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The ABC of Order and Topology

M. Erné

Abstract. The classical equivalence between quasiordered sets and Alexandrov-discrete spaces
(A-spaces) extends to one-to-one correspondences between certain categories of generalized
ordered sets where the order relations are still idempotent (hence transitive) but not necessarily
reflexive, and categories of topological spaces whose topologies have asmallest base (B-spaces)
or are completely distributive lattices (C-spaces). We introduce the appropriate types of
morphisms making these one-to-one correspondences functorial and extend the results to
arbitrary closure spaces which need not be topological. Moreover, we study various reflections,
adjoint situations, equivalences and dualities between certain categories whose objects carry
an order-theoretical or a topological structure. Qur approach will provide the common frame-
work for old and new topological representations of certain types of lattices by suitable spaces,
and vice versa. The categorical point of view makes the manifold links between ordered and
topological structures more transparent and yields the appropriate background for applications
of topology to order theory, and conversely.

1. Introduction

When a beginner in category theory is confronted with adjoint situations for the first time,
he will find this concept rather complicated and perhaps a bit artificial. Then, later on,
when he recognizes many types of completions. free constructions, structure modifications.
Galois connections, equivalences and dualities as special instances of this general concept. he
will appreciate MacLane’s slogan " Adjoint functors arise everywhere".

Mathematical areas at the borderline between order and topology are particularly suitable for
an easy understanding of the powerful concept of adjoint situations at an elementary but never-
theless fruitful level. In the present study, it is our main goal to demonstrate how often ad-
joint functors occur when relationships between order-theoretical and topological structures
are investigated. However, the links between ordered and topological structures are so
manifold that we can mention here only a few basic ideas. For our purposes. the approach
via closed sets is more adequate than that by open sets, because the former allows a natural
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extension to closure spaces, a central notion not only in topology but also in many other
mathematical disciplines, especially when one is dealing with algebraic structures.

(a) From topology to order. Every topological space carries a natural quasiorder, the so-called
specialization which is defined by calling an element x more special than y if x belongs to
the closure of y. We shall generalize this procedure to arbitrary set systems (whose members
may be interpreted as “properties” or “attributes”).

(b) From order to topology. An ordered set carries many “intrinsic” topological structures.
Classical "two-sided” topologies generalizing the Euclidean topology on the real line are the
interval topology, the order topology, and the Lawson topology (see, for example, [16] or [19]).
Each of these topologies is defined in terms of the order relation, but "forgets” the latter.
"One-sided” topologies like the upper topology. the Scott topology and the Alexandrov topology
(see again [16] or [19]) have the drawback that no separation axiom except the weakest,
To. is fulfilled; on the other hand. these topologies have the advantage that the order relation
is "coded” in the topology and can be reconstructed by specialization,

(c) Order and topology logether. In many concrete mathematical situations, the sets under
consideration carry not only an order structure but also a topological one, and these two are
related by certain compatibility conditions. For example, one may postulate that the order-
theoretical principal ideals have to be closed, or that the order relation has to be closed in
the product space. The systematical investigation of such ordered ropological spaces has been
initiated by Nachbin [33] and is today a vital branch of topology.

(d) The point of pointless topology. In recent years. increasing attention has been paid to
topology without points, that is, to the investigation of typical lattice-theoretical properties
which are valid in lattices of open or closed sets and can be expressed without using points.
This leads to the theory of frames or locales (see. for example. [29]. [30]. and Johnstone’s
article in this volume).

In the present note, we shall touch upon each of these four themes sporadically, starting
with (a) and concluding with (d). A guiding principle will be the categorical point of view: in
most cases. suitable functors will establish the various links between the ordered and the top-
ological structures.

As we shall see, the well-known one-to-one correspondence between quasiordered sets and topo-
logical spaces in which arbitrary intersections of open sets are open. due to Alexandrov [2].
extends to an equivalence between a weak type of ordered sets and so-called locally super-
compact spaces. One of the manifold characterizations of such spaces is of purely lattice-
theoretical nature. stating that the lattice of open, respectively closed. sets is completely
distributive. This essentially provides the object part of a duality between locally supercom-
pact sober spaces (i.e. continuous ordered sets endowed with their Scott topology) and com-
pletely distributive lattices, due to Hoffmann [24], Lawson [31]. Hofmann and Mislove [28].
Parts of the presented material belong to the folklore of order-oriented topologists and are
known at least on the object level; but after so many widespread specific discoveries in the
field, we feel that it is about time to discuss various aspects of this theory under a common
point of view and with particular emphasis on the right choice of morphisms and functors.
For categorical background, we recommend the recent book by Adamek, Herrlich and Strecker[1].
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2. The core of topology

Let us start with a few more or less obvious generalizations from topologies to arbitrary set
systems. By a system on a set S. we mean a collection ¥ of subsets of S. The specialization
S is defined by setting X Sy iff for all Xe®. yeX implies x €X. Evidenty, this is
always a quasiorder, i.e. a reflexive and transitive relation. The pair (S.2) will be called a
(generalized) space. Although the extension of well-worn notions from topology to this very
general type of spaces is unambiguous in most cases, some of them have to be treated with
care in the extended context. so that it appears opportune to recall a few typical definitions.

The specialization <, is antisymmetric, hence a (partial) order iff (5,%) is a Ty-space. i.e. for
any two distinct points of S. there is a member of % containing exactly one of these points.
For each subset Y of S, the intersection of all members of & containing Y is the closure of
Y, denoted by Y . The sets Y with Y=Y~ are closed and their complements open. The
collection By, of all closed sets is a closure system and the pair (S5.8y) a closure space.
Notice that (S.28) itself is a closure space if and only if % is closed under arbitrary inter-
sections. i.e. identical with €. On the other hand, the system Oy of all open sets is a
kernel system, i.e. closed under arbitrary unions. The interior of a set Y, denoted by Y ©,
is the union of all open sets contained in Y . Notions such as neighborhoods and bases (of
open sets, closed sets. or neighborhoods) are defined as for topological closure systems
(which are closed under finite unions) and fopologies (i.e. kernel systems which are closed
under finite intersections).

For each yeS§. the point closure ly is the intersection of all members of % (hence of all
closed sets) containing the point y. Thus x <oy means that x belongs to the point closure of
». In other words, the point closure of y is the order-theoretical principal ideal generated
by y. But we can also form the intersection of all sets which contain y and are comple-
ments of sets from 2. This intersection will be referred to as the core of y (with respect
to #) and denoted by 1y. In fact, an easy computation shows that the specialization <gw of
the complementary system %= {S~X: X € %! is just the dual of the specialization quasiorder
<qe. and consequently, the core ty is the principal dual ideal generated by y with respect
to <g. Notice that ty is also the intersection of all (open) neighborhoods of y. More gener-
ally. the intersection of all open sets containing a fixed subset Y is called the saturation of
Y and denoted by tY ; indeed, this is the upper set generated by Y, with respect to the
specialization quasiorder. i.e. the union of all cores ty with y€Y (see [27] and Section 3).
A set Y with Y=1Y is said to be saturated. Thus Y is saturated iff it contains for each
y €Y all elements x with y <X. On the other hand, Y, the lower set generated by Y, is
the union of all closures of points from Y. Hence Y is a lower set iff it contains with y all
elements x _% y. We remark that % is contained in 8% and that each closed set is a lower
set. while 2 is contained in Oy and each open set is an upper set.

Closure spaces are in one-to-one correspondence with so-called standard completions, where
a standard completion of a quasiordered set (S, <) is a closure system €& of lower sets con-
taining all principal ideals; in this case, the specialization of € is just the given quasiorder
< (see [17]: in [13] and [15]. the reader can find a systematical investigation of standard
completions with particular emphasis on adjunctions and reflections).

Of course, cores will not be open in general. Indeed, the cores of a closure system ® are
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open if and only if € is also a kernel system, hence an Alexandrov-discrete fopology or A-
topology (alias complete ring of sets). In this case, the pair (5,6} is commonly referred to as
an Alexandrov-discrele space, or A-space for short (the "A-spaces” studied by Ershov [18]
are something different: they are closer related to our "C-spaces” introduced later on). Our
choice of the letter A points to Alexandrov, but also to the fact that in an A-space, arbi-
trary unions of open sets are open, and that the closed sets of such spaces are precisely the
lower sets ( "Abschnitte” in German; see Theorem 2.1 below): indeed, the closure )~ agrees with
the lower set }). Notice that for any A-space (S,€), the pair (5,8% is an A-space. t00, so
that words like "open™ etc. have to be used with care: the open sets of (5.6) are just the
closed sets of (5,67).

The notion of continuity is a bit subtle in the framework of general spaces: we mean by a
continuous map between spaces (S,t) and (5.%') a map ¢:S—~ S such that ¢7'[N‘] e
for all X" €:£". Thus every continuous map between (5, %) and (S§°,%°) is also a continuous
map between the closure spaces (5.G..) and (5.G...), respectively, between the kernel spaces
(5,0.) and (5.0,.), bur not conversely. As in the classical topological situation. a map
¢:5— S is continuous as a map between (5.6,) and (5,6.,.) iff o[Y Jce[)']™ for all
Y c $: in particular. ¢[iy]c ie(y) for all y€S. Hence every continuous function ¢ preserves
specialization, that is.
X <,y implies @(x) <. ply).

