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Improving Top: PrTop and PsTop

H. Herrlich, E. Lowen-Colebunders, F. Schwarz

Introduction

Many of the categories investigated in general topology have the property that initial
structures exist with respect to arbitrary families of maps, but lack other desirable properties,
such as cartesian closedness or extensionality. A possible approach to improve the situation
is to look at extensions which have (some of) these properties; of course the originally given
category should be nicely contained in such extensions.

As an example of this method of “improvement by enlargement”, we will, in this paper,
study the case of the category Top of topological spaces and continuous maps.

The presentation is self-contained. as far as Top and its extensions are concerned. (The
only prerequisite is a basic knowledge of topology and filters.) The theoretical background
material on categorical topology is formulated, but without proofs. To round out the picture,
we mention—also without proofs—a few generalizations of the results on Top that apply. in
particular, to the epireflective subcategories of Top. A general procedure for the construction
of “smallest” extensions with desirable properties, that is applicable to any concrete category
over Set, is explained in [29].

With respect to the literature, we have tried to refer to the original papers. A comprehen-
sive presentation of categorical topology is contained in the recent book [2).

1. The category Top of topological spaces and continuous maps

The main categorical feature, which makes the category Top of topological spaces and
continuous maps a nice category to work in, is the existence of initial structures: Given a
family ((X: t;)|i€ I') of topological spaces. indexed by a class I (possibly proper or empty).
and a family (fi : X — X; | i € I) of maps, there is a unique topology t on X such that
(fi : (X)) — (Xi,t) | i € I) is an initial source. i.e. such that for any topological space
(Z,u} and any function ¢ : Z — X. we have g : (Z,u) — (X.t) is continuous if and only if
fiog:(Z,u) — (Xi,t:) is continuous for every i € [.

This fundamental property is the basis for the following definition:

1.1 Definition [5: 2.1]. Let A be a construct (i.e. A may be regarded as a category of
“structured sets”, whose morphisms are “structure-compatible” maps, together with the usual
composition of maps). Then A is called topological if it satisfies

(1) For any set X, any family ((Xi,a:)| i€ I) of A-objects and any family (f;: X —
Xi | i € I') of maps, there is a unique A-object (X.a) such that (f;: (X, a) — (Xi.a;) |ie
I) is an initial source in A;
and A is called well-fibred if it fulfils the conditions

(2) For any set X, the class {(Y,a) | (Y.e) € ObA and Y = X } of A-objects with
underlying set X is a set.

(3) For any set X with cardinality at most one, there exists exactly one A-object with
underlying set X.

This work is an original contribution and will not appear elsewhere.
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Convention. In this paper, we will only consider constructs that are well-fibred. To keep
the terminology brief, we will speak of “constructs” and “topological constructs” instead of
“well-fibred constructs” and “well-fibred topological constructs”.

In this language, Top is a topological construct. The initial topology ¢t on X with respect
to the structured source (fi : X — (X;. ;) | i € I) is, in terms of open sets. described by
having

U{ £ (U) | U open in (X;. 1) }
i€l
as a subbase.

As a topological construct, Top has also final structures: for any structured sink ( f; :
(Xit)) — X | 1€ I), there exists a unique topology ¢t on X such that (f,- (Xi i) —
(X,1) | i € I) is a final sink in Top. In particular, Top has subspaces, products, quotients and
coproducts. Subspaces and products are obtained by endowing the subobjects and products
in Set with the corresponding initial topologies. (The subspaces are the extremal subobjects
in Top.) Quotients and coproducts are obtained by taking the respective colimits in Set.
endowed with the corresponding final topologies. Moreover, the topologies on a fixed set X
form a complete lattice if one defines

t1 €1 <= 1x:(X,t;) — (X, t2) is continuous.

As we have seen, Top has many useful properties, which can analogously be formulated and
proved in any topological construct. In the following we will discuss other desirable properties
of topological constructs: eztensionality and cartesian closedness. Roughly speaking, they
characterize the compatibility between initial and final constructions. As we will see, Top does
not possess either of these properties. How can we improve Top? A reasonable approach is to
enlarge Top, i.e. to embed Top into bigger categories that have nicer properties, but are small
enough to retain as much structure as possible.

