors now call them simply
Hausdorff [15, 34]. Numerous alternative axioms have been proposed
[13, 62, 58, 51, 36], most of which have the advantage that they
coincide with the classical Hausdorff axiom on spaces, but all are
unsatisfactory in other respects.

For regularity, the position is at last clear: there is one
axiom which is accepted by everyone, and which has no known draw-
backs (unless we count K¥{%'s surprising observation [40] that it
doesn't yield the epireflective hull in Lgg of regular spaces). The
reason is that the regularity axiom for spaces, though usually
stated in a form involving points, is essentially frame-theoretic:
it says that each open set is a union of open sets whose closures it
contains. Defined thus for locales, it can readily be shown to
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combine well with compactness and to imply all the other separation
axioms we have considered; for this reason, most authors teke it
(rather than the Hausdorff axiom) as the "basic" separation property
for locales. The stronger separation conditions of complete regu-
larity and zero-dimensionality, and the lattice-theoretic notion of
normality, are similarly straightforward for locales.

In passing, let us indicate how the difference between space
and locale products 1is forced upon us by the difference in inter-
sections. Let X be a apace which is Hausdorff as a locale (e.g. a
regular space), and suppose X has dense subspaces Y and Z whose
spatial intersection is not dense. The sublocale intersection ¥ n 2
is the pullback along Yx 2 -+ Xx X of the diagonal X =+ X xX, and so
closed in Yx Z; hence if Yx Z were spatial Y n Z would be too. This
simple observation can be pushed to gquite surprising lengths: for
example, if X is a localic group and Y, Z are any two dense sub-
locales of X, then the composite YxZ =+ XxX =+ X is epic — from
which it follows that every localic subgroup of a localic group is
closed [23, 32]. (We should perhaps mention that, by exploiting the
interaction between the CSlat and PreFrm generators of frame
coproducts (2.3), it is possible to define a symmetric monoidal
"weak product" structure on Lgg, which extends the spatial product
on spatiml locales [36]. However, this structure appears to have
few practical uses.)

A8 we sald in the Introduction, the discrepancies between
locale products and space products are almost all to the advantage
of the former. However, pullbacks in Loc are not gquite so pleasant:
one particular problem is that they do not preserve surjections
(that is, epimorphisms in Loc). A simple example: let X be a
regular space without isolated points; then the canonical morphism
Xda -+ X from the spatial discrete modification of X is surjective,
but its pullback along Xb =+ X is not, since the Boolean part Xb has
no points. This lends a particular interest to the study of open
maps [38] in Loc, since they (and open surjections) are stable
under pullback. Of course, a map f: X = Y is called open if the
image under f of any open sublocale of X is an open sublocale of Y;
frame-theoretically, this is equivalent to saylng that
£%: O(Y) ~ O(X) has a left adjoint f,, and that the "Frobenius
reciprocity" condition
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*
f!(U) nV= f:(U nt (V) (3.1)

holds for U € O(X), V € &AY). (The first condition implies that,
for each U, f,(U) is the smallest open sublocale of Y containing the
image of U; so if Y is a fit locale condition (3.1) may be omitted.)
A map f: X - Y of (sober) spaces is open in the localic sense iff
the spatial image of each open U € X is "almost open" in Y in the
sense that its soberification is open; Dobbertin [11] has construc-
ted an example to separate this from the spatial notion of openness,
but the difference disappears 1f Y is a TD-space.

Open surjections are by no means the only universal (i.e.
pullback-stable) surjections in Loc; proper surjections [27] also
have this property, as does the canonical map Xd ~+ X [34] although
the latter is never open (unless it is an isomorphism) and rarely
proper. But they are undoubtedly the most important class, largely
on account of the descent theorem of Joyal and Tierney [38] (which,
being topos-theoretic in character, lies rather outside the scope of
this article). Having defined open maps, we may go on to define
local homeomorphisms as those open f: X = Y for which the diagonal
X=X XYX is also open, and to establish the familiar equivalence
between the categories of local homeomorphisms over a fixed locale X
and of sheaves on X (that is, sheaves for the canonical Grothendieck
topology on ((X)).