In other words, ¢ is an isofone function between the quasiordered sets (S. 5%) and (57, sx.).
Hence the specialization functor Q , assigning to each space (S,) the quasiordered set
(S. <) and acting identically on the underlying set maps, is a (concrete) functor from the
category of spaces and continuous maps 1o the category of quasiordered sets and isotone.
i.e. order-preserving maps. In the converse direction, we may assign to each quasiordered
set (S, <) the A-space L(S, <) = (5,6.), where 6. is the system of all lower sels, i.e.
subsets )" of S such that y €) implies x €Y for all x <y. In this context, the lower sets have
to be regarded as closed sets. and their complements, the upper sets, as open sets; these
constitute the upper Alexandrov fopology, and the lower sets the lower Alexandrov topology.
Already in the thirties. it has been observed by Alexandrov [2] that the specialization of
the A-space (S5.6.) is the original quasiorder <, and conversely, that the closed sets of an
arbitrary A-space are the lower sets with respect to the specialization quasiorder. More-
over, the continuous maps between A-spaces are precisely the isotone maps between the
corresponding quasiordered sets. In modern categorical terminology. this may be rephrased as
a simple but fundamental isomorphism theorem:

THEOREM 2. 1. The specialization functor Q induces a concrete isomorphism between the
category of A-spaces and the category of quasiordered sets, with inverse functor L.

Let us mention briefly a few applications of this categorical isomorphism: Products of quasi-
ordered sets correspond to products of A-spaces, but these are not the usual topological
products: one has to take the "box product”., where arbitrary products of open sets, without
any restriction, form a base for the product space. The supremum of quasiorders on a fixed
set corresponds to the intersection of the associated Alexandrov topologies: conversely, the
intersection of quasiorders corresponds to the join of the associated topologies. Sums, i.e.
disjoint unions of A-spaces. correspond to disjoint unions of quasiordered sets: in particular.
a quasiordered set is connected in the relational sense iff the associated A-space is (path-)
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connected in the topological sense; normal connected A-spaces correspond to down-directed
quasiordered sets, regular A-spaces to equivalence relations, and so on.

Of course, we may interpret the lower set functor L as a functor from the category of
quasiordered sets to the category of spaces and continuous maps. This functor is no longer
inverse to the specialization functor Q in the coaverse direction. but it is still right inverse
and left adjoint 1o Q. because for any quasiordered set (S.<) and any space (S, &), the
isotone maps between (S, <) and Q(S,%’) are precisely the continuous maps between the
spaces L(S,<) and (5", %) (cf. [15] and [27]). More generally, one verifies easily that
a map ¢ between spaces (S,%) and (S".’) preserves specialization iff for all X" €%, the
inverse image 9 '[X'] is a lower set.

Furthermore. L restricts to a functor from the category of (partiaily) ordered sets to the
category of Tp-spaces, i.e. spaces in which distinct points have distinct closures. Similarly.
Q restricts to a functor in the other direction, and both functors together establish a con-
crete isomorphism between the category of ordered sets and the category of To-A-spaces.

Although the one-to-one correspondence between A-spaces and quasiordered sets (respectively,
between To-A-spaces and ordered sets) is guite nice and provides the source for a broad
spectrum of applications. in particular for elegant solutions of problems concerning finite
sets (where every topology is already an A-topology). not too many topologists pay much
attention to A-spaces because of their rare occurence in real analysis”. Hence the question
arises: How can we enlarge the category of A-spaces on the one hand and the category of
quasiordered sets on the other hand. so that we still keep an equivalence between the topo-
logical and the order-theoretical structures, but many more interesting "classical” topologies
are included in the extended definition?

A rather satisfactory answer to this question is suggested by the observation that every point
in an A-space has a smallest neighborhood: in other words, that the cores are open and
form a smallest base for the open sets: in particular. each point has a neighborhood base
consisting of a single core. Now we call a closure space a basic space if it has an open base
of cores, and a core space if each point y has a neighborhood base of cores (which neither
have to be open nor generated by y). Explicitly, this means that for each open set U con-
taining y. there is an element x €U and an open set V such that yeV ctx. By a B-space.
we mean a topological basic space, and by a C-space, a topological core space. Although
B-spaces and C-spaces have been investigated by various authors (see, e.g.. [3]. [6], [11],
[17]. [18]. [23]). no common nomenclature seems to have been established for them. The
letter B refers to the word base, but also to Batbedat who called such spaces monotope (cf.
[6] and [27]). Of course, the letter C reminds us of cores, but it also points to the fact
that the closure systems of core spaces may be characterized by the purely lattice-theoretical
property of being completely distributive (see Proposition 2.2.C).

Another. more topological description of basic spaces and of core spaces (respectively. of B-
and C-spaces) is obtained by the following remark. Notice that every core (regardless whether
open or not) is a supercompact (or monogeneous) set, that is, a set C with the property
that for any collection U of open sets with CclJU, there is some UeU with CclU (this
interpretation of the word supercompact has been used by Grimeisen and others; some topo-
logists, for example members of de Groot's school, use the word supercompact in a wider
sense). Moreover, the cores are precisely the supercompacl saturated sets: indeed, if a set
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Y is saturated but not a core then for each x €Y. there is an open set U with x €U and
YaU (otherwise Y'=1x): but then )" cannot be supercompact. In particular, the open cores
are precisely the supercompact open sets. Thus exactly those closure spaces which have a
base of supercompact open sets are basic. while core spaces are characterized by the pro-

perty that each point has a neighborhood base of supercompact sets. Hence. C-spaces may
be called locally supercompact as well. Interesting for topologists is the fact that (locally)
supercompact spaces are both (locally) connected and (locally) compact, but it should be
emphasized that for us. (local) compactness does not include the Hausdorff separation prop-
erty. In modern topology. non-Hausdorff locally (quasi)compact spaces play a considerable réle
(see, for example, [26] and[27]). In fact. a restriction to higher separation axioms would

make our studies on core spaces rather ineffective because the only core spaces with closed

points are the discrete ones. In particular, it is clear that real Euclidean spaces cannot be
C-spaces. However, the upper topology on R, consisting of all "open rays” ]y)= IxX€R:x>y!

together with R and the empty set, makes R a C-space which is not a B-space. and the

same holds for the dually defined lower topology. The Euclidean topology is generated by
these two, and conversely. the upper (resp. lower) topology may be reconstructed from the
Euclidean topology and the natural order on R by taking all open upper (resp. lower) sets. A
thorough investigation of this phenomenon in the more general context of ordered topological
spaces leads to an interesting synthesis of order and topology (see [33]), and in particular.

to the theory of compact pospaces (see e.g. [19]).

The notions of compactness and of supercompactness extend in an obvious manner to point-
less topology and, more generally, to lattice theory: an element x of a complete lattice L is
called compact if for all directed subsets Y of L whose join (supremum) dominates x, there
is an element y €) with x < y; the element x is said 1o be (finitely) join-prime, written v-
prime, if this condition holds for all finite sets Y. and x is called supercompact or comple-
tely join-prime if this condition is fulfilled for arbitrary subsets Y of L. Furthermore, a
complete lattice is called (super)compactly generated or (super)algebraic if each of its
elements is a join of (super)compact elements. It is easy to see that the property of being
superalgebraic is selfdual (cf. [34]). A complete lattice in which every element is a join of
v-prime elements is called v-primely generated. cospatial, or a T-laftice, with regard to
the fact that such lattices are, up to isomorphism, the lattices of closed sets in topological
spaces {(see Proposition 5.6). Dually, lattices isomorphic to topologies are called spatial.

If a closure system 6 is considered as a complete lattice, the notion of (super)compactness
has to be treated with care: a closed set C is compact in the topological sense iff for each
collection ¥ of open sets with C ¢ ¥, there is a finite F ¥ with C clJF, while C is a
compact member of € in the lattice-theoretical sense if for each collection ¥ of closed sets
with C ¢ (U¥)™ (the closure is essential!) there is a finite F ¢ ¥ with Cc(UJ)".

Next. let us turn to certain “infinite” distributive laws which are of particular interest in
connection with the previous definitions and facts. A complete lattice L is called completely
distributive iff for any collection ¥ of subsets and for the "crosscut system”

Y¥®={ZcL: YnZ+ @ for all Ye ¥,
one has the identity
D) AVWVY: YeEY ) = VINZ: Zed™},
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Notice that this definition avoids choice functions and enables us to prove many results about
such lattices without using the axiom of choice. For example, observing that #*7 is the upper set
generated by ¥ in the power set of L, it is very easy to see that complete distributivity is
a selfdual property. while the usual proofs using choice functions are rather tedious. Also,
the crucial fact that A-topologies are completely distributive is an immediate consequence of
our definition: for the nontrivial inclusion (1 UY: Ye¥ ! cU!(1Z: Ze ¥}, notice that each
element x of the left hand side belongs to the set [)Z ,where Z = Xe U¥: xe X! e¥”.
The complete lattices enjoying the distributive law (D) at least for all families of directed
subsets are just the confinuous lattices in the sense of Scott (see [19]). We note the well-
known fact that every superalgebraic lattice is completely distributive, and every algebraic
lattice is continuous (the proof is an easy exercise).