Coproducts in Top commute with subspaces in the following sense: If X = [[ X is a
coproduct in Top. Y is a subspace of X, and Y; are the pre-images of Y under the natural
injections, considered as subspaces of the corresponding X;, then ¥ =[] ¥i. In other words, if
for each index k we form the pullback

Vi — X,

Yy C—— H.X,'
then Y = [V}, in short: “Coproducts in Top are preserved by pullbacks along embeddings”
or: “Coproducts in Top are hereditary”. However, coproducts cannot be replaced by arbitrary

final episinks in this statement. As the following example shows, quotients are not preserved
by pullbacks along embeddings.

1.2 Example [14: Thm. 2]. Consider the topological spaces W, X, Y, Z whose non-empty
open sets are illustrated in the following picture:

(@]
X ., Y

g 9

wlo 1] [0 2 1]2
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W and X are subspaces of Z and Y, respectively, the square is a pullback, and g is a quotient,
but the restriction g of g to X is not a quotient.

The usefulness of the property that final episinks are hereditary has been pointed out in
[19: Section 2]. A more constructive characterization was given in [16], in the following way.

1.3 Definition, Let A be a topological construct.

(1) A partial morphism from X to Y is a morphism f : Z — Y whose domain Z is 2
subspace of X.

(2) Partial morphisms to Y are representable provided Y can be embedded via the addition
Jf a single point coy into an object Y with the property that for every partial morphism
f:2 — Y from X to Y. the map fX : X — Y?!, defined by fX(z) = f(z) if z € Z.
f¥(z) = ooy if z € X — Z. is a morphism. The object Y* is called one-point eztension of Y.

(3) A is extensional if partial morphisms to all A-objects are representable.

1.4 Theorem [16]. For a topological construct A, the following conditions are equivalent:
(1) A is eztensional

(2) Quotients and coproducts in A are hereditary.

(3) Final episinks in A are hereditary.

It follows from 1.2 and 1.4 that Top is not extensional. “This can also be seen directly from
the definition:

1.5 Example. Denote by 2 the Sierpinski space, i.e. the set {0,1} endowed with the
topology {8, {1}.{0,1}}. Assume the one-point extension 2° exists; it is customary to denote
oo by 2 in this context. Choosing f to be the identity on 2 in 1.3(2), and letting X run through
all topological spaces with underlying set {0,1,2} which have 2 as subspace, it is seen that in
all these cases, the map fX is the identity on {0,1,2}. Consequently, 2* would have to carry
the largest (i.e. coarsest) topology which makes 2 a subspace. But it is easy to verify that such
a topology does not exist.

The considerations of 1.5 apply generally: Whenever A is an extensional topological con-
struct, then the one-point extension of any A-object Y carries the largest structure that makes
Y a subspace [25: 2.6]. Note, however, that this necessary condition for the extensionality of
A is not sufficient [28: 3(2)|, i.e. if for each Y, there exists an extension of Y by one point,
carrying the largest structure for which Y is a subspace, then partial morphisms to Y need not
be representable.

Any non-trivial topological construct inside Top contains all spaces where each open set
is closed [14: Prop. 3(3)]. Applying this fact to 1.2 leads to the following result:

1.6 Generalization [14: Thm. 2]. The only topological constructs contained in Top that
are extensional are the discrete and the indiscrete spaces.

2. The category PrTop of pretopological spaces

Since Top itself is not extensional, we weaken the axioms of a topological space in order to
obtain a supercategory of Top that is extensional. This can be done by looking at topologies
in terms of their convergent filters:

2.1 Definition. A pretopology on a set X is a function ¢ assigning to each z € X a set of
proper filters on X, the “filters converging to z”, subject to the following conditions:

(1) for every z € X: 7 € g(z) (where £ is the principal ultrafilter generated by {z});

(2) if F, G are filters on X with G D F € g(z), then G € ¢(z);

(3) for every z € X: () q(z) € ¢(z).
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(X.q) is then called a pretopological space. It is customary (and more suggestive) to write
F — z instead of F € ¢(z); if necessary, the pretopology or the pretopological space is used
as an index to avoid ambiguities.
A map f: (X1,q1) — (X2,q2) between pretopological spaces is continuous if F € ¢ ()
implies f(F) € g2(f(z)) (where f(F) denotes the filter on X> generated by { f(F) | F € F }).
The category of pretopological spaces and continuous maps is denoted by PrTop.

