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Internal Description of Hulls: A Unifying Approach

F. Schwarz, S. Weck-Schwarz

Introduction

There is a number of categorical properties—e.g., cartesian closedness—whose presence is
useful and convenient, in particular, in a topological setting. The fact that many important
categories lack some of these desirable properties has led to the investigation of extensions
possessing such properties. Of particular interest are extensions that are as small as possible,
i.e., hulls.

Natural problems arising in connection with hulls are existence, uniqueness, and descrip-
tion. We will address only one aspect of the last of these, namely the internal description of
hulls: how can a certain hull of a category be described in terms of the originally given category
alone? We present a method that produces internal descriptions of various hulls in a uniform
and almost mechanical way.

Numerous papers are devoted to the problem of describing hulls of well-known categories; a
paradigmatic presentation for the category of topological spaces can be found in these proceed-
ings {15]. For ezternal descriptions of hulls as the injective objects of certain quasi-categories,
we refer to the recent article [7] and its references.

Our use of terminology will be as in [15); in particular. by a construct, we will always
understand a concrete category over Set which is small-fibred and has constant morphisms; the
forgetful functor to Set will usually be denoted by |—|. A convenient reference for background
on categorical topology is {2].

The investigations presented in the following are restricted to the important special case of
constructs. Similar results can be obtained for concrete categories over suitable base categories
other than Set.

1. Some fundamentals on hulls

The following properties of constructs are useful in a variety of connections, and hence
considered desirable by (categorical) topologists: being

e topological (initial structures exist w.r.t. arbitrary families of maps
[15: 1.1)),

s monotopological (initial structures exist w.r.t. point-separating families
of maps [17: p. 1362}),

o cartesian closed topological (existence of canonical function spaces [15: 2.14]),

cartesian closed monotopological (cartesian closedness in monotopological constructs is
characterized in the same way as in topological con-
structs by the existence of canonical function spaces

[18: 3.1]),

¢ extensional topological (existence of one-point extensions for the representabil-
ity of partial morphisms [15: 1.3}),

e a topological universe (all of the above [15: 3.14]).

This work is an original contribution and will not appear elsewhere.
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Since many constructs lack at least some of these properties, a reasonable approach to remedy
the situation is to look for extensions which have such properties, and among them for those
which are “minimal”.

1.1 Definition [12], [15: 2.6, 3.8, 3.17]. Let P denote any of the above-mentioned
properties. A construct B satisfying P is called a P-hull of a construct A if B is a finally
dense extension of A such that every finally dense embedding of A into a construct with the
property P can be uniquely extended to B. (We assume embeddings to be concrete, i.e., the
underlying set of an object and its image coincide; moreover, embeddings and subcategories are

assumed to be full.)

The final density of the extensions plays a crucial role—it ensures that the constructions
that are characteristic concerning any of the properties P remain intact: finally dense embed-
dings preserve initial sources and initial monosources [16: Prop. 10], canonical function spaces
(16: Prop. 5], [18: 3.4], and one-point extensions [19: 3.4].

There are three types of questions that arise immediately: Do P-hulls always exist? Are
they unique? How can they be described?

From the uniqueness of the extension of the embedding in Definition 1.1, it is clear that P-
hulls are unique up to (concrete) isomorphism. Generally, they need not exist; counterexamples
and conditions for the existence are given in [1] (topological hulls), [3] (cartesian closed topolog-
ical hulls), [8: 4.3], [22: 3.2.5] (cartesian closed monotopological hulls), [14: 4.2] (extensional
toplogical hulls), {4: Remark 5, Example 1] (topological universe hulls).

We will. for the rest of this paper, address the question of descriptions of P-hulls, more
specifically: internal descriptions in terms of the construct whose P-hull is to be formed.

The starting point for our investigation is the following construction principle: assuming
that a construct has a finally dense extension with the property P, then the P-hull can be
formed inside this extension as the bireflective or surjective-reflective hull of a specific subclass.

