© 2022 Heldermann Verlag Minimax Theory and its Applications 07 (2022) 207–252

L. Cui

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics, Central China Normal University, Wuhan, P. R. China leileicuiccnu@163.com

G. Li

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics, Central China Normal University, Wuhan, P. R. China ligb@ccnu.edu.cn

P. Luo

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics, Central China Normal University, Wuhan, P. R. China luopeng@whu.edu.cn

C. Wang

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics, Central China Normal University, Wuhan, P. R. China chunhuawang@ccnu.edu.cn

Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations

We study the existence and local uniqueness of multi-peak solutions to the following Kirchhoff type equations

$$-\left(a+b_{\lambda}\int_{\mathbb{R}^{3}}|\nabla u_{\lambda}|^{2}\right)\Delta u_{\lambda}+\left(\lambda+V(x)\right)u_{\lambda}=\beta_{\lambda}u_{\lambda}^{p},$$

where $u_{\lambda} \in H^1(\mathbb{R}^3)$, $u_{\lambda} > 0$ in \mathbb{R}^3 , with normalized L^2 -constraint, that is,

$$\int_{\mathbb{R}^3} u_\lambda^2 = 1,$$

where $a > 0, p \in (1,5)$ are constants, $\lambda, b_{\lambda}, \beta_{\lambda} > 0$ are parameters, and $V(x) \colon \mathbb{R}^3 \to \mathbb{R}^1$ is a bounded continuous function. Physicists are very interested in normalized solutions. Compared to finding multi-pick solutions to the equation without normalized L^2 -constraint one is facing here some new difficulties in getting normalized solutions to the equation. We first prove that for the case of $3 , there exist sequences <math>\{b_{\lambda}\}_{\lambda}$ and $\{\beta_{\lambda}\}_{\lambda}$ such that for any sufficiently large $\lambda > 0$, one can construct multi-peak solutions u_{λ} of some given form to the above equation by using the Lyapunov-Schmidt reduction method under some mild assumptions on the function V(x). In the proof of the above existence result, we consider the three cases of p = 11/3, 3 and <math>11/3 separately, which correspond to the cases of mass critical, subcritical and supercritical in physics respectively. Then, applying the blow-uptechnique and the local Pohozaev identities we obtain a uniqueness result ofmulti-peak solutions for the case of <math>3 . The difficulties caused by the $nonlocal term and normalized <math>L^2$ -constraint are overcome.

Keywords: Kirchhoff type equations, multi-peak normalized solutions, Lyapunov-Schmidt reduction, local Pohozaev identity, existence and local uniqueness.

MSC: 35J20, 35J60, 35J92.