$\ \, \odot$ 2025 Heldermann Verlag Journal of Lie Theory 35 (2025) 737–786

W. Bertram

Institut Elie Cartan de Lorraine, Site de Nancy, Vandoeuvre, France wolfgang.bertram@univ-lorraine.fr

On Group and Loop Spheres

We investigate the problem of defining group or loop structures on spheres, where by "sphere" we mean the level set q(x)=c of a general \mathbb{K} -valued quadratic form q, for an invertible scalar c. When \mathbb{K} is a field and q non-degenerate, then this corresponds to the classical theory of composition algebras; in particular, for $\mathbb{K}=\mathbb{R}$ and positive definite forms, we obtain the sequence of the four real division algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (quaternions), \mathbb{O} (octonions). Our theory is more general, allowing that \mathbb{K} is merely a commutative ring, and the form q possibly degenerate. To achieve this goal, we give a more geometric formulation, replacing the theory of binary composition algebras by ternary algebraic structures, thus defining categories of group spherical and of Moufang spherical spaces. In particular, we develop a theory of ternary Moufang loops, and show how it is related to the Albert-Cayley-Dickson construction and to generalized ternary octonion algebras. At the bottom, a starting point of the whole theory is the (elementary) result that every 2-dimensional quadratic space carries a canonical structure of commutative group spherical space.

Keywords: Composition algebra, quaternions, octonions, (binary) quadratic form, sphere, generalized dicyclic group, circle group, group spherical space, Moufang loop spherical space, torsor, ternary loop.

MSC: 11E04, 11E16, 11H56, 11R11, 11R52, 15A63, 16S99, 17A40, 17A75, 17C37, 20N05, 20N10, 51N30.