1.2 Theorem. Assume that B is a consiruct with the property P, and A o finally dense
subcategory of B. Then the P-hull of A ezists and is obtained as the bireflective hull in B of
the class D C B specified in the following table:

P D
topological A [11: 1.4]
cartesian closed topological {[X.Y] | X.Y€ObA} [16])
eztensional topological {y? | Y € ObA } [12], [13]
topological universe {(x,Y")| X, Y € ObA} [20: 3.6]. [4: Remark 1(b)]

and as the surjective-reflective hull in B of D in the following cases:

P D
monotopological A
cartesian closed monotopological {(X.Y]|X.Y e ObA} [8] [22: 3.1

where [X,Y) and Y denote canonical function spaces and one-point eztensions in B, respec-
tively, (Recall that a B-object X is in the bireflective hull of D in B if and only if there is
an initial source in B with domain X and codomains in D; for the surjective-reflective hull,
“initial source” has to be replaced by “initial monosource”.)

Proof. All cases can be proved following the same pattern. We give a detailed proof—
different from the original one by Herrlich—for the extensional topological hull, since the in-
vestigation of this concept has only recently begun. In addition, we provide a few hints on how
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to modify the steps of this proof to obtain a proof for the most complex case, the topological
universe hull,

So assume B is an extensional topological construct, and A a finally dense subcategory of
B. Denote by C the bireflective hull of { Y* | Y € ObA } in B.

(1) C is topological: Given a structured source (f; : S — Y; | i € I') of maps from
a set S to C-objects Y;, each Y; is the domain of an initial source in B with codomains in
{y! | Y € ObA } Composition of these sources yields a structured source whose domain is
the set S and whose codomains are in { Y* | Y € ObA }. Since B is topological, this structured
source can be lifted to an initial source with domain X € ObB. By definition of C, it follows
that X € ObC. Moreover, ( f;: X — Y; | i € I') is initial in B, and consequently also in C.

(2) For every Y € ObA, Y is a subspace of Y?, and consequently, ¥ € ObC. Hence
A C C: it is clear that the embedding is finally dense.

(3) For every Y € ObB, there is an initial morphism g : ¥* — ¥3: Since Y is a subspace
of Y#. the identity 1y : Y — Y is a partial morphism from Y* to Y. Hence the map
(1y)¥" : Y¥ — Y? is a B-morphism. Put g = (1y)""'. Now consider the composition of g
with the inclusion j : Y — Y**. Obviously, go j is the identity on Y*. If X is the B-object
with |X| = |Y¥| such that g : X — Y* is initial, then ¥Y* < X . ie, 1jx): ¥ — X isa
B-morphism. On the other hand. since 1y1 =goj: ¥Y! — Y is initial, j : Y} — X is an
initial morphism. i.e., Y? is a subspace of X. It follows that X < Y'*_ because Y*! carries the
greatest structure such that Y* is a subspace [19: 2.6]. We conclude X = Y¥ which implies
that g : Y* — Y? is initial.

(4) C is closed under one-point extensions in B, and consequently, C is extensional: For
every Z € ObC, there is an initial source (f, :Z — Y3 I i € I) with all ¥; € A. Since
the functor (—)* : B — B, assigning to each B-object its one-point extension and to each
B-morphism f : X — Y its extension f* = fX' : X! — Y*, preserves initial sources [19:
2.13], we obtain that (f.'l A p— ’ i € I') is initial. By (3), there exist initial morphisms
gi : Yi** — Y}, Hence the composition (giofit: 2V — v | i € I) is an initial source. and
Z* € ObC.

