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Point Separation Axioms, Monotopological Categories
and MacNeille Completions

G. Preufs

Abstract. Using results of ALDERTON, HERRLICH, PREUS, and SCHWARZ the interrelations
between classes of objects (in a topological category) defined by "point separation axioms”,
monotopological categories and MACNEILLE completions are clarified.

§0 Introduction

Generalizing quasicomponents introduced by HAUSDORFF [3] to P -quasicomponents (cf.
PREUB [8]) for each class P of topological spaces one obtains important classes of topological
spaces defined by point separation axioms as classes QP of totally P -separated spaces, i.e.
spaces whose P -quasicomponents are singletons. for suitable P ’s. Replacing the category
Top of topological spaces (and continuous maps) by an arbitrary topological category C in the
sense of HERRLICH [5] and introducing classes QP of totally P -separated objects of C for each
class P of C -objects the problem of characterizing these classes arises. It turns out that they
are identical with the object classes of the extremal epireflective subcategories of C .

NEL [7] has introduced initially structured categories, which are now also called monotopo-
logical categories, as a generalization of topological categories in order to exclude no longer such
an important category as the category Haus of HAUSDORFF spaces (and continuous maps)
from consideration. Using results of HERRLICH [4], SCHWARZ [10] has shown that a concrete
category is monotopological iff it is an extremal epireflective subcategory of some topological
category.

The classical construction of the MACNEILLE completion of a poset was generalized by
HERRLICH [6] to the construction of the MACNEILLE completion of a concrete category. Since
MACNEILLE completions of concrete categories need not always exist, it is remarkable that
a monotopological category C may be characterized as a (concrete) category which is an ex-
tremal epireflective subcategory (up to concrete isomorphim) of a topological category being a
MACNEILLE completion of C (cf. ALDERTON [1]).

Thus. a concrete category C is monotopological iff its object class is a class QP of totally

P -separated objects with respect to a topological category which is a MACNEILLE completion
of C.

This work is an original contribution and will not appear elsewhere.
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§1 Preliminaries

1.1. Let X be a fixed category, called base category. A concrete category over X is a pair
(A.F) ., where A is a category and F : 4 — X a functor which is

(1) faithful,
(2) amnestic, i.e. any A -isomorphism f is an A -identity iff F(f) is an A -identity,
and

(3) transportable, i.e. for each A -object A , each A’ -object B and each isomorphism
g: B — F(A), there exists a unique A -object C and an isomorphism §: C — A4 with

F@=gq,
called the underlying functor of (A, F ) . Occasionally, (A,F ) is denoted by A too.

1.2 Definitions. Let F: A — X be a functor. A pair (A, (fi:A-> A;);E,) . where A is
an A -object and (fi : A = A;);c; a class -indexed family of A -morphisms each with domain
A . called a source in A , is F -initial iff for each source (B, (gi: B— A;)‘.EI) in A and each
X -morphism f : F(B) — F(A) such that F(f;)o f = F(g:) for each i € I | there exists a
unique A -morphism f : B — A with F (T) = fand f;o f = g; for each i € I . Dually: sink,
F -final

A functor F : A — X is called topological (resp. monotopological) pro-
vided that for each class-indexed family (A;);¢; of A -objects and each source
(X. (fi: X—> f(A,-)),.eI) in X (resp. each mono-source (X, (fi: X — f(A;));E,) in &, ie.

@

each source (X, (fi: X - f(A;))l.E,) in X such that for any pair Y 3 X of X' -morphisms

with fioa = f;0 8 for each ¢ € I it follows that a = 8 ) there exists a unique F -initial source
(A.(g:: A= Ad)yg,) in A with F(A) = X and F(g;) = fi foreach i € [ .

A concrete category (A, F ) over the category Set of sets (and maps) is
called topological (resp. monotopological) provided that the following are satisfied:

(a) F: A — Set is topological (resp. monotopological).
(b) F : A — Set has small fibres. i.e. for such X € [Set|,{A € | A|: F(A) = X} is a set.

(c) There is precisely one object P in A (up to isomorphism) such that F(P) is a singleton
(= terminal separator).

1.3 Remarks. Let (A, F) be a concrete category over X . Then F: A — X is topolog-
ical iff it is cotopological, i.e. for each class-indexed family (4;)ic; of A -objects and each sink
((f, : F(A) = X),ep ,X) in X there exists a unique F -final sink ((g; 2 A — Ay ,A) in 4
with F(A) = X and F(g;) = fiforeach i € I .