Of course, in every completely distributive lattice, the infinite distributive law

d) xAaVY=V(xay:yeY}
and its dual are fulfilled for -arbitrary subsets Y. Complete lattices satisfying (d) are called
\/-distributive, frames or locales. Thus, for example, every spatial lattice is a frame, and
every cospatial lattice is a dual frame.

Now let us collect a few alternative characterizations of A-. B- and C-spaces (respectively, of
basic spaces and of core spaces). For A. these characterizations are straightforward and
belong to the “folklore" of topology. For B and C. we could refer to [11], [17]. [22]. and
[24]: but for the readers convenience, we give short ad-hoc proofs.

PROPOSITION 2.2. A. The following conditions on a closure space (S,€) are equivalent:
(a) (5,86) is an A-space.

(b) Each point has a smallest neighborhood.

(c) All cores are open.

(d) The closure operator of € preserves arbitrary unions.

(e) € is a ropology.

PROPOSITION 2. 2.B. The following conditions on a closure space (S.€) are equivalent:
(a) (5,6) is a basic space.

(b) The open cores form the smallest base for the open selts.

(c) (5,6) has an A-subspace whose closure system is isomorphic to € via relativization.
(d) € is isomorphic 10 an A-topology.

(e) € is a superalgebraic latlice.

Furthermore, a topological space is a B-space iff it has a smallest resp. minimal base.

PROOF. (a) = (b): Being supercompact, an open core belongs to every base of the given space.
(b) =(c): Setting B= |y €S: ty is open}. we obtain an A-subspace (B.G)g) (cf.3.2), and the
relativization map X — XnB is a lattice isomorphism between € and 6.

The implications (c) = (d) =(e) are clear.

(e) =(a): Since € is dually isomorphic to the lattice of open sets, the latter is superalgebraic,
too. Hence every open set is a union of superalgebraic open sets, i.e. of open cores.

Finally, in a topological space possessing a minimal open base $B. each member of & is super-
compact (otherwise, it could be omitted). Hence the members of B are open cores.
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(Caution: a non-topological closure space possessing a smallest base need not be basic; indeed,
each finite closure space has a smallest base, but finite basic spaces are rather rare!)

PROPOSITION 2.2.C. The following conditions on a closure space (S.8) are equivaleni:

(a) (S5.8) is a core space.

(b} (S.8) is locally supercompact.

(c) The closure operator preserves intersections of lower sets (with respect to specialization).
(d) ye({x€eS: ye(tx)®})” for all y €S.

(e) € is a completely distributive lattice.

Hence a topological space is a C-space iff its topology is a completely distributive lattice.

PROOQF. (a) = (b): This equivalence has already been explained earlier.

{a) = (c) : For any collection ¥ of lower sets, we must prove the inclusion [1{Y = Ye&} (&) .
For each y in the complement of ([1¥)~, there exists an open set U containing y and disjoint
from [¥. Choosing an x € U with y € (1x)°, we find some Y€ & not intersecting the core tx
(otherwise x € }Y=Y forall Y€ ¥, in contrast to Un [ )% = @). Hence y € (1x)°c (X~Y)°=X~Y".
(c) = (d): As the lower sets are precisely the complements of upper 4sets, we may reformulate
(c) in terms of open sets by saying that the interior operator preserves arbitrary unions of upper
sets. In particular, assuming y€U=S~(Ix€S:y€e(tx)°!)”, we would obtain y€l°=
(Uftx:xelUN°=UJ{(1x)°: x €U} and therefore y € (tx)° for some x €U, a contradiction.
(d) = (a): If U were a neighborhood of an element y such that y € (1x)° for all x€l’ then
ye({xeS: ye(1x)°}) c(S~U) =5~U, a contradiction.

(c) = (e): The closure operator of § induces a complete homomorphism from the completely
distributive A-topology of all lower sets onto © (observe that (UFH) = VY :Yed}).
(e) = (c): For any system & of lower sets, the complete distributive law yields:

MUY Yed}=M{V{ix:xeY}:Yed}=\/{ZE: forall Y€, there isan x € Y with {x€Z} =
(U{NZ:forall YEY, thereisan x e Ywith dx € Z 1) = ((HU{Ix: xeYh:YeF T =(N¥) .,

In the last section, we shall show that conversely, every completely distributive lattice is
isomorphic to the topology (respectively, to the closure system) of a C-space.

An interesting generalization of C-spaces has been studied by Hoffmann [21], namely what he
called “spaces admitting a dual”. These are topological spaces having a base of v-prime,
alias strongly connected [32] or ultraconnected [36] open sets. (A space is ultraconnected iff
each closed subspace is connected). In lattice-theoretical terms, such spaces are characterized
by the condition that the lattice of closed sets is not only cospatial, but also spatial. With
the help of the previous results, one can show that the locally supercompact topological
spaces are precisely the locally compact topological spaces admitting a dual.

From the viewpoint of categorical topology, it is important to know under what circumstances
the (topological) product of A-, B- and C-spaces, respectively, is again such a space. The
answer is easily given with the help of a general result due to Hoffmann [21]. Let P be any
class of topological spaces which is closed under the formation of continuous images and
products. The members of P are referred to as P-spaces; furthermore, call a topological
space P-basic if it has an open base of subsets which are P-spaces, and P-local if each
point has a neighborhood base consisting of subsets which are P-spaces. Then a product of
nonempty topological spaces is P-basic (respectively, P-local) iff all factors are P-basic (re-
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spectively, P-local) and all but a finite number of the factors are P-spaces. This result applies,
for example, to the following special classes P:

P-spaces | P-basic spaces | P-local spaces

compact spaces ' spaces with a compact-open base locally compact spaces
connected spaces locally connected spaces locally connected spaces
ultraconnected spaces spaces having a dual locally ultraconnected spaces
supercompact spaces B-spaces C-spaces

3. The core of order theory

Our next aim is a description of B-spaces and C-spaces by means of certain generalized
order relations, in the same vein as A-spaces are described by quasiorders.
What are typical properties of an order relation? Doubtless transitivity, and perhaps, in more
restricted situations, antisymmetry and linearity. That order relations frequently are assumed
to be reflexive is just a matter of convenience. In fact, the irreflexive approach is tanta-
mount and sometimes even preferred to the reflexive one. A quasiorder p has not only the
property of transitivity,

xpy and ypz for some y implies x¢z,
but, being reflexive. it also satisfies the converse implication, sometimes referred to as the
interpolation property:

xpz implies xpy and ypz for some y,
which has also been discovered in many non-reflexive situations (see. for example, [19], [20],
and [35]). If < denotes the "strictly less” relation associated with a reflexive order relation <
then the interpolation property of < is often referred to as density. Both properties together,
transitivity and interpolation property, characterize idempotent relations, that is. relations p
with pp=¢. where the product go of two relations ¢ and ¢ is defined by

xgoz iff xpy and yoz for some p.

A wide field of applications shows that idempotency plays a crucial rfle in order theory
as well as in many other mathematical theories. Therefore, we will be mainly concerned with
idempotent relations in the subsequent paragraphs.

Given an arbitrary relation p, the following notations will be convenient:
ey=ix:xpyl, oY=Uley:ye)i,
and dually,
ye=ixiyexi. Yp=Ulye:yeY!.
If < is a quasiorder, we shall use the more common (and perhaps more suggestive) notations
introduced in Section 2. Thus we write ly for <y, {}Y for <), ty for y<, and tY for Y<.

Generalizing the notion of bases for topological spaces, we call a subset B of a quasiordered
set P=(S, <) join-dense if each element of S is a join of elements from B: in other words,
if for all x,z €5 with x £z, there exists a y€B such that y<x but y¢z. By a base of O,
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we mean a join-dense subset B such that z€B and z<y<z imply y €B. Of course. in case of
ordered sets, the latter condition is automatically fulfilled. by antisymmetry of the relation <.

To have a name for relations corresponding to To-spaces, we call a relation p separating (in
[17]: identitive) if px =py implies x=y. Thus the orders are just the separating quasiorders.
However. neither is a separating relation always antisymmetric, nor conversely. Any relation
p on a set S induces a "lower” quasiorder < and an "upper” quasiorder <P on S by
X <oy iff pxcoy, x<Py iff yocxo,

and < is an order iff ¢ is separating. Notice also that ¢ is transitive iff it is contained in
<g (resp. in <), and that ¢ itself is a quasiorder iff it coincides with < (resp. with <9).
By a lower relation, we mean a relation ¢ such that each of the sets py is a lower set with
respect to the quasiorder <. This is tantamount to saying that x<gy implies x <Py,

By definition, every relation ¢ satisfies the equation p=p<,, while the equation = <pp is
necessary and sufficient for ¢ to be a lower relation. An idempotent lower relation ¢ on a
set S will be called a core quasiorder and the pair (S,p) a cordially quasiordered set. If, in
addition, ¢ is separating then we refer to g as a core order and to the pair (S,¢) as a
cordially ordered set. Although this sounds a bit ironically, we believe that these notions
actually lie in the core of order theory, and a further topological motivation for this nomen-
clature will be given later on (suggestions for a better name with the initial ¢ are welcome).