(5) To prove that C has the universal property of 1.1. we consider first the case that A be
topological, Let K be an extensional topological construct which contains A as a finally dense
subcategory; one-point extensions of K-objects Y are denoted by Y*. Define H : C — K as
follows: For Z € ObC, HZ is the K-object with the same underlying set as Z such that

(f:HZ—vY"‘|Y€0bA.f:Z—>Y’€MorC)

is an initial source in K; for a C-morphism h : Z; — Z,, Hh coincides with h as a map
(and will be denoted by h subsequently). We have to show that h : HZ; — HZ; is a K-
morphism whenever h : Z; — Z; is a C-morphism. By definition of H Z,, it is sufficient that
foh:HZ, — Y is a K-morphism whenever f : Z; — Y? is a C-morphism with ¥ € ObA.
Since foh:; Zy — Y* is a C-morphism, this follows immediately from the definition of HZ,.
Consequently, H : C — K is a concrete functor. We will prove that H is an embedding with
HX = X for X € ObA. Let us first show that for X.Y € ObA,

h:X — Y'isa C-morphism <= h:X — Y% is a K-morphism.

We prove the implication “=>"; the converse implication is shown analogously. If X and Y
are A-objects and h: X — Y? is a C-morphism, then the restriction k of h to the subspace
R=YY) of X is also a C-morphism, and since h~!(Y) and Y are A-objects and A is a full
subcategory of C, h is an A-morphism. It follows that h is a partial morphism from X to Y in
K; consequently, its extension AX = h: X — Y+ is a K-morphism.
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Since X and HX have the same underlying set, the definition of HX, together with the
equivalence just shown, implies that X < HX. On the other hand, the inclusion j : X — X*
is a C-morphism, and consequently, j : HX —+ X% is a K-morphism. The latter implies
HX < X, because j : X — Xt isinitial. Hence X = HX.

H is injective on objects: Since initial structures are unique, it suffices to prove that for

Z € ObC, Y € ObA,
h:Z — Y*?is a C-morphism <= h:HZ — Y is a K-morphism.

The implication “=” is clear. For the converse implication, it is sufficient to show that ho f :
X — Yt is a C-morphism whenever f : X — Z is a C-morphism with X € ObA, because
A is finally dense in C. Now f: HX — HZ and h: HZ — Y are K-morphisms, and so is
their composition ho f: X = HX — Y+, It follows that ho f : X — Y? is 2 C-morphism.

To prove the uniqueness of the embedding, suppose Hy, H; : C — K are finally dense
embeddings that coincide on A-objects. Finally dense embeddings between extensional topo-
logical constructs preserve initial sources [16: Prop. 10] and one-point extensions [19: 3.4].
If Z € ObC and (f, 1 Z — Y | i € I) is an initial source in C with all ¥; in A, then
(f,- 2 — (H\Y)* | i1 € I) and (f; t HoZ — (HY7)* | i € I) are initial sources in K;
since H, and H, coincide on ObA, and initial structures are unique, it follows that ,Z = H,Z.

Finally, let us drop the condition that A be topological. Denote by A’ the bireflective hull
of A in B. The bireflective hull C of { v | Y: € ObA} in B coincides with the bireflective

hull of { Y | Y; € ObA' } in B, and every finally dense embedding of A into an (extensional)
topological construct can be uniquely extended to A’. By the above proof, C is the exten-
sional topological hull of A’. It follows that C fulfils the defining properties of an extensional
topological hull of A.

We conclude with remarks concerning the topological universe hull. A proof can be given
by performing steps analogous to the ones above; we use the same numbering to point out some
of the necessary modifications.

(2) Denote by 1 a singleton B-object. Then Y 2 [1,Y]. Since Y is a subspace of Y3, it
follows that [1.Y] is a subspace of [1,Y*]. Since the constant map ¥ — 1 is final, there is an
initial morphism [1.Y?] — [V, Y*]. Composition yields an initial morphism ¥ — [¥, Y?].

(3) By [20: 3.1] and the proof of (3) above, there are initial morphisms [X,Y?] —
[X,Y”] —_ [X, Y’].