Like topologies, pretopologies can be characterized in a variety of ways; cf. [2: 5N(b)]. We
mention here only one, which we will use in the sequel. Clearly, a pretopology ¢ on a set X is
completely determined by the coarsest filters converging to the points of X: For each 7 € X,
V(z) := [ g(z) is a filter with V(z) C &; conversely, if a filter V(z) with V(z) C 7 is assigned
to each r € X, then a pretopology ¢ is defined by

F € g(z) <= F D V(z).

In analogy to topologies, V(z) is called the neighborhood filter of z. A map f : (X1,q1) —
(Xa,4q2) is continuous if and only if f(Vi(z)) 2 Va(f(z)) for every z € X, or equivalently, if
Vi(z) D f1(Va(f(2))) for every z € X;. (Here f~!(Va(f(z))) denotes the filter generated by
{f71(V)| V € Va(f(2)) }; observe that all sets f~!(V') are non-empty.)

Obviously, Top can be regarded as a subcategory of PrTop.

2.2 Proposition. PrTop is a topological construct.

Proof. If ((Xi,qi) | i € I'} is a family of pretopological spaces and (fi: X — X | iel)
a family of maps, then the initial pretopology ¢ on X can be described in the following ways:
(a) F— 2z = Viel: fi(F) — fi(z).
q g

(b) Vz € X: Vy(z) = sup { 7 (Vi(fi(z))) | i € I'} (where the supremum is taken in the
lattice of filters on X, ordered by inclusion). =

Since initial structures in Top can be described in the same way as those in PrTop. it
follows that Top is closed under formation of initial sources in PrTop, and we have:

2.3 Proposition. Top i3 a bireflective subcategory of PrTop.
For a pretopological space (X, ¢), the bireflection is given by

1x : (X,9) — (X,1)

where {U C X |Vz € U: U € V,y(z) } is the collection of open sets of t.
2.4 Theorem {16: p. 250]. PrTop is extensional.

Proof. We give the construction of the one-point extensions in PrTop and show that
they fulfil the requirements of 1.3(2). For a pretopological space Y, define Y* = ¥ U {co} with
0o ¢ Y. Let j : Y — Y? denote the inclusion map. The convergence structure of Y* has to be
as large as possible such that Y is a subspace of Y*: hence we define

gwy = y=ooorg=o'oorg|y7y,

i.e., all filters on Y* converge to co. and oo converges to all points of Y?, while in any other
case, the convergence behavior of a filter § on Y* is determined by the convergence behavior
of its trace g|Y on Y. (Note that Q|Y is a proper filter whenever ¢ # oc.) Observing that
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(N{G:1ieI})|y =N{Gil, | i € I}, this definition makes Y* a pretopological space. For
any filter F on Y and any y € Y, we have j(f)ly = F, and consequently,

F—y = i(F) 71’(5’),

which proves that j : ¥ — Y is initial. Finally, let f : Z — Y be a partial morphism from
X to Y. We have to show that fX : X — ¥* is continuous. Let F < It is clear that

FX(F - fXz)ifze X - Z (ie., fX(z)=)orif X—-Z€F (i.e.,(fx(}') = co0). In any
other case, the trace .7-'|Z is a proper filter, and flz -5 since Z is a subspace of X. By the

continuity of f, we obtain fX(F)|, = f(F|,) - f(z) = fX(z). =

We have seen that by a quite natural generalization of Top, we obtained the extensional
topological supercategory PrTop. In fact, PrTop is the “smallest” extensional topological
extension of Top. Before we can make this statement precise, we need the following definition:

2.5 Definition. A subclass D of a topological construct B is called finally dense (resp.
initially dense) in B, if for each B-object X, there is a final sink ( fi: D; — X | i € I) (resp.
an initial source (f; : X — D; | i€1I))withall D; in D.If E: A — B is an embedding of
a construct A into B, then the embedding E and the eztension B of A are said to be finally
dense (resp. initially dense) if the class { E(X) | X € ObA} is finally dense (resp. initially
dense) in B. (We assume throughout this paper that subcategories are full and embeddings are
full and concrete.)

Final density plays an important rdle: If we consider a finally dense subclass D of a
topological construct A as a full subcategory of A, then the embedding functor preserves
initial sources [18: Prop. 10]. Hence a finally dense extension of a category retains much of its
original character.

2.6 Definition [15: 2.3]. An extensional topological construct B is called an eztensional
topological hull of a construct A if B is a finally dense extension of A with the property that
any finally dense embedding of A into an extensional topological construct can be uniquely
extended to B.

