Homological Finiteness of Representations of Almost Linear Nash Groups

Let G be an almost linear Nash group, namely, a Nash group that admits a Nash homomorphism with finite kernel to some $GL_k(\mathbb{R})$. A smooth Fréchet representation V with moderate growth of G is called homologically finite if the Schwartz homology $H^i_S(G; V)$ is finite dimensional for every $i \in \mathbb{Z}$. We show that the space of Schwartz sections $\Gamma^\psi(X, E)$ of a tempered G-vector bundle (X, E) is homologically finite as a representation of G, under some mild assumptions.

Keywords: Schwartz homology, tempered vector bundle, Schwartz sections, homological finiteness.

MSC: 22E41.