A concrete category A over Set may be considered to be a category A
whose objects are structured sets, i.e. pairs (X,£) where X is a set and £ is an A -structure
on X , whose morphism f : (X,£) — (Y,n) are suitable maps between X and Y and whose
composition law is the usual composition of maps. Thus. (a) may be replaced by
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(a') For any set X , any family ((X;,&:))ier of A -objects indexed by a class / and any family
(fi : X = Xi)ier (resp. any family (f;: X — X:):es such that for each pair (z,y) € X x X
with z # y there exists some 7 € I with fi(z) # fi(y) ) indexed by I there exists a unique
A -structure £ on X which is initial with respect to (X, f: (X, &) ,1), i.e. such that for
any A -object (Y,n) a map ¢g: (Y,n) — (X,€) is an A -morphism iff for every i € I the
composite map fiog:(Y.n) = (X;.&) is an A -morphism.

Monotopological categories are also called initially structured categories
(cf. [9]).

Each monotopological category is topological. The converse is not true (cf.
the following examples).

1.4 Examples. The categories Top, Unif. Prox, Near, Lim and Prost consisting of topo-
logical spaces, uniform spaces, proximity spaces, nearness spaces, limit spaces, and preordered
sets respectively are topological categories whereas the categories Haus and Poset consist-
ing of HAUSDORFF spaces and partially ordered sets respectively are monotopological but not
topological. In each case the underlying functor is the usual forgetful functor into Set. For
further details see [9].

1.5. In the following subcategories of a category C are always assumed to be full and
isomorphism-closed (a subcategory A of a category C is isomorphism-closed iff each C -object
being isomorphic to some A -object is an A -object).

Definition: If A is a subcategory of some category C and Z : A — C denotes the inclusion
functor, then A is called reflective (resp. coreflective) in C provided that one of the following
(equivalent) conditions is satisfied:

(1) T has a left-adjoint R (resp. right-adjoint R. ) called a reflector (resp. a coreflector).

(2) For each C -object X | there exist an A -object X4 and an C -morphism rx : X — X,
called an A -reflection of X (resp. mx : X4 — X called an A -coreflection of X ) such
that for each A -object ¥ and each C -morphism f: X - Y (resp. f:Y — X ) there is
a unique A -morphism (= C -morphism) f: X4 — Y (resp. f:Y — X4 ) such that
forx=f (resp. mx o f = f ). Further. A is called epireflective (monocoreflective),
extremal epireflective (extremal monocoreflective) or bireflective (bicoreflective) in C re-
spectively provided that A is reflective (coreflective) in C and for each C -object X .
the A -reflections ( A -coreflections) of X are epimorphisms (monomorphisms), extremal
epimorphisms (extremal monomorphisms) or bimorphisms respectively.

1.6 Proposition (cf. [9: 2.2.12] for the proof). Any bireflective (and any bicoreflective)
subcategory of a topological category is a topological category.

1.7 Remark. Similar to the situation for the category Top we obtain that in topological
categories extremal monomorphisms coincide with embeddings and extremal epimorphisms
coincide with quotient maps. Furthermore, the following proposition is valid:
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1.8 Proposition. Let A be a subcategory of a topological category C . Then the following
hold:

(1) A is epireflective (extremal epireflective) in C iff A is closed under formation of products
and subobjects [= extremal monomorphisms] {weak subobjects [= monomorphisms}) in

C.

(2) If A contains at least one object with non-empty underlying set, then the following are
equivalent:

(a) A is coreflectivein C .
{b) A is bicoreflective in C .

(c) A is closed under formation of coproducts and quotient objects [= extremal epimor-
phisms] in C .

(3) A has a monocoreflective hull, i.e. a smallest monocoreflective subcategory (of C ) con-
taining A , whose object class consists of all C -objects which are quotient objects of
coproducts of A -objects (quotient objects and coproducts are formed in C !).