The extensional topological hull of a construct—if it exists—is unique up to isomorphism.
(Surprisingly, the existence is already ensured if A has subspaces [17: 4.2].) It can be charac-
terized in terms of one-point extensions:

2.7 Theorem [15: 2.3, [16: p. 258 ff]. The eztensional topological hull B of a construct
A is characterized by the following properties:

(1) B is an eztensional topological construct.

(2) A is finally dense in B.

(3){Y*|Y € ObA } is initially dense in B.

A detailed proof of 2.7 can be found in {29: 1.3]. We will use this characterization theorem
to show that PrTop is the extensional topological hull of Top.

2.8 Proposition (cf. [21: 1.2]). Top is finally dense in PrTop.

Proof. For any filter F on a set X anda € X, we obtain a topology t,,r on X by defining
the neighborhood filters of the points of X as follows: V(a) = FNa, V(z) = 2 if z # a. Now if
¢ is a pretopology on X, then the sink (lx (X, ta,r) — (X, q) | aeX, F— a) is a final

g

episink. =

In terms of neighborhood filters, the Sierpinski space 2 is described by V(0) = oni,
Y(1)=1.
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2.9 Definition. The one-point extension 2° of the Sierpinski space is denoted by 3. (Again
we use 2 instead of c0.) So 3 is the pretopological space described by V(0) = V(2) =0nN1N2,
V) =1in2.

2.10 Proposition [8: 11.2]. {3} is initially dense in PrTop.

Proof. Let X be a pretopological space. We have to show that (f : X — 3 |
f continuous) is an initial source, i.e. that for a € X:

V(a) = sup { f' (V(f(a))) |f: X —3 continuous }.

The inclusion D is clear. To prove the converse inclusion, define, for each V € V(a). a map
fra: X —3by fra(z)=0ifz € X -V, fue(a) =1, fra(z) =2ifz € V - {a}. All fv,
are continuous, and V = fv,a 71 ({1.2}) € fv.a ' (V(1)) = fv,a ' (V(fv,a(a))). =

The preceding results are summed up in the following theorem:
2.11 Theorem [16: p. 259]. PrTop is the eztensional topological hull of Top.

PrTop is also the extensional topological hull of Ty Top, the category of Ty-spaces. For
many other well-known subcategories of PrTop, surprisingly. only one additional category
occurs as their extensional topological hull: this is the case if a symmetry axiom is satisfied, as
e.g. for the T)-spaces (T)Top), the completely regular spaces (CReg), the Tychonoff spaces
(Tych = CReg N T;Top) and the zero-dimensional spaces (ZDim). See also the diagram at
the end of this paper.

2.12 Generalization [27: Cor. of Thm. 1]. A pretopological space X is an Rg-space if
for all points z,y € X. £ — y is equivalent to § — z. The subcategory of PrTop consisting
of the Rp-spaces is denoted by RoPrTop. If A is an epireflective subcategory of PrTop that
contains a non-indiscrete space, then the extensional topological hull of A is PrTop if 2 € ObA,
and RoPrTop if 2 ¢ ObA.

We now turn our attention to a second desirable property of (topological) categories: carte-
sian closedness.

2.13 Definition [11: p. 550]. A category A with finite products is cartesien closed if for
each X € ObA, the functor — x X : A —+ A has a right adjoint, denoted by [X, —].

For topological constructs, cartesian closedness is characterized by the existence of canoni-
cal function spaces, i.e. [X,Y]is given by the set Hom(X,Y'), endowed with a structure fulfilling
condition (2) of the following theorem, and the counit of the adjunction is the usual evaluation
map.

2.14 Theorem {13: p. 7 Thm.]. For a topological construct A, the following are equiva-
lent:
(1) A is cartesian closed.
(2) For each pair X.Y of A-objects, the set Hom(X,Y) can be endowed with an A-siructure
a such that
(a) the evaluation map ev : (Hom(X,Y),a) x X — Y, ev(f,z) = f(z), 13 a mor-
phism, aend
(b) for each A-object W and each morphism h : W x X — Y, the map h* : W —
(Hom(X,Y),a) defined by h*(w)(z) = h(w,z) is ¢ morphism.
(3) For every X € ObA, the functor — x X preserves quotients and coproducts.
(4) For every X € ObA, the functor — x X preserves final episinks.

Note the analogy of this characterization theorem to 1.4.
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The map h* in 2.14(2)(b) is called the ¢ranspose of k. Observe that A* is indeed a map
from W to Hom(X,Y), since for cach w € W, the map h*(w) is basically the restriction of h
to {w} x X.

