© 2025 Heldermann Verlag Journal of Lie Theory 35 (2025) 345–358

R. Bidar

Faculty of Mathematics, University of Dayton, Dayton, Ohio, U.S.A. rbidar1@udayton.edu

Bounding the Norm of the Derivative of the Lie Exponential Map for Connected Lie Groups

Let G be a real connected Lie group with a left invariant metric d, \mathfrak{g} its Lie algebra, $\exp : \mathfrak{g} \to G$ be the Lie exponential map, and ad be the adjoint representation of \mathfrak{g} . In this paper we use matrix algebra and Jordan normal form to derive a set of upper and lower bounds for $|d \exp_x(y)|$, $x, y \in \mathfrak{g}$ that generally are exponential type functions of the eigenvalues of ad_x . These bounds provide useful information about the exponential map and the way it relates the Euclidean metric of \mathfrak{g} and the left invariant metric of G. For Lie groups for which the exponential map is a diffeomorphism, we investigate conditions under which the exponential map is a quasi-isometry. This is obviously true if G is isomorphic to \mathbb{R}^n . We prove that the exponential map is a quasi-isometry only when G is isomorphic to \mathbb{R}^n .

Keywords: Lie group, exponential map, adjoint, quasi-isometry.

MSC: 22E15, 22E60.