1.9 Definitions. .A concrete category (A, F ) over X is called initially complete provided
that F: 4 — X is topological.

If (A.F) and (B,G) are concrete categories over X . then a functor
H: A — Bis called

a) concrele provided that GoH = F .

b) initiality preserving provided that it is concrete and for each F -initial source
(4,(fi: A > Ai)g,) in A, the source (H(A), (H(fi) : H(A) - H(A:));;) is G -initial
in B,

c) initially dense provided that it is concrete and for each B € | B |, there exists a G -initial
source (B, (9: : B— H(Ai))iel) ,

d) finally dense provided that it is concrete and for each B € | B | . there exists a G -final
sink ((g: : H(A:) = B)ie;» B)

An initial completion of a concrete category (A, F ) is an initiality pre-
serving initially dense full (concrete) embedding H : (A4, F) — (B,G) from (A, F ) into some
initially complete category (B,G) . Occasionally (B, §G) is already called an initial completion
of (A, F) provided that H : (A, F) — (B, G) is an initial completion of (A, F) .

A finally-dense initial completion of a concrete category (A, F) , if it
exists, is called a MACNEILLE completion of (A, F) .

1.10 Proposition (cf. [9; 6.1.3]). Let H : (A,F) — (B,G) be a concrete functor which is
full and finally dense. Then H is initiality preserving.
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1.11 Example. Each poset (S, <) defines a (small) category A by
N]jAl =S8 and

{(s,s)} ifs<d
otherwise .

yios. - |

Then A is a concrete category over the category X consisting of exactly one object X and one
morphism 1x (the underlying functor F : A — X is defined by F(s) = X foreachs €| A|=S
and F(f) = 1x for each f € Mor A ). If N(S) denotes the set of all cuts in (§,<) and C the
the set-theoretic inclusion, then there is an embedding ps : (5. <) — (N(S),C) of (8, <) into
the complete lattice (N(S).C) , known as the classical MACNEILLE completion of (S, <) .
Analogous to the construction of (4, F) . a concrete category (B.G) over X is constructed
from (N(S),C) . H : (A.F) — (B.G) defined by H(s) = us(s) for each s € § =| A | and
H((s.s')) = (us(s).us(s')) if s < &' is a finally dense initial completion of (4. F) . ie. a
MACNEILLE completion in the sense defined above.

§2 Relative (connectedness and) disconnectedness

2.1. For a topological category C the category of pairs with respect to C is denoted by Cia »
i.e.

(1) objects of Czy are pairs ((X,€),(Y,n)) where (X.£) is an object in C , Y a subset of X and
7 the initial C -structure with respect to (¥,1,(X,¢)) where i : ¥ — X is the inclusion
map.

(2) morphisms [ : ((X,¢),(Y,n)) = (X", &), (Y", 1")) are morphisms f: (X,£) — (X', £') in
C such that f[Y]CY'.

For simplicity one often writes (X,Y) € | Cy) | instead of ((X,€).(Y.n)) € |Cy) | -
If(X,Y)€|Cqland f: X — X'is a C -morphism . then one writes usually f | ¥ instead of
foi, wherei:Y — X is the inclusion map.

2.2 Definitions. m Let P be a subclass of |C | :

(a) Let (X,Y) € [Cy|. Y is called P -connected with respect to X iff f | Y is constant for
cach P € P and each C -morphism f: X — P .

(b) C.aP ={(X.Y)€|C2]|:Y is P -connected with respect to X} .

(c) K C|Cz)|is called a relative connectedness iff K = C, P for some P C |C | .
Let X be a subclass of | C(y) | :

(a) DK ={Z€|C|:f]|Y is constant for each C -morphism f: X — Z and each ¥ C X
satisfying (X.Y) € K} .

(b) P C|C|is called a relative disconnectedness iff P = D, K for some K C | Cay |-
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2.3 Remarks. Q = D, C,.; is a hull operator, i.e. @ is extensive ( P C QP for each
PcC|C|), isotonic (P C Q C|C | implies QP C QC ) and idempotent ( QQ = Q).
[Analogously, P = Cye D, is a hull operator.]

A subclass P of | C | is a relative disconnectedness iff P = QP (Analo-
gously, K C | C(g) | is a relative connectedness iff £ = PK ).

There is a one-to-one correspondence between the relative connectednesses
of | Cz) | and the relative disconnectednesses of | C | which converts the inclusion relation
(GALOIS correspondence), and is obtained by the operators Cye and D, .

m Let C be a topological category and P C |C | . For each X € | C ] and
each z € X the union K, of all Y with (X.Y) € C,.;P and z € Y is P -connected with respect
to X and called the P -quasicomponent of X containing z . Obviously, the P -quasicomponents
of X form a decomposition of X . In particular. if C = Top and P = {D,} ( D; : two-point
discrete topological space), then the P -quasicomponents of a topological space X are noth-
ing else than the quasicomponents of X in the usual sense, originally defined by HAUSDORFF [3].