(4) Use (3) and the fact that (—)! : B — B preserves initial sources to show that Z € ObC
implies Z! € ObC. To prove that X € ObB, Z € ObC implies [X, Z] € ObC, observe that
[X.-] : B — B preserves initial sources, apply the adjunction —xX - [X, -], and use the
fact that [—,Y]: B — B transforms final episinks into initial sources.

(5) In the proof of the implication

h:W — [X,Y}]is a C-morphism = h:W — [X. Y]k is 2 K-morphism

for W,X,Y € ObA (where [—, —]x denotes function spaces in K), use first the adjunction
—xX 4 [X,-] to obtain a C-morphism h; : W x X —+ Y, then restrict ~; to get an A-
morphism h; : ATHY) — Y.

To show that HX < X for X € ObA, replace the inclusion j (in the proof for the
extensional topological hull) by the initial morphism X — [X, X*] of step (2). =

1.3 Remark. As an immediate consequence of Theorem 1.2, one obtains that the P-hull of
a construct A is characterized, among the finally dense extensions of A satisfying property P,
by the initial density (resp. initial monodensity) of the class D specified in 1.2. Indeed, assume
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B is a finally dense extension of A with property P. Form the bireflective (resp. surjective-
reflective) hull C of D in B. By 1.2, C is the P-hull of A. If B is the P-hull of A, then B = C,
and D is initially (mono)dense in B. Conversely. if D fulfils the initial density condition. then
B = C. and B is the P-hull of A.

2. The quasi-category of structured sinks

We will in the following explain a method by which it is possible to obtain internal de-
scriptions of the P-hulls of a construct A in a uniform way: moreover. this method produces
the descriptions more or less automatically, without the need for particular ingenuity. Compare
also the articles [23] and [12].

The basic approach is this: First find an “umbrella” construct B which has all the properties
P and can be described in terms of A: then perform the construction of the P-hulls inside B.
as indicated in Theorem 1.2.

Unfortunately, such a B generally does not exist—at least, if B is required to be a construct.
However, the outlined approach is successful if the definition of a category is relaxed, and the
collection of B-objects is only required to form a conglomerate (an entity that may be larger
than any class). This means that B is allowed to be a quasi-category. For foundational aspects
on conglomerates and quasi-categories, the interested reader is referred to [2: Section 2 and
3.49 ff]; but a naive, “set-like” treatment will suffice for our purposes.

All this may sound somewhat intimidating: but actually, the idea behind the definition
of our umbrella B is no more difficult than Hausdorff’s construction of the completion of a
metric space [10}: If a metric space fails to be complete, then there are non-convergent Cauchy
sequences. Now the very objects that cause the trouble, the Cauchy sequences, are taken as
the points of the completion (more precisely, equivalence classes of Cauchy sequences). In our
case, in order to achieve “topological completeness”, the new quasi-category is made up of the
“structured sinks”, a concept which originates from [9}.

2.1 Definition. For a construct A, the quasi-category SA of structured sinks over A is
defined as follows: Objects are pairs (X.S) where X is a set and § a structured sink (ie.. S
is a family (fi : Ai — X | i € I') of maps from A-objects A; to the set X), subject to the
following conditions:

(1) S is closed under composition with A-morphisms, ie., if g : 4 — A; is an A-

morphism and f; : A; — X € S, then fiog: A — X € S:

(2) S contains all constant maps (including the empty map) from A-objects to X.
Morphisms of SA are sink maps h: (X.S) — (X', 8'),i.e., mapsh: X — X' withhof e S’
forall f€S.

Observe that SA is defined in terms of A.

If A is a proper class, then the structured sinks over A are also proper classes, and the
collection of SA-objects forms a proper conglomerate; hence SA is, in general, only a quasi-
category. We will show that, except for this hugeness, SA has all desirable properties [23]; to
avoid ponderous formulations, we will speak of the cartesian closedness of SA. the extensionality
of SA, etc., even though these notions are only defined for categories.