As we have mentioned, compactness is easy to define for locales.
A locale X is said to be locally compact if &(X) is a continuous
lattice in the sense of [60]; at first sight this may surprise the
novice, who might have expected a definition in terms of compact
sublocales. However, in a continuous lattice the Scott-open filters
separate the points (3], and in a frame each Scott-open filter
corresponds to at least one compact quotient [30], so the definition
could be recast in this form. (Incidentally, Scott-open filters in
a frame A correspond to preframe homomorphisms A - 2; this is the
reason why the "preframe approach" to frames is well-adapted to
questions about compactness.) Compact regular locales, and coherent
locales, are locally compact (in fact the former are all retracts of
the latter [29]); if we assume the axiom of choice, then locally
compact locales are all spatial [3]. Even without choice, locally
compact locales are exactly the exponentiable objects of Loc (18],
i.e. those X such that (-)x X has a right adjoint (-)%. (We note



100 P. T. Johnstone: The Art of Pointless Thinking: The Category of Locales

that Loc, like ggg, i8 not cartesian closed. Moreover, unlike 232,
it does not even admit a biclosed monoidal structure [41]. The
gearch for a (locally) cartesian closed category into which Loc may
be nicely embedded is still relatively unexplored; the standard
methods developed for 232 and its relatives will not work here,
because of the lack of a faithful "set of points" functor.)

Connectedness for locales 1is also easy to define, but tends to
be rather badly behaved [42]; in particular, a product of two (non-
spatial) connected locales need not be connected. However, it
improves markedly [43, 47] in the presence of local connectedness
(which is simply the assertion that each open sublocale is a union
of connected open sublocales). We have already referred to the fact
that connected and locally connected locales are (globally and semi-
locally) path-connected: this means that the "evaluation at end-
points" map X~ -+ X x X, where I is the closed unit interval, is an
open surjection. (Note that XI need not be spatial when X is; this
explains why the preceding result does not conflict with the well-
known counterexamples to the corresponding assertion about spaces.)
Starting from this result, it is clearly possible to develop a
localic version of homotopy theory, although little work has been
done in this area yet.

This concludes our brief survey of the fundamental topological
properties in the category of locales. Of course, there are many
more properties that could be (and have been) studied, but there is
no room in this article to describe them. Likewise, we cannot do
more than refer in passing to the existence of a well-developed
theory of uniform locales, which was (yet again) initiated by Isbell
[19], and has been extensively pursued in recent years by Pultr
|53 - 57] and others. However, we hope that enough has been said to
convince the reader that Loc really is a feasible context in which
to develop topological ideas.

4. lLocales Over a Base

In this section we shall comment briefly on some of the special
features of locale theory over a base locale B, that is of the
category ggg/B. We have already remarked on the fact that Qgg/B is
very like Log, in that it is equivalent to the category of internal
locales in the topos of sheaves on B; but the non-classical internal
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logic of the latter (unless O(B) is Boolean) gives rise to a number
of new features. Of course, the fact (alluded to in the Introduc-
tion) that many of the key results of locale theory have construct-
ively valid proofs means that they translate immediately to valid
results about ggg/B, though occasionally some work is needed to
interpret the definitions in this new context. For example, the
exponentiable objects of Loc/B are exactly those (X - B) which
correspond to locally compact internal locales in sheaves on B,
aince the proof in [18] is constructive; but it takes some work [27]
to identify the latter as "locally perfect" maps X -+ B. However, we
are more concerned in this section with featurees which are simply
not present in the classical case, because they involve conditions
which are automatically satisfied, or pairs of conditions which are
classically equivalent but constructively distinct.

In the first place, the property of openness becomes signifi-
cant for locales as well as for maps of locales; classically, every
morphism X + 1 in loc is open, but over a (non-Boolean) base B the
locales whose projection maps to B are open are distinctly better
behaved than those which lack this feature. Locales which are
spatial over B (that is, those which are surjective images of
discrete locales over B — the latter being defined as local homeo-
morphisme — or equivalently those which are covered by the images
of their sections over open sublocales of B) are necessarily open.
(However, spatial locales over B are in general less common than
spatial locales over 1. One should in particular beware of the fact
that, whilst open sublocales of spatial locales over B are spatial
over B, closed sublocales need not be.)

