© 2022 Heldermann Verlag
Journal of Lie Theory 32 (2022) 075-086
M. Bani-Ata

Dept. of Mathematics, Public Authority for Applied Education and Training, Kuwait mashhour_ibrahim@yahoo.com

Quadratic Forms on the 27-Dimensional Modules for E_{6} in Characteristic Two

The purpose of this paper is to study the Chevalley group E of type $E_{6}(\mathbb{K})$ over fields \mathbb{K} of characteristic two. We use the generalized quadrangle (\mathbb{P},) over \mathbb{K} of type $O_{6}^{-}(2)$ to construct a trilinear form T on a 27 -dimensional vector space A, this form preserves the action of E. We introduce an involution

$$
g \rightarrow g^{\alpha}=g^{*}=\left(g^{t}\right)^{-1}
$$

on E, algebra structure on A and a quadratic map $\hat{Q}: A \rightarrow A$. Then we prove the following results:
(a) $\hat{Q}\left(x^{g}\right)=\hat{Q}(x)^{g^{*}}$ for all $x \in A$ and $g \in E$.
(b) For $x, y, z \in A$ and $g \in E$, the following holds true:
(1) $x^{g} y^{g}=(x y)^{g^{*}}$,
(2) $T\left(x^{g}, y^{g}, z^{g}\right)=T(x, y, z)$.
(c) The main results:
(1) The group G of isometries of T coincides with the group $G^{*}=\left\{g \in G L(A) \mid a^{g} b^{g}=(a b)^{g^{*}}\right\}$.
(2) The group $G_{0}=\left\{g \in G L(A) \mid \hat{Q}\left(a^{g}\right)=\hat{Q}(a)^{g^{*}}\right\}$ is intermediate between E and G.
(3) The group $E=E^{*}=\left\{g^{*}=\left(g^{t}\right)^{-1} \mid g \in E\right\}$.

Keywords: Quadratic forms, generalized quadrangles, groups of Lie type.
MSC: 17A75, 17A45.