While coproducts in Top and PrTop are finitely productive, quotients are generally not
preserved by the functors — x X; a counterexample for the case Top is given in [12: 2.4.20].
Consequently, Top and PrTop are not cartesian closed. The following proof of this negative
result uses condition (2) of 2.14 and is essentially due to Arens [6: Thm. 3].

2.15 Theorem. Top and PrTop are not cartesian closed.

Proof. Let X = Q (the rationals) and Y = [0,1] (the unit interval) with their usual
topologies. Suppose there is a (pre)topology ¢ on Hom(X,Y) which fulfils 2.14(2). We will
show that this assumption implies that X = Q is locally compact, a contradiction.— Let a € X
be fixed. Denote by f the constant map f : X — Y with value 0. Choose a neighborhood W
of 0in Y with 1 ¢ W. Since the evaluation map is continuous with respect to ¢, there exist
H € Vy(f) and V € V(a) such that ev(H x V) C W. We can choose V to be closed, because X
is regular. We will prove that V is compact. Let C be an open covering of V'; we have to find a

finite subcovering. Without restriction, we can assume that X — V € C, i.e.. that C covers X.
Put

A={ACX|AclosedandACCforsomeC€C}
and
S={(AU)|AeAand U CY open },
where
(A, U) = {gGHom(.X,Y)lg(A)CU}.

Since S covers Hom(X,Y) = (8,Y), S is a subbase for a topology ¢t on Hom(X,Y') (the so-called
A-open topology). By regularity of X, V(z) N A is a neighborhood base of z for any z € X.
Consequently, the evaluation map is continuous with respect to t: Given ¢ € Hom(X,Y),
z € X and an open neighborhood U of g(z), there is a neighborhood U’ € V(z) N A with
g(U") C U by continuity of g. It follows that (U’,U) is a neighborhood of g with respect to t,
and ev((U',U) x U') C U. Now the continuity of

ev: (Hom(X,Y),t) x X — Y
implies the continuity of
ev’ : (Hom(X,Y),t) — (Hom(X,Y),q).

Since ev*, as a map, is the identity on Hom(X,Y), we have t < g. Consequently, H € V¢(f), and
there are A;,..., An € A and open subsets Uy, ..., U, of Y with f € (4;,U1)N...N{4.,Un) C
H. Since every A; is contained in some C; € C, it is now sufficient to show: V C A U...UA,. Let
z€V. Assume z ¢ A U...UA,. Since A;U...UA, is a closed subset of X and X is completely
regular, there is a continuous map h : X — [0,1] = Y with h(z) = 1 and h(4,U...UA,) C {0}.
Then h € (A4, U;)N...N{A4,,Us) C H ,and 1 = h(z) = ev(h,2) € ev(Hx V) C W, a

contradiction. =

2.16 Generalization [24: 3.3]. If A is an epireflective subcategory of PrTop containing
a non-indiscrete space, then A fails to be cartesian closed.

3. The category PsTop of pseudotopological spaces

By weakening the axioms of convergence in a pretopological space, we will obtain a cartesian
closed topological extension of PrTop.
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3.1 Definition [10]. A pseudotopology on a set X is a function ¢ assigning to each z € X
a set of proper filters on X such that

(1) for every z € X: £ € ¢(z);

(2) if F.G are filters on X with G D F € ¢{z), then G € ¢(z):

(8) F € g(z) whenever U € g(z) for every ultrafilter & D F.
Continuous maps between pseudotopological spaces are defined in the same way as for pretopo-
logical spaces. The category of pseudotopological spaces and continuous maps is denoted by
PsTop.

Since every filter is the intersection of all finer ultrafilters. PrTop is a subcategory of
PsTop.

3.2 Proposition., PsTop is a topological construct.
Proof. Initial structures can be described as in (a) of the proof of 2.2, j.e. the initial
pseudotopology ¢ on X with respect to ( fi : X — (Xi, qi) I i € I) is given by:
F—z < Viel: fi(F)— fi(z).
] g

(Use Lemma 3.5(1) to show that g fulfils condition (3) of Definition 3.1.) =

Observe that a pseudotopology is completely determined by the convergence behavior of
the ultrafilters; conditions (2) and (3) of 3.1 can be summed up as: “F € ¢(z) if and only if
U € g(z) for every ultrafilter /f D F”. As a consequence, the initial pseudotopology ¢ in the
proof of 3.2 is already determined if the equivalence F - <« Viel: fi(F) - fi(z)

holds for all ultrafilters F on X.