Any idempotent relation has the following approximation property:

LEMMA 3.1. If o is an idempotent relation on a set S then each element y of S is a least
upper bound of the set oy (with respect 1o <g).

PROOF. x € gy implies x <,y by transititivity of ¢, and if z is any upper bound of ¢y then
we have ox ¢z for all x € py. and consequently, py=ppy=Ulpx: xpy! Cpz, ie. Y<plg

Of course, the (quasiJorders are precisely the reflexive core (quasi)orders. Moreover, quasi-
orders trivially have the following property:

For all x,z with x¢oz, there exists some y with xpypyez.
Core quasiorders with this "double interpolation property” will be called basic quasiorders
and the corresponding pairs (S.p) basically quasiordered sets. If, in addition, the relations in

question are separating then we speak of basic orders and basically ordered sets. These notations
are justified by

PROPOSITION 3.2. Assigning to each base B of a (quasi)ordered set Q=(S,<) the relation
og=1{x,2) €SxS: x<y <z for some y € B, one obtains a one-to-one correspondence between
the bases of Q and the basic (quasi)orders with induced lower (quasi)order <.

PROOF. Suppose B is a base for Q. Then g is transitive. The equivalence

X<y e BnixcBnly < ogxcogy
shows that the lower quasiorder induced by ¢g is the original quasiorder <. Clearly. each egY
is a lower set with respect to <; thus pg is a lower relation. Further, Xpgl means X<y<Z
for some y€B, whence Xpgyogyoegd. In all, we conclude that pg is a basic quasiorder with
B= ly€S: yogyl. since y<z<y for some z€B implies y€B.



M. Erné: The ABC of Order and Topology 67

(Remark. The proof of the last statement given in [17] contains a little gap in the general case
of quasiordered sets; we have adapted the definition of bases to this case.)

Conversely. let p be any basic quasiorder with induced lower quasiorder <, and B=(y€S:ypy).
For x £z we find an element w with wpx but not wpz, and then a y € B with wpypx, whence
eycepx=px and pygel. Thus y<x but y£z.

Furthermore. ;€B and z <y <z imply y <z €0z oy, and as gy is a lower set, yoy, i.e. y€B.
Hence B is a base for O, and

Xpgl = Xsypys<: for some y < xpypypl for some y = XgZ. g

For the intended topological interpretation of generalized order relations. we need some further
definitions. Let ¢ be a relation on a set S. A subset D of § is directed by ¢ if for each finite
subset F of D. there exists some 7 € D with Fcpz (in particular, D must be nonempty; in
case of a transitive relation ¢, a set D is directed by ¢ iff D+ @ and for x,y€ D, there is
some 7 €D with xpz and ypz). By an ideal relation, we mean a relation ¢ on S such that
each of the sets py (y€S5) is a directed lower set ("ideal” in the sense of [19]) with re-
spect to the lower quasiorder <,. On the other hand. we call a relation ¢ on § topological
if for each y €S, the set py is directed by the upper quasiorder <©; that is, for each finite
subset F of py. there is an element 7 € oy with zpcxg for all x € F. The next lemma yields the

elementary relationships between these definitions and explains the name "fopological relation™.

LEMMA 3.3. (1) A relation o is topological iff the sets xg form the base of a topology.
(2) Every ideal relation is topological.
(3) A core quasiorder o is ideal iff it is topological iff each py is directed by o.

PROOF. (1) By definition, a relation g on S is topological iff for all finite sets Fc S and for
all ye()ixp: x€F), there exists a £ €S with yezpc[Vixp: x € F}. But this is just the
well-known criterion for the collection B = |xp:x €S} to be a base of a topology.

(2) This is clear since for a lower relation p, x <y implies x <Py,

(3) A transitive relation ¢ is contained in <p! hence, if py is directed by ¢ then also by <.
It remains to show that for a topological core quasiorder p, each of the sets py is directed by ¢.
For a finite subset F of gy, we find some : €py with zpcxp for all x€F. The inter-
polation property yields an element 7° with zpzZ oy, whence 7' ezpgcxp for all x€eF, ie.
Fcopz and ' €py. 4

Now, by a B-{quasi-)order we mean a topological basic (quasi-Jorder. and by a C-(quasi-)
order a topological core (quasi-)order. Lemma 3.3 provides the following short description: a
lower relation ¢ on S is a C-quasiorder iff for all y €S and finite F¢ S,

Fcoy < Fgoz for some Z €gy,
and it is a B-quasiorder iff, in addition, one can choose z such that Zpz.

Let us mention that by 3.1, the C-orders inducinrg a given order < on § are precisely the
so-called approximating auxiliary orders for the ordered set (S, <) in the sense of [19].
These play a key réle in the theory of confinuous ideal completions and compaclifications
developed by Gierz and Keimel [20]: for a different aspect of C-orders, see Ershov [18].

EXAMPLES 3.4. (1) The standard example of a C-order is the usual strict order < on R
and, more generally, the componentwise strict order on R"™. The restriction of < to the unit
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interval [0,1] is a core order but not a C-order. as the set <0 is empty. Of course, neither
on R nor on [0.1], the relation < is basic.

(2) A complete lattice L is continuous iff the way-below relation <<. defined by x <<y iff x
belongs to each ideal whose join dominates y, is the smallest C-order inducing the order of L;
hence. by 3.1, L is continuous iff x =\/<<x for all x €L (see [19])

On the real unit interval, one has x <<y iff x<y or x=0.

Similarly, L is completely distributive iff the relation ¢. defined by xpy iff x belongs to each
lower set whose join dominates y. is the smallest core order inducing the given order on L;
hence L is completely distributive iff x=\/px for all x €L (see [35]). However, in general.
¢ fails to be an ideal relation.

(3) A complete lattice L is algebraic iff its way-below relation is the smallest B-order in-
ducing the order of L. The corresponding base B= 1y € L: y <<y is the set of all compact elements.
Similarly, L is superalgebraic iff the relation p, as defined in (2), is the smallest basic order
inducing the order of L, and the corresponding base is the set of all supercompact elements.

(4) The topology @ of any locally compact space is a continuous frame. and the way-below
relation is given by U <<V iff UcCcV for some compact subset C. Hence << is the smal-
lest C-order whose induced lower order is the set inclusion on @ (see [19],[26] and [27]).
(5) For any normal (Hausdorff) space, the relation U aV iff Uc AcV for some closed set A
defines a C-order on the topology @. and again. the induced lower quasiorder on O is the
set inclusion. However, < need not be the smallest C-order with this property: for example,
in the locally compact Euclidean topology on the reals, we have R<R but not R <<R.

(6) Similar C-orders occur in the theory of proximity spaces (so-called strong containment
or subordination orders: see, for example, [20]).

We are now prepared to formulate the object part of the announced functorial equivalence
between certain categories of closure spaces on the one hand and certain categories of
generalized ordered sets on the other hand. Given any closure space (S.€), we define the
core relation oy by setting xggy iff y belongs to the interior of the core of x. ie.
ye(1x)°. In terms of closures. the core relation is described by
Xpgy iff for all YgS. ye)Y™ implies xelY.
In this way, we assign to each closure space (5,€) a pair R(S5,€)=(S.pg). Core relations are
always transitive: moreover, a few simple verifications lead to the following fundamental co-
incidence, justifying the name "core quasiorder” (see Theorem 3.4 below):
The core quasiorders are precisely the core relations of core spaces.

On account of 2.2.C, core spaces are characterized by the property y €{py) ™ for all elements y,
while A-spaces enjoy the stronger property y €pgy.
Starting in the converse direction from any relation ¢ on a set S. we have a kernel system
0p= Yp:YgS)
and a closure system
€p=(9°'= 1S~Yp:YcS).
In particular, we may assign to each correlated set (§.p) the closure space I_(S,p)=(5.t’§p).
The twofold use of the symbols G_. and L is unambiguous because for a quasiordered set
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(S, ). the system O consists of all upper sets. and consequently. the closure system 6. is
actually the collection of all lower sets. On the other hand, A-spaces (S,6) may be charac-
terized by the condition that the core relation ¢, coincides with the specialization <.
whence R agrees with the specialization functor @ on A-spaces.

Already in the fifties, it was shown by Raney [35] that for any idempotent relation ¢ on S. the
kernel system O is completely distributive; his cbservation is an immediate consequence of
2.2.C. because (S.6;) is obviously a core space. More precisely, Zareckii [37] has shown
that (S, Ep) is a core space iff the relation ¢ is regular, i.e. ¢=gpop for some relation o

The subsequent crucial connection between C-spaces and C-quasiorders has been discovered
ndependently by R.-E. Hoffmann [24] and the author [10]. For a more detailed discussion,
including the facts on core spaces and basic spaces, see [17].

THEOREM 3.5. Assigning to each closure space iis core relation, one obtains bijections between
(A) A-spaces and quasiorders,

(B) basic spaces and basic quasiorders (respectively, B-spuces and B-quasiorders).

(C) core spaces and core quasiorders (respectively, C-spaces and C-quasiorders).
Furthermore, the specialization quasiorders of the involved spaces coincide with the lower
quasiorders induced by the associated core relations. Hence the spaces are Ty iff the cor-
responding relations are separating. In particular, Ty-B-spaces correspond fo B-orders, and
To-C-spaces 1o C-orders.

