© 2022 Heldermann Verlag Journal of Lie Theory 32 (2022) 075–086

M. Bani-Ata

Dept. of Mathematics, Public Authority for Applied Education and Training, Kuwait $\tt mashhour_ibrahim@yahoo.com$

Quadratic Forms on the 27-Dimensional Modules for E_6 in Characteristic Two

The purpose of this paper is to study the Chevalley group E of type $E_6(\mathbb{K})$ over fields \mathbb{K} of characteristic two. We use the generalized quadrangle (\mathbb{P} ,) over \mathbb{K} of type $O_6^-(2)$ to construct a trilinear form T on a 27-dimensional vector space A, this form preserves the action of E. We introduce an involution

$$g \to g^{\alpha} = g^* = (g^t)^-$$

on E, algebra structure on A and a quadratic map $\hat{Q}: A \to A$. Then we prove the following results:

- (a) $\hat{Q}(x^g) = \hat{Q}(x)^{g^*}$ for all $x \in A$ and $g \in E$.
- (b) For $x, y, z \in A$ and $g \in E$, the following holds true: (1) $x^g y^g = (xy)^{g^*}$,
 - (2) $T(x^g, y^g, z^g) = T(x, y, z).$
- (c) The main results:
 - (1) The group G of isometries of T coincides with the group $G^* = \{g \in GL(A) \mid a^g b^g = (ab)^{g^*}\}.$
 - (2) The group $G_0 = \{g \in GL(A) \mid \hat{Q}(a^g) = \hat{Q}(a)^{g^*}\}$ is intermediate between E and G.
 - (3) The group $E = E^* = \{g^* = (g^t)^{-1} \mid g \in E\}.$

Keywords: Quadratic forms, generalized quadrangles, groups of Lie type.

MSC: 17A75, 17A45.