An example of a context in which openness becomes important in
fibrewise locale theory is the preservation of separation properties
under exponentiation. Classically, if X is a locally compact locale
then an exponential Yx is unordered (resp. Hausdorff, regular) if Y
is. For unorderedness, there is no difficulty in constructivizing
the proof; but for the other two properties, the proof of the
corresponding result in k&S/B requires the extra assumption that X
is open over B [27]. The reason for this requirement is worth
noting: the proofs of the corresponding results in ggg require the
idea that every subset of X can be expressed as a union of points,
and when we come to recast them in Loc we have to replace this by
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the idea that any sublocale of X may be covered by arbitrary small,
but nonempty, sublocales -~ i.e. that any covering may be refined to
a covering by nonempty sublocales. Of course, this is classically
trivial, since we may simply delete the empty sublocale from any
covering which contains it, but comstructively we do not have such a
sharp dichotomy between emptiness and nonemptiness, and the asser-
tion above (the "positive covering lemma®) turns out to be equiva-
lent to the openness of X.

Another area where fibrewise locale theory diverges from
"classical' locale theory concerns the bifurcation of the notion of
closure. It is easy to see, even in the spatial context, that the
usual "absolute"” notion of closure is i1ll-adapted to fibrewise
topology: if Y is a subspace of a space X over B, then the closure
of Y may "spread sideways" into fibres of X (over points of B) which
contain no points of Y itself. What one wants to use, in many
contexts, is the fibrewise closure: that is, the union, over all
points b € B, of the closure of the fibre Yb in Ib. It is quite
remarkable that a concept which at first sight appears to be tied so
firmly to the existence of points in B can be expressed quite simply
in localic terms, and even more so that this new notion of closure
retains the crucial feature that distinguishes locales from spaces:
an intersection of fibrewise dense sublocales is fibrewise dense.

Explicitly, a sublocale Y of a locale X over B is called B-
fibrewise dense [33] if the corresponding fixset in (J(X) contains
the image of the frame homomorphism {)(B) - O(X). B-fibrewise closed
sublocales [25] correspond to the fibrewise closed nuclei defined at
the end of section 2; if Y corresponds to a nucleus j on (?(X), then

its B-fibrewise closure corresponds to the unique smallest nucleus
agreeing with j on the image of (AB) - O(X). The locale Xg corres-
ponding to the frame NO(B)(D(I)) of fibrewise closed nuclei on £XX)
is called the B-dissolution of X; we may think of it as something
like the effect of making each fibre of X over B discrete, but
otherwise retaining as much as possible of the topology of X.

Fibrewise closure does not spread sideways: that is, a sub-
locale Y of X and its B-fibrewise closure Y have the same image in
B. Moreover, Y is open over B iff ¥ is. The fibrewise notions have
the properties one would expect under change of base (i.e. pullback
along, or compomition with, a locale map B' =+ B), although for some
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of these results it is necessary to assume that the locales under
consideration are open over B. Almost the only unsatisfactory
feature of the notion is that fibrewise closed sublocales need not
have complements; we do not have a corresponding notion of "fibre-
wise open" sublocale.

Fibrewise closure was originally introduced [33] in order to
prove a fibrewise version of the theorem on closedness of localic
subgroups, already mentioned in section 3, together with an exten-
sion of the result to localic groupoids. But it has a multitude of
other applications: at least in theory, any topological property
whose definition for locales involves closed or dense sublocales can
spawn two distinct propertie= for locales over B, one using the
absolute closure and the other the fibrewise one. (Naturally, one
can expect to find cases where one or other of these properties
turns out not to be worth serious study.) Among the concepts which
have already been investigated from this point of view are the
separation axioms [34] — it had long been a source of embarrass-
ment that discrete locales over B, as we defined them earlier, need
not satisfy the "absolute" versions of the Hausdorff or regularity
axioms, but they do satisfy all the fibrewise ones — and compact-
ness [66]; but much more remains to be done.

For instance, what can be said about the "fibrewise Boolean"
locales over B which occur as the smallest B-fibrewise dense sub-
locales of arbitrary locales over B? It ia clear that such locales
have no proper B-fibrewise dense sublocales, and that this property
is implied by the condition that all sublocales are B-fibrewise
closed; but (at the time of writing) it is not known whether the
converse of the last implication holds, although some partial
results have been obtained by A. Kock, M. Jibladze and the author.
(One difficulty is that fibrewise Booleanness is not stable under
change of base. As was recently pointed out by D. Strauss, a locale
of the form X xX is Boolean only if X itself is not only Boolean but
spatial; so if X is Boolean and non-spatial then X x X is not fibre-
wise Boolean over X.)

There are many aspects of locale theory over a base which we
have not even been able to mention in this brief survey. But we
hope that the topics which have been mentioned are sufficient to
convey some of the fascination of fibrewise locale theory.
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