PROOF. (A) For A-spaces. the assertion is clear since the core relations of A-spaces agree
with the specialization quasiorders.

to be a base for the (uasiordered set (S, <): for x4z, there exists an open core ty=ygg
containing x but not z; thus we have y€B, y€pex and yégpz, and it follows that y<x
but y<«z. Hence, by Proposition 3.2, py is a basic quasiorder inducing the specialization
quasiorder <.

Conversely, if o is a basic quasiorder then B=iy€S: yeyi is a base for the quasiordered
set (S, <), and (5,Gy) is a basic space with a base of open cores ty =yp, y€B.

The equations P and \Spe=‘6 will be established in Part (C).

(B} If (5.6) is a basic space with specialization < then the set B=ly€S: yogy! tums out

(C) Let (5,6) be a core space. Then the lower quasiorder induced by the core relation ¢y is
the specialization <, : in fact. 0eXC ogy means X € Zp, for allelements 7 with y € Zp,. and
as the sets Zg=(12)° form an open base, the latter condition is equivalent to X <gy. The
interpolation property is clear by definition of core spaces. which ensures that for z € xgg.
there is some y € xp, With I €ygpe. Furthermore, X € oy and wsgx imply ye(txPc (tw)®,
hence w € ggy. This shows that pg is a lower relation. Since the sets xp, form a base for
the open sets in the space (S,€), the closure system € coincides with € .
On the other hand, if ¢ is a core quasiorder then by idempotency of ¢. (S,6,) is a core space,
and its specialization is the lower quasiorder <. on account of the following equivalences:
NSg Y = y €U for all UE(Op with xelU = yezp forall ; with xeZp = pxcoy.
Similarly, we have:
Xeg,y = yeUcix for some Uel), < yerpgtx for some 1 < xgy

(for the last equivalence, observe that x¢ € tx, and that zp € tx implies Zp=Zpp CX o0 xg)
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Lemma 3.3 completes the proof for the topological case. .

Observing that any finite topological space is an A-space, we infer from 3.5 that the B-
resp. C-quasiorders on a finite set are just the usual quasiorders on this set.

Let us conclude this section with a remark on the frequency of C-spaces. While finite topo-
logical spaces are always C-spaces, the number of C-space structures on an infinite set S
of cardinality m is rather small, compared with the number of all topological structures on S:
indeed. it is well known that there are 227 topologies on S, whereas there are only 2m?*= gm
relations on this set; as every C-space is uniquely determined by its core relation, there are
not more than 2’ C-space structures on S, and this upper bound is exact. because there
are 2™ quasiorders, hence A-topologies on a set of infinite cardinality m.

4. The fundamental isomorphisms

The bijections established in 3.5 become concrete functorial isomorphisms if we take isorone,
i.e. order-preserving maps as morphims between the objects in question: on the side of
correlated sets, the term “isotone” refers to the induced lower quasiorders. and on the side
of spaces, it means specialization preserving. Thus we have the following pairs of isomorphic
categories:

A (actually) quasiordered sets AS A-spaces
B basically quasiordered sets BS basic spaces
c cordially quasiordered sets Cs core spaces

For each subcategory X of the category C, we denote by XO that full subcategory whose
objects carry separating relations, hence core orders. Similarly, for any subcategory Y of
the category S of spaces, we denote by YO that full subcategory whose objects are
To-spaces. By Theorem 3.4, we have isomorphisms between the following pairs of categories:

AO (actually) ordered sets ASO To-A-spaces
BO basically ordered sets BSO basic To-spaces
Cco cordially ordered sets CSO To-core spaces
and similar isomorphisms hold for the topological versions:

BT  B-quasiordered sets BTS B-spaces

CT  C-quasiordered sets CTs C-spaces

BTO B-ordered sets BTSO  Ty-B-spaces
CTO C-ordered sets CTSO  T4-C-spaces

For most purposes, the morphism class of isotone maps is too large and not very interesting
from the topological point of view. Hence we are confronted with the question which stronger
types of maps should be chosen as morphisms between generalized ordered sets and between
core spaces, on the other side. For spaces, certainly the most obvious choice is that of
continuous maps, and in case of sets endowed with certain relations, it is most natural to
postulate that the morphisms have to preserve these relations. Thus. given a relation p on
S and a relation ¢° on §5°. we call a map ¢: §— S relation-preserving if xpy implies
o(x)o (y), and isotone if x <,y implies @(x) < @(y). Neither of these two properties im-
plies the other; but. of course, in case of (quasi)orders. relation-preserving as well as isotone
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means the same as order-preserving. Unfortunately, on the level of cordially quasiordered
sets and core spaces, relation-preserving maps do not correspond to continuous maps. so we
must look for suitable restrictions of the morphism classes on both sides. By definition. a
map o is relation-preserving iff

eleylc ooy

for all elements y in the domain of ¢. If ¢ happens to be a lower relation then the above
inclusion is equivalent to

telev] c e’ oly).
where | refers to the quasiorder <. and if ¢’ is transitive, it follows that

veley] cop(y)
The converse inclusion

o o) < ¢ oloy]
states that for all y€S and all X’ €S with X o' o(p), there is an x €S with xpy and x" ¢ @(x).
Maps with this property will be called interpolating. Indeed. a relation ¢ on S has the inter-
polation property iff the identity map ids: (S,p) — (S.p) is interpolating. It is easy to see
that in case of a core quasiorder ¢', a map ¢:(S,¢) — (S°.¢’) is interpolating iff

oey) c loley].
Thus we arrive at

PROPOSITION 4.1. A map ¢ between cordially quasiordered sets (S,¢) and (S',¢’) is both
relation-preserving and interpolating iff o p(y)= tp[oy] for all y € S. Any such map is isolone.

If x <oy implies @(y) <y @(x) then we speak of an antifone map @ between (S,p) and (S.¢).
As a matter of curiosity, such a map is interpolating. provided ¢ is transitive and oy @ for
all y (a condition that is certainly fulfilled for C-quasiorders), while the composition of two
antitone maps is isotone but not always interpolating. For example, the real functions ¢ and
¢ with ¢(x)=0 for x <0, @(x)=-1 for x>0. and $(x)=—x, are antitone, but the composite
map o is not interpolating for the core order <. Indeed, a real function is isotone and
interpolating iff it is continuous with respect to the upper topology on R.

We shall see below that in the general situation of cordially quasiordered sets, the isotone
interpolating maps are the continuous maps between the corresponding core spaces, whence
this class of maps is closed under composition. However, as the above example demonstrates,
the composition of two interpolating maps need not produce an interpolating map, while relation-
preserving maps and isotone maps are obviously stable under composition.

Recall that a map between closure spaces is continuous iff inverse images of closed sets are
closed, or equivalenty. inverse images of open sets are open. Following Hofmann and Mislove
[28], we call a map between closure spaces quasiopen if the image of each open set has an
open saturation. i.e. a least neighborhood. We notice that in contrast to the situation for
continuous maps, the class of quasiopen maps is not closed under composition. However, the
composition of any two isotone (i.e. specialization-preserving) quasiopen maps is again isotone
and quasiopen. The next result is central for the intended isomorphism theorems.
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PROPOSITION 4.2. Let ¢ be a map between cordially quasiordered sets (S.¢) and (S".¢°).
(1) @ is isotone and interpolating iff it is a continuous map between the spaces (5,6,) and (5.6,
(2) If @ is relation-preserving then it is a quasiopen map between ($.6,) and (5,6).
Conversely, if ¢ is isotone and quasiopen then it is relation-preserving.

(3) ¢ is relation-preserving and interpolating iff it is a quasiopen and continuous map bet-
ween (5,6;) and (5",6y).

PROOF. (1) Suppose o is isotone and interpolating. Then y € ¢ ![x'¢'] means x'¢'o(y). and this
implies x"¢" o(x) for some x € gy, whence y € xp and xp € ¢ ![x'¢']); indeed, x ¢z entails px <oz,
and as @ is isotone, X" € p'p{x) ¢ o'p(z). Thus inverse images of the basic open sets x'¢” are open.
Conversely, if ¢ is continuous then it preserves specialization, i.e. the lower quasiorders
induced by ¢ and ¢, respectively. By continuity of ¢ and the core space property of (S,Gp).
X' @(y) implies yexpc txc o }[x'p] for some x, and it follows that xpy and x"¢ @(x).

(2) If @ is relation-preserving, we must show that for each U€0,. the saturation te[U]
belongs to 0. For x" € te[U], we find a yeU with pe(y)co'x” and an x €U with xpy (as
U=Ug. by idempotency of the relation g). It follows that o(x) € pp(y)c o'x. ie. X" € (x)p €0y,
On the other hand, x €U implies o(x)o'c o[U]¢" € te[U], by transitivity of ¢

Conversely, assume ¢ is quasiopen and isotone. For xgz, we obtain ¢(z) € p[xp] < to[xp],
and since the latter set is open in the core space (S".Gy). we find elements y € xp and x" € 5" with
¢(¥) < X" and @(2) € x'¢". But this implies x <,y (by transitivity of ¢) and then o(x) s p(y) <7 X"
Now we use the fact that ¢ is a lower relation to conclude that o(z) € x'¢'c ¢(x)g’. In all, this
proves the desired implication x¢2 = e(x)p @lz).

