© 2022 Heldermann Verlag Journal of Lie Theory 32 (2022) 839–862

F. Gavarini

Department of Mathematics, University of Rome "Tor Vergata", Rome, Italy gavarini@mat.uniroma2.it

Quantum Duality Principle for Quantum Continuous Kac-Moody Algebras

For the quantized universal enveloping algebra $U_{\hbar}(\mathfrak{g}_X)$ associated with a continuous Kac-Moody algebra \mathfrak{g}_X as in [A. Appel, F. Sala, *Quantization of continuum Kac-Moody algebras*, Pure Appl. Math. Q. **16** (2020), 439–493], we prove that a suitable formulation of the *Quantum Duality Principle* holds true, both in a "formal" version – i.e., applying to the original definition of $U_{\hbar}(\mathfrak{g}_X)$ as a *formal* QUEA over $\Bbbk[[\hbar]]$ – and in a "polynomial" one – i.e., for a suitable polynomial form of $U_{\hbar}(\mathfrak{g}_X)$ over $\Bbbk[q, q^{-1}]$. In both cases, the QDP states that a suitable Hopf subalgebra of the given quantization of the Lie bialgebra \mathfrak{g}_X is in fact a suitable quantization (in formal or in polynomial sense) of a connected Poisson group G_X^* dual to \mathfrak{g}_X .

Keywords: Continuous Kac-Moody algebras, continuous quantum groups, quantization of Lie bialgebras, quantization of Poisson groups.

MSC: 17B37, 20G42; 17B65, 17B62.