2.4 Proposition. Let C be a topological category. P C | C | and X € | C | . Then the
following are equivalent:

(1) XeQ@P.
(2) For each z € X ,the P -quasicomponent K of X containing z is a singleton.

(3) For any two distinct elements z,y € X there exists an object P € P and a C -morphism
f: X — P such that f(z)# f(y) -
Proof. The equivalence of (2) and (3) is obvious.

(1) = (2). The identity 1x : X — X is a C -morphism, and since (X, K.) € C,a P for each
r€X,1x| K,: K. — X is constant, because X € D.;C,aP . Thus, K, is a singleton.

(2) = (1). Let f: Y — X be a C -morphism and Z C Y such that (Y,Z) € C,aP . Then,
obviously, (X, f[Z]) € Cra P . Thus, f[Z] is contained in a P -quasicomponent of X which is
a singleton. Therefore f | Z is constant.

2.5 Definition. The elements of QP are called totally P -separated.

2.6 Examples for the category Top.

a) Let P = {S} where S is the SIERPINSKI space ({0 1}{ ¢, {0}, {o, l}}) . Then
Q{S} = {To -spaces} .
b) Let P = {T, -spaces} : QP = {To -spaces} (Apply a) and note QQ = Q! ).
a) P = {spaces with the cofinite topology} : QP = {T} -spaces} .
b) P = {T) -spaces} : QP = {T -spaces} (Apply a) and note Q@ = Q! ).

P = {T, -spaces} : QP = {T; -spaces} .
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P = {URYSOHN -spaces} : QP = { URYSOHN -spaces} .

P = {IR} , where IR denotes the set of real numbers endowed with the usual topology
or P = {[0,1]} ( [0.1] : closed unit interval endowed with the topology induced by
R) : QP = {completely HAUSDORFF SPACES} .

(6] P = {D,} : QP = {totally separated spaces} .

2.7 Theorem. Lel C be a topological category, P a subclass of | C | such that the full sub-
category A of C defined by | A |= P is isomorphism-closed. Then the following are equivalent:

(1) P is a relative disconnectedness.
(2) Ais an extremal epireflective subcategory of C .

Proof. (1) = (2). Since P = QP it suffices to prove that QP is closed under formation
of weak subobjects and products in € : Let (f; : X — X;);e; be a mono-source in C such
that X; € QP for each i € I . If a,b € X with a # b, then there is some : € [ such that
fi(a) # fi(b) . Since X; € QP , there exists some P € P and some C -morphism f: X; — P
with f(fi(a)) # f(fi(b)) . Thus k= f o f; : X — P is a C -morphism such that k(a) # h(b) .
ie. X € QP (cf. 24.).

(2) = (1). It suffices to prove QP C P ( P C QP is always true). If X € QP .
then there exists an A -reflection e : X — Y which is an extremal epimorphism. Let z,y € X
such that £ # y . Then there exists some P € P and some C -morphism f : X — P with
f(z) # f(y) . Since e is an A -reflection there exists a2 unique C -morphism J : Y — P with
foe=f. Hencee(z) # e(y) . Consequently, e is injective, i.e. a monomorphism. Thus e is
an isomorphism. Since A is isomorphism-closed. X € | A| =P .

§3 Relations between topological categories, monotopological categories
and MACNEILLE completions

3.1 Theorem (HERRLICH, SCHWARZ, ALDERTON). For a concrete category C over Set the
following are equivalent:

(1) C is monotopological.

(2) C is (concretely isomorphic to) an epireflective subcategory of a topological category.

(3) Cis (concretely isomorphic to) an epireflective subcategory of a topological category which
is a MACNEILLE completion of C .

{(4) C is (concretely isomorphic to) an extremal epireflective subcategory of a topological
category.