(3) is an immediate consequence of (1), (2), and the last statement in 4.1. 4

In all. we see that the following classes of maps may serve as morphisms for categories
whose objects are cordially quasiordered sets, respectively, core spaces:

isotone isotone
isotone and isotone and isotone and G
relation- preserving interpolating quasiopen conlinuous
relation-preserving guasiopen and
and interpolating continuous

For any category X of cordially quasiordered sets, we denote by X~ the subcategory with
the same objects but relation-preserving morphisms. by X the subcategory with the same
objects but interpolating morphisms, and by X~ the intersection of X~ and X . Similarly,
for any subcategory Y of S, the category of spaces and isotone (!) maps, we denote by Y
the subcategory with the same objects and quasiopen morphisms, by Y™ the subcategory
with the same objects and continuous morphisms, and by Y™ the intersection of Y™ and Y.
Then we may summarize our previous results as follows:

THEOREM 1.3, Let X be any full subcategory of the category C of cordially quasiordered
sets and isotone maps, and denote by XS that full subcategory of S whose objects corres-
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pond to X-objects under the bijection between core quasiorders and core spaces. Then the
functors L and R with L(S,¢) = (5,6,) and R(S,6) = (S,p,) induce mutually inverse con-
crete isomorphisms between the following categories :

ha— . XT=——= XS ~, X"+ XS", X7 ==Xs".
L XS L L L
In particular, the category of C-spaces with continuous (and quasiopen) maps is isomorphic
1o the category of C-quasiordered sets with isotone interpolating (and relation-preserving) maps,
and similar isomorphisms exist for A and B instead of C.

On the level of A-spaces. these results are not very exciting, since every map between
A-spaces is quasiopen and every map between quasiordered sets is interpolating. However,
for B- and C-spaces. these relationships between topological and order-theoretical morphisms
are less evident and facilitate many considerations, for example in the theory of continuous ordered
sets (see the end of Section 5).

An interesting problem in connection with Theorem 4.3 is the question of whether the involved
categories are complete, cocomplete. topological, cartesian closed etc. By reasons of limited
space, we only touch upon one aspect. namely that of products and coproducts. While copro-
ducts are simply obtained by forming disjoint unions. the case of products is more subtle. At
the end of Section 2, we have remarked that finite ftopological products of A-. B- or C-spaces
are again such spaces, but for infinite products, almost all factors must be supercompact (on
the order-theoretical side, supercompactness is equivalent to the existence of least elements).
Of course, this does not mean that categorical products would not exist in the infinite case.
Indeed. as mentioned earlier. the box product of an arbitrary number of A-spaces is again
an A-space, and the corresponding product of quasiordered sets is quasiordered (component-
wise). However. a closer inspection shows that infinite products of B- and C-quasiordered
sets need not be B- or C-quasiordered. respectively. while the finite case behaves well
(directedness of the sets gy is crucial).

5. Adjunctions, equivalences and dualities

As explained in [14], there is a nice categorical adjunction between certain categories of
closure spaces. in particular, of topological spaces, on the one hand. and of certain types of
complete lattices. on the other hand. Before we are going to discus this theme in detail. it
appears convenient to recall the order~theoretical notion of adjoint pairs (a rather simple instance
of the corresponding categorical notion).

Given quasiordered sets (S, <) and (5", <), a map ¢:5 = S5 is lower adjoint or left adjoint
toamap ¢ : S"— S, and ¢ is upper adjoint or right adjoint to ¢, iff for all x€S and
y' €S°, the inequality o(x) <’y is equivalent to x < ¢(y’). Furthermore, a map is called resi-
duated (resp. residual) if inverse images of principal (dual) ideals are principal (dual) ideals.
It is well-known that a map is residuated iff it has an upper adjoint, and residual iff it has
a lower adjoint. In case of ordered sets, upper and lower adjoints determine each other
uniquely. so we write ¢ = d¢ and ¢= 7§ if ¢ is upper adjoint 10 ¢, hence o lower adjoint
to ¢. Every lower adjoint map preserves joins (to the extent they exist). and every upper
adjoint map preserves meets; in particular, adjoint maps are isotone. Moreover, the join-
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(resp. meet-)preserving maps between complete lattices are precisely the residuated (resp.
residual) ones. For this and more background on order-theoretical adjunctions and their
connections with certain categorical adjunctions and reflections, see [13]. [15] and [19]. We
call a map with a residuated upper adjoint doubly residuated, and a map with a residual
lower adjoint doubly residual. Since these classes of maps are closed under composition. we
may introduce, for any subcategory X of the category of ordered sets and isotone maps, the
following subcategories:

category of ordered sets morphisms
Xv residuated maps
X4 residual maps
X3 doubly residuated maps
X4 doubly residual maps
X5 residuated and residual maps

In particular, for the category CL of complete lattices and isotone maps, we obtain the fol-
lowing frequently used subcategories providing the background for many dualities:

category of complete latlices morphisms
ClLy join-preserving maps
CcLe meet-preserving maps
CL? maps possessing join-preserving upper adjoints
CL4 maps possessing meet-preserving lower adjoints
CcLS complete homomorphisms (join- and meet-preserving maps)

Passing from lower to upper adjoints and vice versa, one obtains mutually inverse concrete
dual isomorphisms 4 and 7 between the following pairs of categories:

v
Xv'='-XA , Xg

X4 .
A a

Xg

4 4

Any quasiordered set (S, <) may be regarded as a space E(S. <) = (5,8.). where &, is the
collection of all principal ideals. More to the point for us. any residuated map ¢ between
quasiordered sets (S, <) and (S, <) is a continuous map between the spaces E(S, <) and
E(S’, <’). Hence we have a concrete full embedding functor E from the category of ordered
sets with residuated maps to the category of spaces with continuous maps, and also from the
category CLy of complete lattices with join-preserving maps to the category CLS“ of
closure spaces and continuous maps. Hence CLy; may be considered as a full subcategory of
CLS*. and it turns out that, up to isomorphism, CLg is even a reflective subcategory of
CLS™. To make this statement more precise, we observe that for each closure space (S.6).
there is a natural map

ng=nS: S =6, x—Ix,
which is continuous as a map from (S,6) to E(G, c). Now one proves easily (cf. [14] and [28]):
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PROPOSITION 5.1. A map » between closure spaces (S.8) and (§.6€°) is continuous iff
there exists a (unique) residuated map @: 68 — €~ such that geng=ng .
Furthermore, % is doubly residuated iff ¢ is continuous and quasiopen.

In fact, the unique “extension” @ of a continuous map ¢ is the map
: 66, X—o[X]",

and its upper adjoint is the inverse image map
7l 6 = 6. X'~ o I[X]

Moreover. ¢ is quasiopen iff the map
$:6 - 6. XN—S~te[S~X]

is well-defined and upper adjoint to ¢~%.

The key observation is now that the natural maps ng are not only continuous but also uni-
versal inasmuch as every continuous map ¢ from a closure space (S.€) into a complete lattice
L, considered as a closure space EL. factorizes uniquely through ng and a residuated. i.e.
Jjoin-preserving map ¢V, namely

Vi G -~ L. X—Vo[X]
This map has the upper adjoint

™ L= 6. x' — o7 [Ix7].

Clearly, ¢¥is the only join-preserving map satisfying the equation ¢=¢Veng. 4

Now we have gathered the necessary ingredients for the intended reflection theorem (cf. [14]).
The covariant completion functor C associates with any closure space (§,%) the complete
lattice (€.¢), and with any continuous map ¢: (S.8) —=(5",8") the residuated (i.e. join-preserving)
map g: € — €°: the contravariant completion functor AC agrees with C on objects and sends
a morphism ¢ to the inverse image map ¢™': 6" — 8. Then the reflection theorem reads as follows:

THEOREM 5.2. The completion functor C': CLS™— CLy is left adjoint to the embedding
functor E : CLy — CLST, and these two funclors induce an adjoint situation between
the categories CLS™ and CL. Hence, up to isomorphism, CLg (resp. CLY) is a full re-
flective subcategory of CLS™ (resp. CLS™). Furthermore, the contravariant completion functor
AC : C1ST™ —CL2 s dually adjoint to the contravariant embedding EV : CL® — CIS",
and these functors induce a dual adjunction between the categories CLS™ and CLy .

In the next proposition, we shall show that the completion functor C "preserves adjointness”.
Call a map ¢ between spaces (S.%) and (S".28) quasiclosed iff X €2 implies Ip[X] €%: in
other words, iff ¢ is a quasiopen map between the spaces (S,%*) and (5",%’™. Quasiclosed maps
play a central rSle in the theory of standard extensions and completions (see [13] and [15]).

PROPOSITION 5.3. Let (S.€) and (S',6°) be closure spaces, endowed with their specialization
quasiorders, and let : S — S be lower adjoint to ¢: 5 — S. Then:

(1) ¢ is continuous iff ¢ is quasiopen,
(2) ¢ is continuous iff ¢ is quasiclosed iff 9:€ —~ € is lower adjoint to ¢: € — 6.