Since PrTop is closed under formation of initial sources in PsTop. we have:
3.3 Proposition. PrTop is a bireflective subcategory of PsTop.
For a pseudotopological space (X, ¢), the bireflection is given by

1y : (X.q) — (X.7),
where r is the pretopology defined by
]-'—r»x = fjﬂq(x).

We are now going to show that PsTop is cartesian closed. Given pseudotopological spaces
X,Y, we have to find a pseudotopology ¢ on Hom(X,Y) which fulfils (2) and (b) of 2.14(2).
The greater ¢ is (i.e. the more filters converge), the more likely is it that (b) is satisfled. In
contrast, (a) is only fulfilled if ¢ is small enough. Thus when looking for a structure fulfilling
(2) and (b), we have to look for the greatest structure that satisfies (a), i.e. that makes the
evaluation map continuous.

3.4 Definition [7: 1.1]. For pseudotopological spaces X.Y, the structure of continuous
convergence ¢ on Hom(X,Y) is defined by

'H—C»f = V}'?x: ev(Hx}')Trf(:c)

for f € Hom(X.Y) and filters H on Hom(X,Y). (Here H x F is the filter generated by
{HxF|HeH FeF})

In order to show that the structure of continuous convergence is pseudotopological, the
following observation about ultrafilters will be useful.
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3.5 Lemma. (1) Let f: X — Y be a map. If F is a filter on X and U is an ultrafilter
on'Y with f(F) C U, then there ezists an ultrafilter V on X with F CV and f(V) CU.

(2) Let g : Xy x Xo — Y be a map. If F,Fz are filters on X1, Xa, respectively, and U
is an ultrafilter on Y with g(F, x F2) CU, then there ezists an ultrafilter W on X, such that
Fi1 CW and g(W x F2) CU.

Proof. (1) Forall F € F,U € U, we have f(F)NU € U, and consequently, f(F)NU # 0.
Then FNf~1(U) # 0. 1t follows that FU f~!(U) is a proper filter on X. Choose any ultrafilter
Von X with VDO FuU f~}U). Since f(V)NU # B forany V € V, U € U, we obtain f(V) CU.

(2) By (1), there is an ultrafilter V on X; x X3 with Fi x F2 C V and g(V) CUY. Put W =
pi(V). Then 7y Cpi(V) = W, F2 C p2(V), and g(W x F2) C g(p (V) x p2(V)) Cg(V) CU. =

3.6 Proposition [21: 3.7]. For pseudotopological spaces X,V , the structure of continuous
convergence on Hom(X,Y') is a pseudotopology.

Proof. Let f € Hom(X,Y). i

(1) f — f: Let F = Since f is continuous, ev(f x F) = f(F) < f(=).

(2) Let H — f and H' D H. Then for any F =% ev(H' x F) Dev(H x F) < f(2).
so that ev(H' x F) < f(z).

(3) Let M be a filter on Hom(X,Y') such that every ultrafilter finer than H converges to
f. We have to prove that H — f. Let F - & We have to show that ev(H x F) = f(z),

i.e. that every ultrafilter I/ finer than ev(H x F) converges to f(z). By Lemma 3.5(2), there
is an ultrafilter W on Hom(X.Y) with W D M and ev(W x F) C U. By assumption. W — f

and F — & %o that ev(W x F) < f(z) by definition of c. It follows that - f(z). =

3.7 Theorem [22: 3.2.10]. The category PsTop is cartesian closed.

Proof. We show that for pseudotopological spaces X.Y, the structure of continuous
convergence on Hom(X,Y') fulfils condition 2.14(2). In view of 3.4 and 3.6, it remains to
be shown that for W € PsTop and 2 : W x X — Y continuous, the map h* : W —
(Hom(X.Y),c) is continuous. Let G el In order to prove h*(G) - h*(w), we have to

show that ev(h*(G) x F) < ev(h*(w), z) = h(w,z) whenever F =< % Since ev(h*(G) x F) =
h(G x F), this follows immediately from the continuity of h. =

We have found that PsTop is a cartesian closed topological extension of Top and PrTop.
Is it the smallest possible? The answer will turn out to be “yes” in case of PrTop.

3.8 Definition [18]. A cartesian closed topological construct B is called a cartesian closed
topological hull of a construct A if B is a finally dense extension of A with the property that
any finally dense embedding of A into a cartesian closed topological construct can be uniquely
extended to B.