2.2 Proposition. SA has initial structures.

Proof. The initial structure with respect to a family (h; : X — (X:,S;) |i € I) of
maps h; from a set X to SA-objects (X;,S;) is given by

S=(f:A—-oX|foralliGI,h,-ofES;). .

It follows immediately from 2.1(2) that the only structured sink on the empty set and on
each singleton set is the sink consisting of all constant maps with domains in A; so we have:
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2.3 Proposition. The sets with at most one element carry ezactly one SA-siructure.

The key fact, which ensures that we do not move too far away from A when passing to
SA, is final density. (Actually, the requirement of final density enforces that one cannot expand
beyond SA, since SA is the “largest” finally dense extension of A which has constants, cf. [11].)

2.4 Proposition. A can be regarded as a finally dense subcategory of SA.

Proof. For an A-object A, denote by T(A) the structured sink determined by the total
sink from A to A, i.e.,

T(A)=(f:B—|A|| f: B — A€ MorA).

Then the assignment A — (|4],7(A)), h: A— B — h:(|4|,T(A)) — (|B|,T(B)) is
an embedding of A into SA.
Observe that for any structured sink S on a set X and any A-object A,

(%) f:A— XeS & f:(A.T(4)) — (X.S) is a sink map.

The implication “=>” is clear by 2.1(1). The converse implication follows immediately from
14 € T(A).
Finally, the embedding is finally dense: For any SA-object (X,S),

(f: (1A, T(A) — (X,8) | f: 4 — X €8)

is a final episink by (*). =

We will, in the following. generally identify an A-object A with its image (JA|,7(4)) in
SA.

We have seen in 2.2 that, without any further conditions on the construct A, the quasi-
category SA has initial structures, in particular, subspaces and finite (concrete) products.
Therefore it makes sense to ask whether SA is extensional or cartesian closed. However, unless
A has subspaces resp. finite concrete products, we cannot expect that one-point extensions and
function spaces can be described via features of A.

2.5 Proposition.  For any construct A with finite concrete products, the quasi-category
SA is cartesian closed.

Proof. Let us first have a look at products in SA. Consider SA-objects (W,Sw) and
(X,Sx). Denote by Sw x Sx the structured sink of the product (W,Sw) x (X,8x). K
g:A— WeSwand f: B— X €Sx.theng: A — (W,8w) and f: B — (X,Sx) are
sink maps by (+). Consequently, g x f : Ax B — (W, Sw) x (X, Sx) is a sink map, and, again
by (+), g x f: Ax B— W x X € Sw x Sx. (Notice that, by final density, the embedding
of A into SA preserves finite products.) On the other hand, if f: 4 — W x X € Sw x Sx,
then the compositions pw o f and px o f of f with the projections belong to Sw and Sx.
respectively, and f = ((pw o f) x (px o f)) 06, where § : A — A x A, §(a) = (a,a), is the
diagonal morphism. We obtain:

h:(W.S8w) x (X,Sx) — (Y.Sy) € MorSA <= forall g € Sw and all f € Sx,
ho(g x f) € Sy.

Now let us define the canonical function space structure P on Hom((X,Sx), (Y, Sy)):

g: A — Hom((X.Sx),(Y,Sy)) € P «< forall f€Sx, evo(gx f) € Sy
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(where ev denotes the usual evaluation map). P is closed under composition with A-morphisms:
For let g : A — Hom((X,S5x),(Y,Sy)) € Pand ¢' : A’ — A be an A-morphism. Then for
each f : B — X € Sx, we have evo (g X f) € Sy. Since ¢' X 1p is an A-morphism,
evo((gog')x fy=evo(gx f)o(g' x 1p) € Sy, and consequently, gog' € P.