These assertions are easily verified with the help of the following two equations:
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PN =1¢[Y] forYcs,
e[ T=4¢4[Y] for Y'cS-

Now let us return to the study of basic spaces and core spaces. By Proposition 2.2.C. we
have a restricted completion functor C' from the category CS™ of core spaces and continuous
maps to the category CDy of completely distributive lattices and join-preserving maps. Con-
versely. every completely distributive lattice L gives rise 10 a core space EL, because the
lattice of closed sets. i.e. the collection of all principal ideals, is isomorphic to L (see again
2.2.C). Similarly, € maps the category BS™ of basic spaces to the category BDg of super-
algebraic lattices, i.e. completely distributive lattices with a smallest base. In the converse
direction. E transforms superalgebraic lattices into basic spaces (see 2.2.B),

COROLLARY 5.4. The functors C and E induce adjoint situations between the jollowing
pairs of categories:

BS” =—— BDy. BS"=—=BDj , CS" —=CD,. CS” —= CDj.
Similarly, the funciors AC and EV induce dua! adjunctions:

BST™ =—= BD“. BST = BD§ . (ST ——=CD*®, (CS”—=CD3%.

Perhaps, the reader might ask for an analogous result on A-spaces. But such an adjunction
does not exist. because the restriction € : AS"— BDy is surjective on objects (see 5.6).
and the only superalgebraic lattices which are transformed into A-spaces under the embed-
ding E are complete dually well-ordered chains.

It was an important discovery of lattice-theoretical topology that the restriction of the com-
pletion functor € to topological (closure) spaces has a left adjoint, namely the v-spectrum
functor S from the category CLY of complete lattices and join-preserving maps whose up-
per adjoint preserves finite joins, 10 the category of topological spaces. This functor asso-
ciates with any morphism between complete lattices its restriction to the v-spectra. where
the v-spectrum SL of a complete latlice L is the set P of v-prime elements. topologized
by the closure system of all sets Pnlx (xeL). Moreover, € and S induce an equivalence
between the category TSOB of sober spaces, i.e. topological To-spaces in which the point
closures are precisely the v-prime closed sets. and the category TDy of cospatial lattices
(=T-lattices} and maps preserving arbitrary joins and v-spectra. Thus the contravariant
functors AC and SV induce a duality between TSOB and the category TD§ of T-lattices
together with dual frame homomorphisms, i.e. maps preserving finite joins and arbitrary
meets (see [19] and [27] for the more common. but in the present context also a bit more
complicated, dual approach via open sets).

The previous remarks are covered by the following general approach, discussed in [5] and [12].
Let & be any function assigning to each (quasi-)ordered set @ a certain collection 0 of
subsets such that for any isomorphism ¢: QO — O, ZeZ0 implies ¢[2Z] € Z0". The members
of O are referred to as F-sets of 0. An element p of a complete lattice L is called
Z-(join-)prime if for all Ze ZL. p<\/Z implies p<z for some 1€2Z; and L is referred to
as a Z-lattice if each of its elements is a join of ¥-primes. Furthermore. a set system ¥ is
said to be &-union complete if ¥ € Tk implies |JY € £ Closure systems with this property
may be characterized alternately as follows:
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LEMMA 5.5. The following three statemenis on a closure system € are equivalent:
(a) € is E-union complete.

S

(b) Each point closure is Z-prime in G.
(c) Each closed set is a union of %-prime members of G.

PROOF. The implications {(a) = (b) == (c) are evicent.

(c)=(a): For ¥ eE. the join V& is the union of a set ¥ of Z-prime members of €.
Hence, for each x € \/¥. we find some N¢e £ with x€X and some Ye& with Xc).
This shows that & =\/¥ belongs to €.

In view of this lemma, it appears reasonable to introduce the following generalization of the
topological notion of sobemess: a Tg-closure space (S,G) or its closure system € is called
Z-sober if the E-prime members of € are precisely the point closures. Let us collect a few
typical instances of the previous general Z-definitions.

EXAMPLES.
z !members of L | X-prime XE-lattice ig;g{iur'gn sj‘gg;;};{ete Z-sober space
A iarbitrary subsets | supercompact| P g&li%zbraic A-topology To-A-space
g “il')iir?i?;yszgs)zfst ) v -prime ‘% tigsl clog%at)elosg)ifgfaém sober space
5 noremPY SIS compact | dgebric | Alssbraic ' ideal space”
€ |1-element subsets% arbitrary clo;rtagi:eete closure system :prh;;:)g)gé Jdeal

* v-semilattice with least element, endowed with the system of ideals.
*complete lattice, endowed with the system of principal ideals.

The following set representation for &-lattices encompasses well-known facts on (super-jal-
gebraic lattices etc. (see [7] and [34] for early references to this subject):

PROPOSITION 5.6. A complete lattice L is a E-lattice iff it is isomorphic to a F-union
complete, respectively &-sober, closure system. In particular:

(1) L is superalgebraic iff L is isomorphic 1o a (Ty-)A-topology.

(2) L is cospatial iff L is isomorphic 1o a (sober) topological closure system.

(3) L is algebraic iff L is isomorphic to an algebraic closure system (ideal system).

PROOF. For any element x of a ¥-lattice L, let TF(x) denote the set of all E-prime ele-
ments p<x. It is then easy to see that Gy L= !TF(x): x€L! is a closure system and that
P L — €L is an isomorphism, inducing a bijection between the Z-prime elements of L and
the point closures of 6. L. Hence 65 L is Z-sober, a fortiori Z-union complete.

Conversely, any Z-union complete closure system is a &-lattice, by Lemma 5.5.

The closure system of all ideals of a join-semilattice with O is D-sober, because the com-
pact ideals are precisely the principal ideals. Conversely. if € is any D-sober closure system
on a set S, then (S. <) is a join-semilattice with 0. and € is the system of its ideals (the
proof of this fact is left as an exercise).
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The set of all ¥-prime elements of a complete lattice L. equipped with the closure system
€L, is called the E-spectrum of L and denoted by SecL. As the proof of 5.6 shows. Sl
is a Z-sober closure space for any &-lattice L. We say a function ® between complete lattices
L and L preserves ¥-spectra if ®[SyL]c Sy L’. Now we are in a position to formulate
Proposition 5.6 in categorical terms:

THEOREM S§.7. The restriction to E-spectra provides a functorial equivalence Sy between
the category of X-lattices with maps preserving joins and Z-spectra, and the category of
Z~-sober spaces and continuous maps. The inverse equivalence C is obtained by assigning to
each Z-sober space the lattice of closed sets. In particular:

(1) The category of superalgebraic lattices is equivalent to the category of T,-A-spaces.

(2) The category of cospatial lattices is equivalent fo the category of sober spaces.

(3) The category of algebraic lattices is equivalent to the category of v-semilattices with 0.

PROOF. For any join-preserving map ® between Z-lattices L and L' with O[SZL]QSSL’.
let S® denote the restriction toNthe x-spg_ctfa. If ¥ denotes the upper adjoint of @ then,
for x'€ L’, we obtain (§,®) 1[=7:(x")]= TL(¥(x)), proving continuity of the map S5 ®.
Going the other way around. we infer from 5.6 that the completion functor € transforms
¥-sober spaces into Z-lattices. For any continuous map ¢ between F-sober spaces (S.8)
and (5".6’), the map C ¢=¢ preserves joins and sends point closures to point closures (see
5.1). By ¥-soberness of the underlying spaces, the latter means that C ¢ preserves Z-spectra.
Furthermore. S5 C(S,6) is naturally isomorphic to (S,8), via the principal ideal map ng: x — Ix.
On the other hand. we have shown in the proof of 5.6 that for any Z-lattice L. there is a
(natural) isomorphism =% between L and the closure system Coel = CSglL.

The specializations (1) and (2) are now clear. For (3), observe that the homomorphisms
between v-semilattices with 0, i.e. those maps which preserve finite joins, are precisely the
ideal-continuous ones. i.e. maps such that inverse images of ideals are ideals. ,

If ¥-sets are mapped onto ¥-sets under meet-preserving maps (e.g. for £ =, B,6. D, €. or &)
then the above equivalence can be transformed into a duality, with the help of the following
observation whose proof is left as an exercise (see [5])

LEMMA 5.8. Let p:L — L’ be a join-preserving map between ¥-lattices, and let §: L” — L

denote the upper adjoint of . If ¢ preserves E-spectra then W preserves X-joins, i.e.

UVZ)=NUZ] for Ze L. The converse implication holds whenever Z € ZL’ implies $(Z)€ EL.

In particular:

(1) A map between superalgebraic latlices preserves arbitrary joins and supercompactness iff
it has an upper adjoini preserving arbitrary joins.

(2) A map between cospatial lattices preserves arbitrary joins and v-spectra iff it has an
upper adjoint preserving finite joins.

(3) A map between algebraic lattices preserves arbitrary joins and compactness iff its has an
upper adjoint preserving directed joins.