As in the case of the extensional topological hull, the cartesian closed topological hull is
unique up to isomorphism (but it does not always exist {3]). It can be characterized in terms
of function spaces:

3.9 Theorem [18]. The cartesian closed topological hull B of a construct A is character-
1zed by the following properties:

(1) B is a cartesian closed topological construct.

(2) A is finally dense in B.

(3){[X.Y]| XY € ObA } is initially dense in B.

Replacing pretopologies by pseudotopologies in the proof of 2.8, we obtain:




30 H. Herrlich, E. Lowen-Colebunders, F. Schwarz: Improving Top: PrTop and PsTop
3.10 Proposition. Top end PrTop are finally dense in PsTop.

In order to prove that PsTop is the cartesian closed topological hull of PrTop, it now
remains to be shown that {[X,Y] | X,Y € ObPrTop} is initially dense in PsTop. By
comparison with the proof of the initial density of { ¥ l Y € ObTop } in PrTop, where it
was sufficient to consider the class {2} (2.10), one might hope to find a single object of the
form [X,Y] with X,Y € ObPrTop which constitutes an initially dense subclass of PsTop.
However, by [20: Cor.], PsTop does not possess an initially dense singleton subclass. Hence a
more sophisticated approach is needed to prove condition (3) of 3.9. The following fact, which
was observed by Bourdaud [8: 11.4.3], will be very helpful; the proof given here is considerably
simpler than his original proof.

3.11 Proposition.  For every pseudotopological space X, @ continuous, initial map j :
X — [[X.3],3] is given by defining j(z)(f) = f(z) for z € X, f € Hom(X,3).

Proof. The composition of the obvious isomorphism X x [X, 3] — [X, 3] x X with the
evaluation map is a continuous map. Consequently, its transpose, which coincides with j, is
also a continuous map. A

In order to show that j is initial, we have to prove that an ultrafilter & on X converges
to a € X whenever j(U) - j(a). We use contraposition: Let U be an ultrafilter on X with

U —F a. We have to find a filter H on Hom(X,3) and f € Hom(X, 3) such that H — f but
4
ev(j(U) x H) =~ f(a); then clearly j(U/) #/— j(a) by definition of continuous convergence on

Hom([X, 3],3).— For any set A C X, the set (X—A.{2}) = { g € Hom(X,3) | o(X-4) C {2} }
is non-empty; moreover, (X — 4, {2})N{X - B.{2}) = (X - (ANB),{2}) for A, B C X. Hence
{(X —U,{2}) | U € U} generates a filter H on Hom(X,3). Define f : X — 3 by f(a) = 1,
f(z) =2 for z # a. Since f(X) = {1,2}. we have f(F) D 1N 2 for all filters F on X, so that f
is continuous. We will show that H and f satisfy the above conditions.

H— f: It suffices to show that F = ¢ implies ev(H x F) — f(a) = 1. Since ¥ /;v a,

we know U P F, and there exists a set F € F with FF ¢ Y. Then X — F € U, because I is an
ultrafilter. It follows that {2} = ev({F, {2}) x F) € ev(H x F), hence ev(H x F) =2 — 1.

ev(j(U) x H) -+ f(a): It suffices to show that ev(j(U) x H) C 0, i.e. that 0 € ev(j(U;) x
(X = Ua, {2))) for all Uy, Uy € U. Let Uy, Uz € Y. Put U = Uy NUs. Then U € U, U C Uy, and
(X -U,{2})) C (X —U2,{2}). Defineg: X — 3by g(z)=0ifz €U, g(z) =2ifz € X - U.
Since all filters on 3 converge to 0 and 2. the map g is continuous. Clearly, g € (X — U, {2}).
Choose some zo € U. Then 0 = g(z¢) = ev{j(z0),9) € ev({U) x (X - U,{2})) C ev(§(U,) x
(X —Uz,{2})). =

3.12 Theorem [9: 3.2].‘ PsTop is the cartesian closed topological hull of PrTop.

Proof. We have to show that function spaces of PrTop-objects are initially dense in
PsTop. Let X be a pseudotopological space. Since PrTop is finally dense in PsTop, there is
a final episink (f; : i — [X, 3] | i € I') where all ¥; are pretopological spaces. Application
of the functor [—, 3] transforms this final episink into an initial source ((f,1) : [[X,3],3] —
[Y;,3] | i € I) [18: Lemma 6]. By Proposition 3.11, the source j : X — [[X,3],3] is also
initial. Composition of these initial sources provides an initial source as required by 3.9(3). =

The cartesian closed topological hull of Top is not given by PsTop, but by the subcategory
of Antoine spaces [9: 3.3]. However, if we are looking for topological extensions of Top that
are both cartesian closed and extensional, PsTop will again be the “best” choice.