That P contains all constant maps is seen as follows: The case of the empty map is trivial.
Given a non-empty constant map ¢ : A — Hom((X,Sx), (Y, Sy)) € P, denote by h its single
value. If f: B — X € Sx, thenevo(g x f)=ho fopp € Sy, since h is a sink map and the
projection pg is an A-morphism.

It is clear that P is the largest structured sink on Hom((X,Sx).(Y,Sy)) such that the
evaluation map is a sink map. It remains to be shown that for any sink map h : (W, Sw) x
(X,5x) — (¥, Sy), its transpose h* : (W,Sw) — (Hom((X, Sx), (Y, Sy)),P) is also a sink
map. By definition of P and sink maps, this means: If g € Sw and f € Sx, then evo((h*og)x
f) € Sy. The latter follows from the facts that h is a sink map, and evo((h*og) x f) = ho(gx f)
at the set level. w

2.6 Proposition., For any construct A with subspaces, the quasi-category SA is ezten-
sional.

Proof. From the definition of initial structures, it is easily seen that (X, Sx) is a subspace
of (¥,8y) if and only if Sx consists of the restrictions of the structured maps in Sy, i.e..

Sx=(§:g'1(X)——+X|g:B—»Y€Sy),

where ¢7!(X) is considered as a subspace of B and § is the restriction of g to ¢g~}(X). Now
define the one-point extension (Y,Sy)! of (Y,Sy) as follows: (Y,Sy)’ = (Y!,Sy*), where
=Y U{oo} with co ¢ Y and

g:B—YleSy! <= g:g7(Y) — Y € Sy.

Since restrictions of constant maps are constant, it is obvious that Sy! fulfils condition (2)
of 2.1,

Now let g: B — Y? € Sy’. The restriction ¢’ : (¢')" (g~ (Y)) — ¢~'(Y) of any
A- morphJsm g' with codomain B is an A- morph15m Since g € Sy by definition, it follows that
gog' =gog' € Sy. Hence gog' € Sy?, and Sy is closed under composition Wlth A -morphisms.

It is clear that Sy is the largest structured sink on Y* such that (Y,Sy) is a subspace
of (Y, Sy'). We need to show that (Y?,Sy*) represents partial morphisms to (Y,Sy). Let
h:(Z.5z) — (Y.Sy) be a partial morphism from (X,Sx) to (¥,Sy). If f: 4 — X € Sx,
then f: f~1(Z) — Z € Sz. Since h : (2.8z) — (Y, Sy) is a sink map, we have ho f € Sy.
Consequently, the fact that kX o f = hX of=hof 1mphes hX o f € Sy}, as required. =

From 2.5 and 2.6, we obtain immediately:

2.7 Corollary. For any construct A with subspaces and finite concrete products, the quasi-
category SA is a topological universe.

3. Internal descriptions of the P-hulls

In order to obtain internal descriptions of the P-hulls of a construct A, we now carry out
the constructions described in Theorem 1.2 inside the quasi-category SA of structured sinks
over A. This involves a two-step “translation process”: By 1.2, an SA-object (X, ) is contained
in the P-hull of A if and only if the total source from (X,S) to the class D specified in 1.2
is an initial source (resp., initial monosource, in case of the monotopological and the cartesian
closed monotopological hulls). In the first step, we describe the total source from (X, S) to D,
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and translate this description into one in terms of A; the condition in each of these cases will
be that certain maps are A-morphisms. In the second step, the initial SA-structure on X with
respect to the source of step 1 is described, and the same translation process is used to put the
description in terms of A. Then (X, 8) is in the P-hull of A if and only if § coincides with the
initial structure found in step 2, which yields the desired internal description.

We will give the details for the (mono)topological and cartesian closed (mono)topological
hulls, to carefully demonstrate the procedure outlined above; the other results can be obtained
analogously, and are only formulated.

Of course, it only makes sense to describe a P-hull if it exists; in the following, let us
assume that the given construct A fulfils conditions which ensure the existence of the P-hull in
question.