Thus, if Z-sets are preserved by meet-preserving maps then we have a concrete dual iso-
morphism between the category of Z-lattices with maps preserving joins and %-spectra on
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the one hand. and ¥-lattices with maps preserving meets and ¥-joins on the other hand.
Composing this dual isomorphism with the equivalence in Theorem 5.7. we arrive at

COROLLARY 5.9. Suppose %-sets are preserved under meet-preserving maps. Then the

category of X-lattices with maps preserving meets and ¥-joins is dual to the category of

Z-sober spaces and continuous maps. In particular:

(1) The category of superalgebraic lattices with maps preserving arbitrary meels and joins is
dual to the category of To-A-spaces.

(2) The category of cospatial lattices with maps preserving arbitrary meels and finite joins is
dual to the category of sober spaces.

(3) The category of algebraic lattices with maps preserving arbitrary meets and directed joins
is dual to the category of v-semilattices with 0.

These three special duality theorems are well-known (see e.g. [19]); but it seems that their
common feature via ¥-soberness is a new "topologically flavoured” aspect. Moreover. the
general -theory opens a broad spectrum of further adjunctions and interesting applications.
We shall return to this topic in a forthcoming paper.

Our next aim is to show that the duality between cospatial lattices and sober spaces re-
stricts to a duality between completely distributive lattices and sober C-spaces. To make
this statement correct, we must ensure that in fact every completely distributive lattice is
(spatial and) cospatial. More precisely, we prove the following:

PROPOSITION 5.10. The completely distributive lattices are the cospatial continuous laftices.
Similarly, the superalgebraic lattices are the cospatial algebraic lattices.

PROOF. Clearly, every completely distributive lattice L is continuous. Since complete distri-
butivity is a selfdual property, it will sufficeto prove that L is spatial, i.e. that the a-pri-
mes form a dual base. As in 3.4(2). let us denote by ox the smallest lower set Y with
x < VY. Then x=\/gx. Hence, for any element y with x ¢y, there exists an element x;€ px
with X; € y: repeating this argument, we obtain a decreasing sequence (x,) such that xp=x,
Xper € 0Xp. and x,, ¢ y. The lower set Y=iz€L: x, 4z for all n} has a join p. and this is
in fact the greatest element of Y (otherwise x, <p for some n. and x,.; € px, would imply
Xpes €Y). Thus we have x=xp ¢ p but y<p. For any two elements u,v ¢p, i.e. wu.,v€Y, there
exists an n with x, <uav, whence uav €Y and therefore uav ¢p. This shows that p is
a a-prime element with x 4p and y <p, as desired.

Conversely, assume L is a cospatial continuous lattice. Denote by << the way-below relation
and by Yy the set of all v-prime elements p <<x. Then x is the join of Yy, being the join
of elements y << x (see again 3.4(2)) which are joins of v-primes. For any other lower set
Y with x € /Y, the ideal I formed by finite joirs of elements from Y has the same join as Y
and must therefore contain Y. But then any v-prime element p <<x belongs not only to I
but 10 Y. Thus YxcY, and consequently. Yy is contained in px. Now the equation x=\/Yy
entails x=\/px, showing that L is completely distributive.

COROLLARY 5.11. A lattice is completely distributive iff it is isomorphic to the lattice of
closed sets in its v-spectrum iff it is (dually) isomorphic 10 the topology of a C-space.
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For related results, see [24]. [28] and [31]. Similar arguments shows that every confinuous
distributive lattice is spatial, and that the continuous distributive latlices are. up to isomor-
phism, the topologies of locally compact (sober) spaces (see [19]).

Recall that BD is the category of superalgebraic lattices and isotone maps. By AD, we
denote that full subcategory AD of BD whose objects are strongly coatomic, where a lattice
is said to be strongly (co-)atomic if each interval with at least two elements has a (co-)
atom {cf. [8]). The rble of strong (co-)atomicity in the present context is clarified by

LEMMA 5.12. For a Ty-A-space (5,6}, the following three statements are equivalent:
(a) (5.6) is sober.

(b) The ordered set (S, <¢) satisfies the ascending chain condition.

(c) The lattice of open (resp. closed) sets is strongly atomic (resp. coatomic).

PROOF. (a) = (b): It is well-known and easy to see thal the ascending chain condition (which
forbids properly ascending sequences) holds iff each directed (lower) set has a greatest element.
But the directed lower sets of a quasiordered set are precisely the -v-prime members of the
lattice of all closed (i.e. lower) sets in the corresponding A-space (see [22]). Hence, for
To-A-spaces, soberness means that each directed lower set is a principal ideal.

(b) =(c): Given two lower sets Xc) , we may choose a maximal element y in Y'~X. Then
Y~ly! is a lower set covered by Y, hence a coatom in the interval [ X,Y].

{c) ==(b): If Y is a nonempty lower set then we find a maximal lower set Z properly con-
tained in Y. Any element x € Y'~Z must be maximal in ): otherwise, if x <y €Y then Z would
be a proper subset of the lower set Y'~ty (since Zc)Y~txcY~ty). Thus each nonempty
(lower) set has a maximal element, and (S, <¢) satisfies the ascending chain condition. g

Now let us denote by ASOB, BSOB, and CSOB the categories of sober A-, B- and C-spaces.
respectively, together with isotone maps as morphisms. Then CSOB is a full subcategory of LSOB.
the category of locally compact sober spaces, and on the lattice-theoretical part, CD is a full
subcategory of LD, the category of lower (i.e. dually) continuous distributive lattices.

The notations X~ for the subcategories with the same objects but continuous morphisms etc.
remain valid in the present situation. Furthermore, given any category Y of complete lattices
{and isotone maps), we denote by YV the subcategory with the same objects as Y and mor-
phisms preserving v-spectra, i.e. sending v-primes to v-primes, and by Y, the category
with the same objects but morphisms preserving finite joins. Then we have the following
equivalence and duality theorem (the necessary details are easily supplied with the help of
the previous results):

THEOREM 5.13. The completion functor C induces equivalences, and the functor 4 induces
dual isomorphisms between the following pairs of categories, where X stands for one of the
letters A, B, C,Lor T-

xsop~ —¢. xpy —24 . xps , xsoB” <. xpy —4. xps.
Hence the composite functor AC induces dudlities between the categories of sober spaces
on the left side and the categories of complete lattices on the right side of the arrows.

Thus, for example, the category of sober B- (resp. A-)spaces is dual to the category of
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(strongly coatomic) superalgebraic lattices, and the category of sober C-spaces is dual to
the category of completely distributive lattices. As one nice application of this duality. one
obtains Jakubik’s result that each completely distributive lattice is representable as a (cartesian)
product of product-indecomposable ones: indeed, any C-space is the sum of its components,
being locally connected, and this decomposition into “additively indecomposable” parts is
transferred by the duality functor to a product decomposition into “multiplicatively indecom-
posable™ factors. Product decompositions of this kind are of importance for the so-called
“fuzzy set theory”, where power sets 2% are replaced with arbitrary powers LX of completely
distributive lattices L.

At the end of our considerations, it remains to explain the order-theoretical counterparts of
the categories CSOB eitc. The key result for this object is due to Hoffmann [24] and Lawson
[31]: it states that the sober C-spaces, endowed with their specialization order, are just the
continuous ordered sets, topologized by the closure system of Scott closed sets (i.e. lower
sets which are closed under directed joins; cf. [19]). In accordance with the corresponding
definition of continuous lattices, an ordered set (S, <) is said to be continuous if it is
{up-)complete, i.e. each directed subset has a join. and for each element y €S, the set <<y
is directed and has join y, where the way-below relation << is defined by
x<<y iff for all directed lower subsets D of S, y < \/D implies x €D,

These definitions fit perfectly into the framework of generalized order relations developed in
Section 3: the way-below relation of a continuous ordered set is not only the smallest C-order
inducing the given order but also the core relation of the closure system of Scott-closed sets.
Hence the one-to-one correspondence between C-ordered sets and T,-C-spaces restricts to
the afore-mentioned correspondence between continuous ordered sets (C-ordered by the
way-below relation) and sober C-spaces.

Similarly, a complete ordered set is algebraic, i.e. every element is a join of a directed set
of compact elements, iff its way-below relation is a B-order inducing the given order. Hence
algebraic ordered sets correspond to sober B-spaces (see [28]). Finally. by 5.12. ordered
sets satisfying the ascending chain condition correspond to sober A-spaces. Thus, denoting by

ACO the category of ordered sets with ascending chain condition.
BCO the category of algebraic ordered sets ( "base of compact elements '!),
CCO the category of (complete) continuous ordered sets,

each with isotone maps as morphisms, we arrive at our final isomorphism theorem:

THEOREM 5.12. The following pairs of categories are concretely isomorphic under the func-
forial isomorphism between correlated sets and core spaces:

ACO =—= ASOB, BCO =—— BSOB, CCO —— CSO0B.
Further isomorphisms are obtained if these pairs of categories X and Y are replaced with
the following pairs of subcategories:

X (isotone maps preserving the way-below relation) and Y~ (quasiopen isotone maps),
X" (interpolating isotone maps = maps preserving directed joins) and Y (continuous maps),
X"™ (interpolating way—below-relation preserving maps)and Y™ (continuous quasiopen maps).

We hope that after this categorically trimmed introduction into the ABC of order and topology.
the reader will appreciate the relevance of non-Hausdorff topology.
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