With the same construction as for PrTop (2.4), we obtain:
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3.13 Proposition. PsTop is eztensional.

Proof. Using the notation of 2.4, it is sufficient to show that Y* is pseudotopological. Let
G be a filter on Y*? such that & Y for every ultrafilter ¥ D G. If y = co or G = o0, we have

G v Otherwise, y € Y, and the trace G|, is a proper filter on Y. Since j(G|,) D G, every

ultrafilter Von Y with ¥V O le can be represented as the trace L{|y of some ultrafilter i D G
with U # oo (namely, U = j(V)); from U gl it follows that V = L([Y < Consequently,

Q|Y < and we obtain § el

Categories which are cartesian closed as well as extensional are extremely nice to work in
(Wyler called them “ultra-convenient categories for topologists” [30: p. 699]).

3.14 Definition [23]. A topological construct is called a topological universe if it is both
cartesian closed and extensional.

One of the reasons for the importance of topological universes is the following characteri-
zation theorem:

3.15 Theorem [15: 1.4]. A topological construct is a topological universe if and only if
final episinks are preserved by pullbacks along arbitrary morphisms, i.e. whenever (fi: Y —
Y | i € 1) is a final episink, f: X — Y is a morphism, and for each i € I, the diagram

X; —Y;

gi fi

)

Y

/
is a pullback, then (gi: X; — X ] i€1I) is afinal episink.
By 3.7 and 3.13, we have:
3.16 Theorem [30: 4.9]. PsTop is a topological universe.
Moreover, PsTop is the “smallest” topological universe extension of both Top and PrTop.

3.17 Definition (cf. [1: p. 317]). A topological universe B is called topological universe
hull of a construct A if B is a finally dense extension of A such that any finally dense embedding
of A into a topological universe can be uniquely extended to B.

Uniqueness (up to isomorphism) of the topological universe hull follows immediately from
the definition, while the existence is not ensured (not even if A is a cartesian closed topological
construct {4: Example 1]). In analogy to the extensional and cartesian closed topological hulls,
we have the following characterization theorem (a proof of which can be found in [29: 1.3]):

3.18 Theorem [26: 3.6], [4: Remark 1(b)]. The topological universe hull B of a construct
A is characterized by the following properties:

(1) B is a topological universe.

(2) A is finally dense in B.

(3) {[X,Y?)| X,Y € ObA } is initially dense in B.
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In condition (3) of 3.9, the description of the cartesian closed topological hull, Y can be
restricted to an initially dense subclass of A, and X to a finally dense subclass of B contained
in A;i.e. 3.9(3) can be replaced by the condition

(3) {[X,Y]| X € C, Y € D} is initially dense in B,
where D is initially dense in A and C C A is finally dense in B. Applying 3.18, we obtain:

3.19 Theorem [26: 3.5]. If the topological universe hull of a construct A ezists, then it
can be described as the cartesian closed topological hull of the eztensional topological hull of A.

Notice, however, that the topological universe hull of A generally cannot be obtained as
the extensional topological hull of the cartesian closed topological hull of A; a counterexample
is already given by A = Top [26: 2.1].

By 3.19, we obtain as an immediate consequence of 2.11 and 3.12:

3.20 Theorem [30: 4.9]. PsTop is the topological universe hull of the constructs Top
and PrTop.

In 2.12, we mentioned that formation of the extensional topological hull of epireflective
subcategories of PrTop produces only two distinct categories (beside the trivial one consist-
ing of indiscrete spaces). In case of the topological universe hull, the situation is even more
restrictive:

3.21 Generalization [27: Remark 3(1)]. For every epireflective subcategory A of PrTop
containing a non-indiscrete space. the topological universe hull of A is given by PsTop.

Some applications of 2.12, 2.16 and 3.21 are depicted in the following diagram. Except
for PsTop. none of the categories shown is cartesian closed, and PsTop is their topological
universe hull. The extensional topological hull of the categories contained in either of the two
boxes is the uppermost category in that box.
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