(5) C is (concretely isomorphic to) an extremal epireflective subcategory of a topological
category which is a MACNEILLE completion of C .
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Proof. It suffices to prove the implications "(2) = (1)” and "(1) = (5)":

(2) = (1). Since C is an epireflective subcategory of a topological category B , it coincides with
its epireflective hull whose object class consists of all X € | B | for which there exists an initial
mono-source (f; : X = Xi)ics with X; € |C|. If X is a set, ((X:,&))ier 2 family of C -objects
and (f; : X — X;)ies 2 mono-source in Set, then there exists a unique initial B -structure £ on
X with respect to (X, fi, (X:,&), 1) . Thus (fi : (X, €) — (Xi,&));; is an initial mono-source
in B and (X, €) belongs to | C | . Therefore, ¢ is the desired initial C -structure. The remaining
statements follow immediately from the corresponding properties of B .

(1) = (5). Let B be the following category: objects are all triples (X, e, A) such that
X€|Set|,A€|C|and e: X — Fe(A) is an epimorphism where F¢ : C — Set denotes the
underlying functor; morphisms from (X, e, A) to (X', €', A’) are all pairs ([, g) with f : X — X',
g:A— A'and ¢’ o f = F¢(g) o e; and the composition of morphisms is defined componentwise,
A functor Fg : B — Set is defined by Fp((X,¢,A)) = X and Fg((f,9)) = f . Then Fg is
topological (cf. {4; 9.1.]). The full subcategory B’ of B defined by

|B'| ={(X,e.A) € | B|: Fe(A) C X}

obviously satisfies all properties of a topological category with the exception of the uniqueness
of initial structures. Now an equivalence relation ~ on | B’ | is defined by

s X = X' and there exists an isomorphism
(X.e, 4)~ (X, e A) it {g :A— A" with Fe(g)oe=¢.
If | B" | is a system of representatives of ~ containing | C" | = {(.’Fc(A), lr.apA): A€ |C |}
{note, that F¢ is amnestic), then the corresponding full subcategory B" of B’ is a topological
category. Moreover, the full subcategory C” of B’ defined by | C” | as above is an isomorphism-
closed extremal epireflective subcategory of B” , where (obviously)
(e.14) : (X.e. A) = (fc(A),I;C(A).A) is the extremal epireflection of (X, e, A) € | B” | with
respect to C” . A (concrete) functor H : C — B” is defined by H(A) = (fc(A), Lre(4), A) for
each A € | C| and H(f) = (Fe(f), f) for each f € Mor C . It is easy to check that M is a full
embedding. Then H' : C — C” defined by H'(A) = H(A) for each A € | C | and H'(f) = H(/)
for each f € Mor C is an isomorphism. Let D be the monocoreflective (= bicoreflective) hull
of C" in B” (cf. 1.8 (3)). Then, obviously, the inclusion functor I : " — D is finally dense
and D is topological (cf. 1.6). Moreover. T : " — D is initially dense and C” is extremal
epireflective in D (note: (e,14) : (X, e, A) = (Fc(A), Lr.(a), A) ) is the extremal epireflection
of (X,e, A) € | D | with respect to C" and (e, A) is the initial D -structure on X with respect
to {e,14) ). By 1.10, T : C"” — D is initiality preserving, Thus T : C" — D is a MACNEILLE
completion of C" .

3.2 Corollary. A concrete category C over Set is monotopological iff its object class | C |
is a relative disconnectedness with respect to a topological category which is a MACNEILLE
completion of C .

Proof. Apply 2.7 and 3.1.

3.3 Example. Let D be the category of regular spaces (resp. completely regular spaces) [and
continuous maps] and C the category of T; -spaces [= regular T} -spaces] (resp. TYCHONOFF
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spaces [= completely regular T -spaces]). Then D is topological and a MACNEILLE completion
of C . Furthermore, | C | is a relative disconnectedness (i.e. |C| =@ |C|) with respect to D
. (Thus, C is monotopological).

3.4 Remarks. [1] ALDERTON [2; 2.2] has shown that the MACNEILLE completion
H=ToH :C—Dofa monotopologlcal category C as constructed above has the following
additional property: If K : ¢ — C is any initial completion of C , then there exists a full
concrete embedding € : € — D such that £ o K = . Hence, any initial completion of a
monotopological category € is a MACNEILLE completion of C .

An object X of a topological category C is called a Ty -object provided
that each C -morphism from a two-point indiscrete object (i.e. a two-point set endowed with
the initial C -structure with respect to the empty index class) to X is constant. Obviously, the
Ty -objects of C form a relative disconnectedness. WECK-SCHWARZ [11] has shown, that the
object class of a properly monotopological category C (i.e. a monotopological category which
is not topological) consists of all Tp -objects of its MACNEILLE completion being a topological
category.
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