© 2020 Heldermann Verlag Minimax Theory and its Applications 05 (2020) 007–018

D. T. Luyen

Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam and: Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam duongtrongluyen@tdtu.edu.vn

L. T. H. Hanh

Dept. of Mathematics, Hoa Lu University, Ninh N
hat, Ninh Binh City, Vietnam honghanhtn2212@gmail.com $\ensuremath{\mathsf{Sigmail}}$

Infinitely Many Solutions for Semilinear Δ_{γ} -Differential Equations in \mathbb{R}^N without the Ambrosetti-Rabinowitz Condition

We study the existence of infinitely many nontrivial solutions of the semilinear Δ_{γ} -differential equations in \mathbb{R}^N

$$-\Delta_{\gamma}u + b(x)u = f(x, u) \quad \text{in } \mathbb{R}^N,$$

where Δ_{γ} is the subelliptic operator of the type

$$\Delta_{\gamma} := \sum_{j=1}^{N} \partial_{x_j} \left(\gamma_j^2 \partial_{x_j} \right), \quad \partial_{x_j} := \frac{\partial}{\partial x_j}, \quad \gamma := (\gamma_1, \gamma_2, ..., \gamma_N),$$

and the potential b(x) and nonlinearity f(x, u) are not assumed to be continuous, moreover f may not satisfy the Ambrosetti-Rabinowitz (AR) condition. Under some growth conditions on b and f, we show that there are infinitely many solutions to the problem.

Keywords: Delta-sub-gamma-Laplace problems, Cerami condition, variational method, weak solutions, Mountain Pass Theorem.

MSC: 35J70, 35J20; 35J10.