Let us start with the simplest case, to get the flavor of the method.

3.1 The topological hull (MacNeille completion) [11]. An SA-object (X,8) is in the
topological hull of A if and only if the total source from (X,S) to A is initial.

Step 1. A map h:(X,8) — B from (X,§) to an A-object B is a sink map exactly if for
each g: A — X € S, the composition hog : 4 — |B| belongs to T(B). The latter condition
can be translated into: hog: A — B is an A-morphism. Now define

T(X,S)=(h:X — |B|| B€ObA andfor all f € S, hog € MorA).

T(X,S) is a source in Set which represents the total source from (X, S) to A.
Step 2. By 2.2, the inital SA-structure IT(X,S) on X with respect to the family T(X,S)
is given by

IT(X,S)=(g: A — X | A€ ObA and for all h: X — |B| € T(X,S),
hog: A — |B|e T(B))
=(g:A— X | A€ ObA and for all h € T(X,S), hog € MorA ).

Now the total source from (X.S) to A is initial if and only if § coincides with the initial
structure with respect to the total source, i.e., § = IT(X,S); or equivalently: § D IT(X,S),
since the converse inclusion is always true. Structured sinks with this property are called closed
sinks. Observe that the condition is formulated solely in terms of sets, maps, A-objects, and A-
morphisms. A formulation in words, rather than formulae, would read as follows: A structured
sink Son X is closedif g: A — X € S whenever hog: A —+ B is an A-morphism for every
map h : X — |B| with the property that for each f € S, h o f is an A-morphism.— So we
have obtained that the topological hull of A is the category of closed sinks. =

3.2 The monotopological hull [22: 3.3.6]. An SA-object (X, S) is in the monotopological
hull of A“iff the total source from (X, S) to A is an initial monosource, i.e. iff it is initial and
separates points. With the notations of 3.1, this means: § D IT(X,S) and T(X,S) separates
points. Closed sinks with the property that T(X,S) separates points (or equivalently, T(X,S)
is a monosource in Set) are called mono-induced. Hence the monotopological hull of A is the
category of closed, mono-induced sinks. =

Now let us advance to a slightly more complex case:

3.3 The cartesian closed topological hull [6: 3.1). Let A be a construct with finite
concrete products; then SA is cartesian closed by 2.5, and the cartesian closed topological hull
of A can be obtained inside SA by the construction in 1.2. Hence an SA-object (X, 5) is in the
cartesian closed topological hull of A if and only if the total source from (X, ) to the class of
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function spaces D = { [B,C] | B,C € ObA } is initial (where the function spaces are formed
in SA).

Step 1. A map h : (X,8) — [B,C] is a sink map iff for each g : A — X € §. the
composition hog: A — Hom(B, C) belongs to the function space structure P on Hom(B, C).
By the description of P in the proof of 2.5, this means that for any f € T(B), we have
evo((hog)x f) € T(C). Since T(C) is closed under composition with A-morphisms, and
evo((hog)x f) = evo((hog)x 1g)o(1x f), the last condition can be rewritten as:
evo({hog)x 1g) € T(C), or, translated into terms of A: evo((hog)x1g):Ax B— Cis
an A-morphism. Hence

T(X.S)=(h: X — Hom(B,C)| B,C € ObA andforall g: A — X € S,
evo((hog)x15): A x B — C is an A-morphism)
represents the total source from (X,S) to D. Observe that the definition of T(X,S) does not
involve the function space structures in SA any more.

