Let (π, \mathcal{H}) be a strongly continuous unitary representation of a 1-connected Lie group G such that the Lie algebra \mathfrak{g} of G is generated by the positive cone $C_\pi := \{ x \in \mathfrak{g} : -i\partial \pi(x) \geq 0 \}$ and an element h for which the adjoint representation of h induces a 3-grading of \mathfrak{g}. Moreover, suppose that (π, \mathcal{H}) extends to an antiunitary representation of the extended Lie group $G_\tau := G \rtimes \{ 1, \tau_G \}$, where τ_G is an involutive automorphism of G with $L(\tau_G) = e^{i\pi \text{ad} h}$. In a recent work by Neeb and Ólafsson, a method for constructing nets of standard subspaces of \mathcal{H} indexed by open regions of G has been introduced and applied in the case where G is semisimple. In this paper, we extend this construction to general Lie groups G, provided the above assumptions are satisfied and the center of the ideal $\mathfrak{g}_C = C_\pi - C_\pi \subset \mathfrak{g}$ is one-dimensional. The case where the center of \mathfrak{g}_C has more than one dimension will be discussed in a separate paper.

Keywords: Standard subspace, Lie group, covariant net, quantum field theory.

MSC: 22E45, 81R05, 81T05.