Step 2. Amap g: A — X isin the initial SA-structure IT(X,S) with respect to T(X, S)
iff h € T(X,S) implies that h o ¢ is in the function space structure of [B,C]. From step 1. we
know already that this translates into: evo((hog) x 1g): A x B — C is an A-morphism.
Consequently,

IT(X,5)=(g:A— X | A€ A and for all h € T(X,S),

evo((hog)x1)is an A-morphism).
Finally. (X, §) is in the cartesian closed topological hull of A iff IT(X,S) C S. Structured sinks

with this property are called power-closed. So we have shown: The cartesian closed topological
hull of A is given by the category of power-closed sinks. =

3.4 The cartesian closed monotopological hull [22: 3.3.5]. With the same assumptions
and notations as in 3.3, an SA-object (X,S) is in the cartesian closed monotopological hull
of A iff IT(X,8) C § and T(X,S) separates points, i.e. iff S is a power-closed mono-induced
sink. =

Proceeding in the same way for the remaining two hulls, we obtain:

3.5 The extensional topological hull [12: 3.1(3)]. Assume that A is a construct with
subspaces. Following the description of the one-point extensions in 2.6, define, for an SA-object
(X,8):

T(X,S5)=(h: X — |B|U{oc} | B€ ObA andfor all g € S,

hog:(hog)™(B) — B is an A-morphism)
and
IT(X,5)=(g: A— X | A€ ObA and for all h € T(X,S), hogisan A-morphism).

Then (X, S) is in the extensional topological hull of A iff IT(X,S) C S; structured sinks with
this property might be called eziension-closed sinks. Hence the eztensional topological hull of A
i3 given by the category of eztension-closed sinks. =

3.6 The topological universe hull [4: Remark 4]. Let A be a construct with subspaces
and finite concrete products. For an SA-object (X, S), define

T(X,8)=(h: X — Hom(B.C?) | B,C € ObA andforallg: A — X €S,
evo((hog)x1g):(evo((hog)x1g))"*(C) — C € MorA)

and
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IT(X.S)=(g: A— X | A€ ObA and for all h € T(X.S), evo((hog) x 1) € MorA).

Then (X, 8) is in the topological universe hull of A iff IT(X,S) C S; structured sinks with this
property are called partially closed.

It might seem like the definition of a partially closed sink is not quite in terms of A;
however, from the description of one-point extensions in the proof of 2.6, it is easily seen that
Hom(B, C?) consists of those maps k : |[B] —+ |C| U {oo} whose restriction k : k~}(C) — C
is an A-morphism (where k~!(C) is considered as a subspace of B). =

3.7 Remark. (1) To appreciate the method for finding internal descriptions of hulls pre-
sented in this paper, the reader is invited to a comparison with the original proofs, which usually
start out by defining the category of structured sinks with an appropriate closure property (let’s
call them P-closed, for short). Then, in addition to our argumentation, it has to be shown that
the necessary constructions—initial structures, function space structures, or one-point exten-
sion structures—are P-closed. Moreover, our approach provides the natural explanation for the
definition of P-closed sinks.

(2) Of course, the internal descriptions of the P-hulls are fairly complicated; it may be
quite hard to work practically with them (or even with simplified versions, like the one given
in [5]). For all practical reasons, if the P-hull of a specific construct is asked for, it is always
preferable to perform the constructions of Theorem 1.2 in a construct B which can be defined
in simpler terms (and which is a category, rather than a quasi-category); e.g.. all P-hulls of the
category of topological spaces can be formed inside the category of pseudotopological spaces,
see [15].

(3) One of the theoretical merits of the given internal descriptions of the P-hulls is that
they provide conditions for the existence of these hulls: the P-hull of A exists if and only if
the quasi-category of P-closed sinks over A has small fibres. The existence conditions gained
from this equivalence can be formulated in terms of A. (However, they are not always the best
available ones: the fact that every construct with subspaces has an extensional topological hull
was obtained by a different method in [14: 4.2].)

(4) Finally, the reader might ask: Why didn’t we investigate extensional monotopological
(or monotopological universe) hulls? The answer is that, with the definition of extensionality
via injective, initial maps [15: 1.3}, there is nothing new to investigate: if a monotopological
construct is extensional, then it is already topological {21: Thm. 6.
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